Options and preferences for proton running in 2009

W. Herr

```
Objectives for LHC running in 2009
```

[0] Deliver significant luminosity to experiments
Understand limitations and behaviour of machine and beams

Establish/improve procedures for operation and optimization

圆 Minimum risk operation

Key parameters for LHC performance
[Energy
Number of bunches

- β^{*}

Bunch and beam intensity

Key parameters for LHC performance

回 Energy
Number of bunches

- β^{*}

Bunch and beam intensity
\rightarrow Strongly correlated, depend on:

- Expected performance

Key parameters for LHC performance

Energy
Number of bunches

- β^{*}

Bunch and beam intensity
\rightarrow Strongly correlated, depend on:

- Expected performance
- Availability and performance of hardware

Key parameters for LHC performance

圆
Energy
Number of bunches

- β^{*}

Bunch and beam intensity
\rightarrow Strongly correlated, depend on:

- Expected performance
- Availability and performance of hardware
- Beam dynamics

Key parameters for LHC performance

圆
Energy
Number of bunches

- β^{*}

Bunch and beam intensity
\rightarrow Strongly correlated, depend on:

- Expected performance
- Availability and performance of hardware
- Beam dynamics
\rightarrow Try to give a "cook book"

Energy for LHC running

Determined by:

- Experiments desiderata
- Machine protection
- Ultimately: machine hardware
- Consequences for:
- Crossing angle (if required)
- Number of bunches
β^{*}

Energy for LHC running

- Experiments desiderata
- 450 GeV
- 2.75 TeV (ion comparison)
- 5 TeV
- $(7 \mathrm{TeV})$

β^{*} for LHC running

Key for significant luminosity, determined by:

- Machine protection (aperture)
- Machine energy
- Beam dynamics
- Consequences for:
- Number of bunches
- Crossing angle (if required)

Number of bunches for LHC running

Determined by:

- Machine protection (total beam intensity)
- Experiments desiderata (luminosity, pile up, ..)
- Energy (crossing angle !)
- Implications for:
- Crossing angle (for large number of bunches)
- β^{*}
- Luminosity sharing between experiments

Number of bunches for LHC running

國 Without crossing angle (spacing larger than shared beam pipe length):
-43, 156 bunches per beam (or less)
With crossing angle (spacing smaller than shared beam pipe length):
$\geqslant 25,50,75 \mathrm{~ns}$ bunch spacing (within a train of 72,36 or 24 bunches)

- Total beam intensity depends on number of injected trains (max. 39, see later)

Minimum number of bunches

For colliding pairs in all experiments:

- Minimum is 2 bunches per beam, but not symmetric, one pair colliding in each IP
- Making it symmetric requires 3 bunches per beam: 3 collisions in IP1/5, 1 collision in IP2/8

Without crossing angle

(Almost) Equally spaced bunches (either 43 or 156)
Requires shifting some bunches to allow for collisions in LHCb

Shift done by adjusting timing of SPS to LHC transfer

- Determines possible filling schemes
- Filling schemes can be adjusted to meet requirements from experiments

Nota bene: TOTEM with $\beta^{*}=90 \mathrm{~m}$ must run without crossing angle

Filling schemes with 43 bunches per beam

displaced	0	4	11	19
IP1	43	43	43	43
IP2	42	34	21	4
IP5	43	43	43	43
IP8	0	4	11	19

包 Numbers give number of colliding bunches per interaction point

See LHC Project Note for details

Filling schemes with 156 bunches per beam

	no bunches displaced	option 1	option 2
IP1	156	156	156
IP2	152	76	16
IP5	156	156	156
IP8	0	36	68

Numbers give number of colliding bunches per interaction point

Operation without crossing angle

國 No long range interactions, i.e. no crossing angle
\rightarrow aperture limiting factor
Required aperture determined by:
$\Rightarrow \beta^{*}$, since $\hat{\beta} \propto 1 / \beta^{*}$
\Rightarrow Energy, since $\sigma_{\max } \propto 1 / \sqrt{\gamma}$
國 Apply standard definition for aperture and use $n 1$ as criterion

Defines a relation between energy and minimum β^{*}

β^{*} versus energy

- Requiring minimum $n 1$ of 7.0

β^{*} versus energy

- Requiring minimum $n 1$ of 7.0

Collisions at 450 GeV

Operational scenarios are:

- No crossing angle: $2,3,43$, or 156 bunches per beam
- If no crossing angle: only coupling left from solenoids
- β^{*} limited to $\beta^{*} \geq 6 \mathrm{~m}$ (may want to stay at injection β^{*})
\Rightarrow Assuming $\mathrm{N}=0.410^{11}, \epsilon_{n}=3.75 \mu \mathrm{~m}$
\Rightarrow Luminosity IP1/5 (43 bunches) $\approx 1.3 \cdot 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\Rightarrow Luminosity IP1/5 (156 bunches) $\approx 4.7 \cdot 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Luminosity in IP2 and IP8 smaller

Beam-beam parameter and tune shifts

- What about much smaller emittances ??
-Head-on collision may be a problem:

$$
\Delta Q \propto \xi=\frac{N \cdot r_{o} \cdot \beta^{*}}{4 \pi \gamma \sigma^{2}}=\frac{N \cdot r_{o}}{4 \pi \epsilon_{n}}
$$

\rangle Head-on tune shift independent of β^{*} and γ
λ For much smaller emittances $\epsilon_{n} \rightarrow$ head-on effects strongly increased!
λ For $N=0.4 \cdot 10^{11}$ can probably accept $\epsilon_{n} \approx 2-2.5 \mu \mathrm{~m}$
Alternative: transverse blow up of bunches

Operation without crossing angle (IP1/5)

Energy $(\mathbf{T e V})$	β^{*} (\mathbf{m})	\mathcal{L}_{43} $\left(\mathbf{c m}^{-2} \mathbf{s}^{-1}\right)$	\mathcal{L}_{156} $\left(\mathbf{c m}^{-2} \mathbf{s}^{-1}\right)$
$\mathbf{0 . 4 5}$	$\mathbf{6}$	$\mathbf{0 . 1 3 \cdot 1 0 ^ { 3 0 }}$	$\mathbf{0 . 4 7} \cdot 10^{30}$
$\mathbf{2 . 7 5}$	$\mathbf{1}$	$4.30 \cdot 10^{30}$	$\mathbf{1 5 . 6} \cdot 10^{30}$
$\mathbf{5 . 0 0}$	$\mathbf{0 . 6}$	$\mathbf{1 3 . 0} \cdot 10^{30}$	$\mathbf{4 7 . 0} \cdot 10^{30}$
$\mathbf{(5 . 0 0}$	$\mathbf{3 . 0}$	$\mathbf{1 6 . 0} \cdot 10^{30}$	$\left.\mathbf{6 0 . 0} \cdot 10^{30}\right)$

國 All compatible with aperture, consider as limit
For IP2 and IP8, scale according to filling scheme

Operation with many bunches (≥ 156)

Requires crossing angle α to avoid parasitic interactions
Long range interactions unavoidable, crossing angle must be large enough

Too large crossing angle reduces luminosity (and aperture)

Number of long range interactions increases with number of bunches per train

- Probably start with very few trains (see later)

Reminder:

Luminosity with crossing angle α in x-plane (round beams):

$$
\mathcal{L}=\frac{N_{1} N_{2} f n_{b}}{4 \pi \sigma_{x} \sigma_{y}} \cdot S
$$

S is the reduction factor
For small crossing angles and (Gaussian bunches) $\sigma_{s} \gg \sigma_{x, y}$

$$
\Rightarrow S \approx \frac{1}{\sqrt{1+\left(\frac{\alpha}{2} \frac{\sigma_{x}}{\sigma_{x}}\right)^{2}}}=\frac{1}{\sqrt{1+\left(\frac{\alpha^{2}}{4} \frac{\sigma_{x}^{2}}{\beta_{x} \epsilon}\right)}}
$$

Beam-beam parameter and tune shifts

Head-on (no crossing angle):

$$
\Delta Q \approx \xi=\frac{N \cdot r_{o} \cdot \beta^{*}}{4 \pi \gamma \sigma^{2}}=\frac{N \cdot r_{o}}{4 \pi \epsilon_{n}}
$$

Head-on (crossing angle α in x-plane):

$$
\begin{gathered}
\Delta Q_{x} \approx \xi \cdot S=\frac{N \cdot r_{o} \cdot \beta^{*}}{4 \pi \gamma \sigma^{2}} \cdot S=\frac{N \cdot r_{o}}{4 \pi \epsilon_{n}} \cdot S \\
\Rightarrow S \approx \frac{1}{\sqrt{1+\left(\frac{\alpha}{2} \frac{\sigma_{s}}{\sigma_{x}}\right)^{2}}}=\frac{1}{\sqrt{1+\left(\frac{\alpha^{2}}{4} \frac{\sigma_{s}^{2}}{\beta_{x} \epsilon}\right)}}
\end{gathered}
$$

How many bunches should be aim at?

Reminder:

$$
\begin{gathered}
\mathcal{L} \propto N \cdot N \cdot n_{b}=I_{t o t} \cdot N=\frac{I_{t o t} \cdot I_{t o t}}{n_{b}} \\
\Delta Q \propto N=\frac{I_{t o t}}{n_{b}}
\end{gathered}
$$

- If experiments not limited by pile up (we talk about $\mathcal{L} \ll 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
\rangle If $I_{t o t}$ limited (e.g. protection) and N not (yet) limited
- Smaller number of bunches n_{b} beneficial

Filling schemes with crossing angle

Bunch spacing	Δs	\# long range encounters (per IP)
25 ns	3.75 m	32
50 ns	7.50 m	16
75 ns	11.25 m	12

Three different bunch spacings presently considered (for protons)

Half bunch spacing Δs is position of first parasitic encounter

Filling schemes - colliding bunches per IP

Spacing	IP1	IP2	IP5	IP8
25 ns	2808	2736	2808	2622
50 ns	1404	1368	1404	0
75 ns	936	912	936	874

50 ns seem not attractive, but trains can be displaced
Try 5 scenarios where different number of trains are shifted at transfer SPS/LHC

Filling schemes - colliding bunches per IP

	a	b	c	d	e
IP1	1404	1404	1404	1404	1333
IP2	1368	684	0	72	2
IP5	1404	1404	1404	1404	1333
IP8	0	655	1311	1242	1173

The 50 ns allow to adjust luminosity between experiments (not possible for 25 ns)

Long range beam-beam separation

Unavoidable parasitic interactions, number depends on bunch spacing

Crossing angle required
鲟 LHC: $\left(\frac{\alpha}{2} \approx 142.5(!) \mu \mathrm{rad}, \beta^{*} \approx 0.55 \mathrm{~m}\right): \quad \mathrm{S} \approx 0.80$
\rangle To small α : not enough separation

- To large α : little (or no) luminosity gain

Smaller ϵ for given α, β^{*} : larger $d_{\text {sep }}$, but also reduced S

Minimum required crossing angle versus β^{*}

Crossing angle as function of $\beta^{*}, \gamma, \epsilon_{n}, \Delta s$, valid for IP1 and IP5, (not for IP2 and IP8)

$$
\alpha=\frac{d_{\text {sep }} \cdot \sqrt{\frac{\epsilon_{n}}{\gamma}} \cdot \sqrt{\beta^{*}\left(1+\frac{\Delta s^{2}}{\beta^{* 2}}\right)}}{\Delta s}
$$

where Δs is half the bunch spacing, and $d_{s e p}$ the minimum required separation in the drift between IP and Q1 (for nominal running ≈ 9.5)
For $\Delta s \gg \beta^{*}$ (and with parallel separation) we have simply:

$$
\alpha=\frac{d_{\text {sep }} \cdot \sqrt{\frac{\epsilon_{n}}{\gamma}}}{\sqrt{\beta^{*}}}
$$

Minimum required crossing angle versus β^{*}

Crossing angle as function of $\beta^{*}, \gamma, \epsilon_{n}, \Delta s$, valid for IP1 and IP5, (not for IP2 and IP8)

$$
\alpha=\frac{d_{\text {sep }} \cdot \sqrt{\frac{\epsilon_{n}}{\gamma}} \cdot \sqrt{\beta^{*}\left(1+\frac{\Delta s^{2}}{\beta^{* 2}}\right)}}{\Delta s}
$$

where Δs is half the bunch spacing, and $d_{s e p}$ the minimum required separation in the drift between IP and Q1 (for nominal running ≈ 9.5)
For $\Delta s \gg \beta^{*}$ (and with parallel separation) we have simply:

$$
\alpha=\frac{d_{\text {sep }} \cdot \sqrt{\frac{\epsilon_{n}}{\gamma}}}{\sqrt{\beta^{*}}}
$$

Minimum required crossing angle versus β^{*}

- Required crossing angle for 7.0 $\mathbf{~ T e V}$ for minimum 10σ separation (scales $\approx 1 / \sqrt{\gamma}$)

Crossing angle as function of beta*

Minimum required crossing angle versus β^{*}

- Required crossing angle for 5.0 $\mathbf{T e V}$ for minimum 10σ separation (scales $\approx 1 / \sqrt{\gamma}$)

Crossing angle as function of beta*, 5.0 TeV

Minimum required crossing angle versus β^{*}

- Required crossing angle for 2.75 TeV for minimum 10σ separation (scales $\approx 1 / \sqrt{\gamma}$)

Crossing angle as function of beta*, 2.75 TeV

Operation with crossing angle

Operation with β^{*} between 1 m and 4 m very promising
Get large enough crossing angle (within aperture) to avoid any significant long range effects

- Over large range crossing angle can be kept \approx constant (in particular for 50 ns spacing)
- Initially, take e.g. 50% larger angle than necessary
\rightarrow long range tune spread less than half !

Operation with crossing angle

國 Assume 0.510^{11} per bunch, and crossing angle $\approx 300 \mu \mathrm{rad}$
Luminosity (in IP1 and IP5) in units of $10^{32} \mathbf{c m}^{-2} \mathbf{s}^{-1}$

Energy (TeV)	β^{*} $(\mathrm{~m})$	\mathcal{L}_{936} $\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	\mathcal{L}_{1404} $\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	\mathcal{L}_{2808} $\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
5.0	3.0	0.9	1.4	2.8
5.0	2.0	1.4	2.1	4.2
5.0	1.0	2.6	4.0	8.0
7.0	3.0	1.3	2.00	4.0
7.0	2.0	2.0	3.00	6.0
7.0	1.0	4.0	6.00	12.0

Bunch spacing: 25 ns versus 50 ns

[Dynamic aperture as function of Tune (courtesy D. Kaltchev, TRIUMF)

For 50 ns spacing (half the number of long range interactions):

- Loss of (maximum) luminosity, but:
- Dynamic aperture strongly improved
- Simplified operation
- (same for 75 ns spacing)

Collisions in IP2 and IP8

Complication is internal crossing angle, produced by compensation of spectrometers (LHC Report 1009, LHC Note 419, "Chamonix" 2006)

Without external angle (i.e. 43 or 156 bunches) no constraint on spectrometer polarity and on strength (even at 450 GeV), i.e. no ramping required

But: large internal angle may substantially reduce luminosity (in particular for lower energies)

When an external angle is required: follow procedures described in reports

With external angle: case IP8

\rightarrow For all details: see LHC Project Note 419
Crossing angle is in horizontal plane !
國 Requires shifted trains (see later)
國 With external crossing angle ramping of spectrometer is required for (at least) one of the polarities

At 5.0 TeV: $\beta^{*} \geq 3 \mathrm{~m}$ (better: 4 m) possible (both polarities), if permitted by collimation system

How to increase the total intensity in the LHC?
Basically two options:

- All bunches and in steps increase intensity per bunch
- Large (maximum) intensity per bunch and in steps increase number of bunches (i.e. trains)
[Consequences for:
- Beam-beam effects
- Luminosity control in experiments
- Collimation
\Rightarrow Operation

Reminder: experimental luminosities

IP1 and IP5: largest possible luminosity for any configuration

鲟 IP8: high luminosity, but $1-5 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ for any configuration

IP2: low luminosity, if possible for any configuration

- Try strategy to increase total intensity fulfilling these requirements
- Start with very few trains and slowly increase their number

Relative luminosity as function of total intensity

Increase of $\mathrm{I}_{t o t}$ by additional SPS-LHC injections
(Spacing $25 / 75 \mathrm{~ns}$, selected LHC transfers shifted

Werner Herr, Chamonix 2009, 6. 2. 2009

Relative luminosity as function of total intensity

[Spacing 50 ns , selected SPS-LHC transfers shifted (see LPN 415)

Relative luminosity as function of total intensity

[Spacing 50 ns , selected SPS-LHC transfers shifted (see LPN 415)

Luminosity versus total intensity

Filling scheme in LHC

Spacing $50 \mathrm{~ns}, \approx 30 \%$ of maximum total current, bunch position versus bucket (slot) number

Filling scheme in LHC

Spacing $50 \mathrm{~ns}, \approx 60 \%$ of maximum total current, bunch position versus bucket (slot) number

Summary

We have collision scenarios with/without crossing angle
Possible options for different energies, including 450 GeV , requested performance seems reachable
(For less than nominal luminosity, 50 ns attractive:

- Low total intensity
- Together with larger β^{*} practically no long range effects expected
- Can adjust luminosity between experiments
- More flexible choice of parameters ($\left.\beta^{*}, \alpha, ..\right)$

Filling scheme in LHC

Minimum (train) filling scheme for collisions in 4 IPs
[IPs: 1083610835

Werner Herr, Chamonix 2009, 6. 2. 2009

Filling scheme in LHC

- Minimum (bunch) filling scheme for collisions in 4 IPs IPs: 3131

Werner Herr, Chamonix 2009, 6. 2. 2009

