x(g) with Heavy Flavours in ep & yp collisions at LHeC

Gökhan Ünel / U.C. Irvine

1-3 September 2009 2nd LHeC workshop @Divonne

prologue

- This presentation is largely inspired from the work shown in a Thera meeting @ 19.10.2000 by L. Gladilin.
 - →The results are cross checked against what was shown for ep and yp collisions at HERA and THERA.
- Assumed Parameters: LHC@ 7TeV, e- beam@ 50 or 150 GeV
- Comphep 4.5.1/ Calchep 2.5.4 for cross section calculations, investigations of parameter dependence etc.
 - →10-15% difference between the two for the same(?) parameters.
- About the photon beam:
 - \rightarrow When beam E is written for the γ -p collider, it always means the energy of the mother electron beam which produces the γ s, γ e.
 - →y beam: using inverse compton spectrum

 $(x \approx 4; x/x+1=0.8) E_{\gamma}^{\text{max}} \approx 0.8 E_{e}$

0.2 0.6 0.8

which process?

•We care about $e/y p \rightarrow c/b + X$

•We will focus on:

$$\rightarrow$$
e g->e c c OR e b b

$$\rightarrow$$
 $y q \rightarrow c c OR b b$

PP notation: bar at the bottom.

4

x(g) cc reach

•PDF=CTEQ 6L1 mc=1.65GeV

→ eg->ecc

5

x(g) bb reach

impact of different PDFs

•50GeV e & 7TeV p, mc=1.65GeV, mb=4.85GeV

γg ->b<u>b</u>

impact of masses & scales

- ●50GeV e & 7TeV p, γg ->cc, PDF=CTEQ6M
 - ⇒change c quark mass

change the QCD f/r scale

qα/**q** (m**p**)

angular reach in yp

- •50GeV e & 7TeV p, mc=1.65GeV, mb=4.85GeV
 - ⇒angular requirement on both quarks (cc/bb)

 $yg \rightarrow bb$

9

eta reach in yp

•50GeV e & 7TeV p, mc=1.65GeV, mb=4.85GeV

 $q\alpha/q$ (hp)

γg ->b<u>b</u>

angular reach in ep

- •50GeV e & 7TeV p, mc=1.65GeV, mb=4.85GeV
 - ⇒angular cut on both quarks (cc/bb)
 - ⇒eg ->ec<u>c</u>

eg ->ebb

conclusions

- log(x(g)) up to -5.5 seems to be reachable in yp collisions.
- γp collisions provide higher cross section and smaller x(g) wrt the ep collisions with the same E_e (for the low x(g) region):
 - ⇒ the factor is ≈ 700 for cc and ≈ 200 for bb.
 - \Rightarrow even if the \mathcal{L}_{yp} is 10 times less then \mathcal{L}_{ep} the expected number of events would be 70 and 20 times higher for cc and bb respectively.
- The impact of PDFs, masses and scales can not be ignored/ should be worked on.
- The angular sensitivity is very important for smallest x(g) reach
 - \Rightarrow for either e or γ beams, coverage up to $\eta=5$ is ideal
- the same γp collisions could also be used to measure photon structure func.
 - → work needed here.
- More work is in progress
 - → Few other missing distros with high(er) statistics
 - ⇒ Event production using RapGap.

backup slides

- •The effect of compton BS spectrum, $yg->\underline{c}c$ case
 - ⇒comparison wrt a needle beam

angular reach in yp

- •50GeV e & 7TeV p, mc=1.65GeV, mb=4.85GeV
 - ⇒single versus both quarks
 - $\Rightarrow yg \rightarrow c\underline{c}$ (cut on c)

 $yg \rightarrow cc$ (cut on both)

total cross section summaries

	50GeVe-	150 GeVe-
ep→eb <u>b</u>	3.80	7.38
γp→b <u>b</u>	220	384
ep→ec <u>c</u>	218	389
γp→cc	21900	30000

•cross sections in nb with CTEQ 6L1