Options and preferences for proton running in 2009

W. Herr

Objectives for LHC running in 2009

- Deliver significant luminosity to experiments
- Understand limitations and behaviour of machine and beams
- Establish/improve procedures for operation and optimization
- Minimum risk operation

Energy

- **Number of bunches**
- \square β^*
- Bunch and beam intensity

Energy

- **Number of bunches**
- \square β^*
- Bunch and beam intensity
- Strongly correlated, depend on:
 - **Expected** performance

Energy

- **Number of bunches**
- \square β^*
- Bunch and beam intensity
- Strongly correlated, depend on:
 - **Expected** performance
 - > Availability and performance of hardware

Energy

- Number of bunches
- \square β^*
- Bunch and beam intensity
- Strongly correlated, depend on:
 - **Expected** performance
 - Availability and performance of hardware
 - Beam dynamics

Energy

- Number of bunches
- \square β^*
- Bunch and beam intensity
- Strongly correlated, depend on:
 - **Expected** performance
 - Availability and performance of hardware
 - Beam dynamics
- Try to give a "cook book"

Energy for LHC running

Determined by:

Experiments desiderata

Machine protection

> Ultimately: machine hardware

Consequences for:

 $> \beta^*$

- Crossing angle (if required)
- Number of bunches

Energy for LHC running

Experiments desiderata

> 2.75 TeV (ion comparison)

- > 5 TeV
- **)** (7 TeV)

 β^* for LHC running

Key for significant luminosity, determined by:

Machine protection (aperture)

Machine energy

Beam dynamics

Consequences for:

Number of bunches

Crossing angle (if required)

Number of bunches for LHC running

Determined by:

Machine protection (total beam intensity)

Experiments desiderata (luminosity, pile up, ..)

Energy (crossing angle !)

Implications for:

 $> \beta^*$

Crossing angle (for large number of bunches)

> Luminosity sharing between experiments

Number of bunches for LHC running

- Without crossing angle (spacing larger than shared beam pipe length):
 - > 43, 156 bunches per beam (or less)
- With crossing angle (spacing smaller than shared beam pipe length):
 - > 25, 50, 75 ns bunch spacing (within a train of 72, 36 or 24 bunches)
 - Total beam intensity depends on number of injected trains (max. 39, see later)

Minimum number of bunches

For colliding pairs in all experiments:

- Minimum is 2 bunches per beam, but not symmetric, one pair colliding in each IP
- Making it symmetric requires 3 bunches per beam: 3 collisions in IP1/5, 1 collision in IP2/8

Without crossing angle

- (Almost) Equally spaced bunches (either 43 or 156)
- Requires shifting some bunches to allow for collisions in LHCb
 - Shift done by adjusting timing of SPS to LHC transfer
 - Determines possible filling schemes
 - Filling schemes can be adjusted to meet requirements from experiments
- Nota bene: TOTEM with $\beta^* = 90$ m must run without crossing angle

Filling schemes with 43 bunches per beam

displaced	0	4	11	19
IP1	43	43	43	43
IP2	42	34	21	4
IP5	43	43	43	43
IP8	0	4	11	19

- Numbers give number of colliding bunches per interaction point
- See LHC Project Note for details

Filling schemes with 156 bunches per beam

	no bunches	option 1	option 2
	displaced		
IP1	156	156	156
IP2	152	76	16
IP5	156	156	156
IP8	0	36	68

Numbers give number of colliding bunches per interaction point

Operation without crossing angle

- No long range interactions, i.e. no crossing angle
 aperture limiting factor
- **Required aperture determined by:**
 - $> \beta^*$, since $\hat{\beta} \propto 1/\beta^*$
 - Energy, since $\sigma_{max} \propto 1/\sqrt{\gamma}$
- **Apply standard definition for aperture and use** n1 as criterion
- fiall Defines a relation between energy and minimum eta^*

 eta^* versus energy

Requiring minimum n1 of 7.0

Werner Herr, Chamonix 2009, 6. 2. 2009

 β^* versus energy

Requiring minimum n1 of 7.0

Werner Herr, Chamonix 2009, 6. 2. 2009

Collisions at 450 GeV

Operational scenarios are:

- > No crossing angle: 2, 3, 43, or 156 bunches per beam
- > If no crossing angle: only coupling left from solenoids
- > β^* limited to $\beta^* \geq 6$ m (may want to stay at injection β^*)
- Assuming N = 0.4 10¹¹, $\epsilon_n = 3.75 \ \mu m$
- Luminosity IP1/5 (43 bunches) $\approx 1.3 \cdot 10^{29} \text{ cm}^{-2} \text{s}^{-1}$
- Luminosity IP1/5 (156 bunches) $\approx 4.7 \cdot 10^{29} \text{ cm}^{-2} \text{s}^{-1}$
- Luminosity in IP2 and IP8 smaller

Beam-beam parameter and tune shifts

> What about much smaller emittances ??

Head-on collision may be a problem:

$$\Delta Q \propto \xi = \frac{N \cdot r_o \cdot \beta^*}{4\pi\gamma\sigma^2} = \frac{N \cdot r_o}{4\pi\epsilon_n}$$

- For much smaller emittances $\epsilon_n \rightarrow$ head-on effects strongly increased !
- For $N = 0.4 \cdot 10^{11}$ can probably accept $\epsilon_n \approx 2$ 2.5 μm

Operation without crossing angle (IP1/5)

Energy	eta^*	\mathcal{L}_{43}	\mathcal{L}_{156}
(TeV)	(m)	$(cm^{-2}s^{-1})$	$(cm^{-2}s^{-1})$
0.45	6	$0.13 \cdot 10^{30}$	$0.47 \cdot 10^{30}$
2.75	1	$4.30 \cdot 10^{30}$	$15.6 \cdot 10^{30}$
5.00	0.6	$13.0 \cdot 10^{30}$	$47.0 \cdot 10^{30}$
(5.00	3.0	$16.0 \cdot 10^{30}$	60.0 · 10 ³⁰)

All compatible with aperture, consider as limitFor IP2 and IP8, scale according to filling scheme

Operation with many bunches (≥ 156)

- **[2]** Requires crossing angle α to avoid parasitic interactions
- Long range interactions unavoidable, crossing angle must be large enough
- Too large crossing angle reduces luminosity (and aperture)
- Number of long range interactions increases with number of bunches per train
- Probably start with very few trains (see later)

Reminder:

Luminosity with crossing angle α in x-plane (round beams):

$$\mathcal{L} = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \cdot \mathbf{S}$$

S is the reduction factor

For small crossing angles and (Gaussian bunches) $\sigma_s \gg \sigma_{x,y}$

$$\Rightarrow S \approx \frac{1}{\sqrt{1 + \left(\frac{\alpha}{2}\frac{\sigma_s}{\sigma_x}\right)^2}} = \frac{1}{\sqrt{1 + \left(\frac{\alpha^2}{4}\frac{\sigma_s^2}{\beta_x\epsilon}\right)}}$$

Beam-beam parameter and tune shifts

Head-on (no crossing angle):

$$\Delta Q \approx \xi = \frac{N \cdot r_o \cdot \beta^*}{4\pi\gamma\sigma^2} = \frac{N \cdot r_o}{4\pi\epsilon_n}$$

Head-on (crossing angle α in x-plane):

$$\Delta Q_x \approx \xi \cdot S = \frac{N \cdot r_o \cdot \beta^*}{4\pi\gamma\sigma^2} \cdot S = \frac{N \cdot r_o}{4\pi\epsilon_n} \cdot S$$
$$\Rightarrow S \approx \frac{1}{\sqrt{1 + (\frac{\alpha}{2}\frac{\sigma_s}{\sigma_x})^2}} = \frac{1}{\sqrt{1 + (\frac{\alpha^2}{4}\frac{\sigma_s^2}{\beta_x\epsilon})}}$$

How many bunches should be aim at ?

Reminder:

$$\mathcal{L} \propto N \cdot N \cdot n_b = I_{tot} \cdot N = rac{I_{tot} \cdot I_{tot}}{n_b}$$

 $\Delta Q \propto N = rac{I_{tot}}{n_b}$

For the second second

For I_{tot} limited (e.g. protection) and N not (yet) limited Smaller number of bunches n_b beneficial

Filling schemes with crossing angle

Bunch spacing	Δs	# long range encounters
		(per IP)
25 ns	$3.75 \mathrm{~m}$	32
50 ns	$7.50 \mathrm{\ m}$	16
75 ns	$11.25 \mathrm{\ m}$	12

- Three different bunch spacings presently considered (for protons)
- In Half bunch spacing Δs is position of first parasitic encounter

Filling schemes - colliding bunches per IP

Spacing	IP1	IP2	IP5	IP8
25 ns	2808	2736	2808	2622
50 ns	1404	1368	1404	0
75 ns	936	912	936	874

- 50 ns seem not attractive, but trains can be displaced
- Try 5 scenarios where different number of trains are shifted at transfer SPS/LHC

Filling schemes - colliding bunches per IP

	a	b	С	d	е
IP1	1404	1404	1404	1404	1333
IP2	1368	684	0	72	2
IP5	1404	1404	1404	1404	1333
IP8	0	655	1311	1242	1173

The 50 ns allow to adjust luminosity between experiments (not possible for 25 ns)

Long range beam-beam separation

- Unavoidable parasitic interactions, number depends on bunch spacing
- Crossing angle required
- $\blacksquare \text{ LHC: } (\frac{\alpha}{2} \approx 142.5 \text{ (!) } \mu \text{rad}, \beta^* \approx 0.55 \text{ m})\text{:} \quad \mathbf{S} \approx \mathbf{0.80}$
- **To small** α : not enough separation
- **To large** α : little (or no) luminosity gain
- **Smaller** ϵ for given α , β^* : larger d_{sep} , but also reduced S

Minimum required crossing angle versus β^*

Crossing angle as function of $\beta^*, \gamma, \epsilon_n, \Delta s$, valid for IP1 and IP5, (not for IP2 and IP8)

$$\alpha = \frac{d_{sep} \cdot \sqrt{\frac{\epsilon_n}{\gamma}} \cdot \sqrt{\beta^* \left(1 + \frac{\Delta s^2}{\beta^{*2}}\right)}}{\Delta s}$$

where Δs is half the bunch spacing, and d_{sep} the minimum required separation in the drift between IP and Q1 (for nominal running ≈ 9.5)

For $\Delta s \gg \beta^*$ (and with parallel separation) we have simply:

$$\alpha = \frac{d_{sep} \cdot \sqrt{\frac{\epsilon_n}{\gamma}}}{\sqrt{\beta^*}}$$

Minimum required crossing angle versus β^*

Crossing angle as function of $\beta^*, \gamma, \epsilon_n, \Delta s$, valid for IP1 and IP5, (not for IP2 and IP8)

$$\alpha = \frac{d_{sep} \cdot \sqrt{\frac{\epsilon_n}{\gamma}} \cdot \sqrt{\beta^* \left(1 + \frac{\Delta s^2}{\beta^{*2}}\right)}}{\Delta s}$$

where Δs is half the bunch spacing, and d_{sep} the minimum required separation in the drift between IP and Q1 (for nominal running ≈ 9.5)

For $\Delta s \gg \beta^*$ (and with parallel separation) we have simply:

$$\alpha = \frac{d_{sep} \cdot \sqrt{\frac{\epsilon_n}{\gamma}}}{\sqrt{\beta^*}}$$

Operation with crossing angle

- **Operation with** β^* between 1 m and 4 m very promising
- Get large enough crossing angle (within aperture) to avoid any significant long range effects
 - > Over large range crossing angle can be kept \approx constant (in particular for 50 ns spacing)
 - Initially, take e.g. 50% larger angle than necessary
 - long range tune spread less than half !

Operation with crossing angle

Assume 0.5 10^{11} per bunch, and crossing angle \approx 300 μ rad Luminosity (in IP1 and IP5) in units of 10^{32} cm⁻²s⁻¹

Energy	eta^*	\mathcal{L}_{936}	\mathcal{L}_{1404}	\mathcal{L}_{2808}
(TeV)	(m)	$({\rm cm}^{-2}{\rm s}^{-1})$	$(\mathbf{cm}^{-2}\mathbf{s}^{-1})$	$(cm^{-2}s^{-1})$
5.0	3.0	0.9	1.4	2.8
5.0	2.0	1.4	2.1	4.2
5.0	1.0	2.6	4.0	8.0
7.0	3.0	1.3	2.00	4.0
7.0	2.0	2.0	3.00	6.0
7.0	1.0	4.0	6.00	12.0

Bunch spacing: 25 ns versus 50 ns

- Dynamic aperture as function of Tune (courtesy D. Kaltchev, TRIUMF)
- For 50 ns spacing (half the number of long range interactions):

Loss of (maximum) luminosity, but:

- > Dynamic aperture strongly improved
- Simplified operation
- (same for 75 ns spacing)

Collisions in IP2 and IP8

- Complication is internal crossing angle, produced by compensation of spectrometers (LHC Report 1009, LHC Note 419, "Chamonix" 2006)
- Without external angle (i.e. 43 or 156 bunches) no constraint on spectrometer polarity and on strength (even at 450 GeV), i.e. no ramping required
- But: large internal angle may substantially reduce luminosity (in particular for lower energies)
- When an external angle is required: follow procedures described in reports

With external angle: case IP8

- → For all details: see LHC Project Note 419
- Crossing angle is in horizontal plane !
- Requires shifted trains (see later)
- With external crossing angle ramping of spectrometer is required for (at least) one of the polarities
- At 5.0 TeV: $\beta^* \geq 3$ m (better: 4 m) possible (both polarities), if permitted by collimation system

How to increase the total intensity in the LHC ?

Basically two options:

- All bunches and in steps increase intensity per bunch
- Large (maximum) intensity per bunch and in steps increase number of bunches (i.e. trains)
- **Consequences for:**
 - Beam-beam effects
 - Luminosity control in experiments
 - Collimation
 - Operation

Reminder: experimental luminosities

- IP1 and IP5: largest possible luminosity for any configuration
- IP8: high luminosity, but 1 $5 \cdot 10^{32}$ cm⁻² s⁻¹ for any configuration
- IP2: low luminosity, if possible for any configuration
- > Try strategy to increase total intensity fulfilling these requirements
- Start with very few trains and slowly increase their number

Relative luminosity as function of total intensity

Increase of I_{tot} by additional SPS-LHC injections Spacing 25/75 ns, selected LHC transfers shifted

Werner Herr, Chamonix 2009, 6. 2. 2009

Relative luminosity as function of total intensity

Spacing 50 ns, selected SPS-LHC transfers shifted (see LPN 415)

Werner Herr, Chamonix 2009, 6. 2. 2009

Relative luminosity as function of total intensity

Spacing 50 ns, selected SPS-LHC transfers shifted (see LPN 415)

Werner Herr, Chamonix 2009, 6. 2. 2009

Spacing 50 ns, $\approx 30\%$ of maximum total current, bunch position versus bucket (slot) number

Werner Herr, Chamonix 2009, 6. 2. 2009

Spacing 50 ns, $\approx 60\%$ of maximum total current, bunch position versus bucket (slot) number

Werner Herr, Chamonix 2009, 6. 2. 2009

Summary

- We have collision scenarios with/without crossing angle
- Possible options for different energies, including 450 GeV, requested performance seems reachable
- **For less than nominal luminosity, 50 ns attractive:**
 - > Low total intensity
 - Together with larger β^* practically no long range effects expected
 - Can adjust luminosity between experiments
 - More flexible choice of parameters (β^* , α ,...)

Minimum (train) filling scheme for collisions in 4 IPs
 IPs: 108 36 108 35

Werner Herr, Chamonix 2009, 6. 2. 2009

Minimum (bunch) filling scheme for collisions in 4 IPs
IPs: 3 1 3 1

Werner Herr, Chamonix 2009, 6. 2. 2009