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Frontiers

Many frontier’s mentioned during the lectures
Energy frontier
Intensity frontier
Cosmic frontier
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Exploring the Final Frontier
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Exploring the Energy Frontier
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The Energy Frontier
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24 June 2013

Anything Else?

• Could organize into 
“signature-based” 
categories

• I think this may miss a 
bit of the picture at 
this stage
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Hitoshi Murayama

Lots of possibilities!

Hitoshi Murayama
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CMS Detector
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Distinguishing Features
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All-Silicon Tracker
Over 200 m2 silicon!
Pros: Great tracking 
resolution
Cons: Lots of material, 
photon conversion, etc.

Muon System
4 layers of DT/CSC with 
RPC for timing
Residual solenoid field 
gives p measurement

ECAL
Excellent granularity and 
energy resolution

HCAL
Coverage to |η| < 5.0 with HF

Trigger
Only two levels: L1 and HLT
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CMS Dataset
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After applying data 
quality requirements: 
L = 19.4 fb-1 - 20.6 fb-1

After applying data 
quality requirements: 
L = 4.9 fb-1 - 5.0 fb-1
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Particle Flow
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• A lot goes into that plot. Excellent:
1. muon trigger and reconstruction

2. electron trigger and reconstruction

3. Tracking (and vertexing) is the backbone of the global 
event  description

4. and Massive computing resources

• And all  that under  a pileup  of 20  vertex/crossing

Make optimal use of detector information to reconstruct all particles
Improvements in jet energy resolution
Easily remove charged part of pileup (neutral part handled with standard 
“Fastjet” energy density subtraction.

Unless stated otherwise, all CMS analysies use PF
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Discovery at LHC!

Since then major focus of LHC physics program to 
verify whether this new particle has properties of 
(SM) Higgs

Is it produced and does it decay at the right rates? 
(Couplings to SM particles)
Does it have the right spin?
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Higgs Decays
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Signatures Studied
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Decay

Prod.
H→γγ
(0.2%)

H→ZZ
(3%)

H→WW
(22%)

H→ττ
(6%)

H→bb
(58%)

H→Zγ
(0.15%)

H→µµ H→
invisible

Gluon 
Fusion

(19.3 pb)

VBF
(1.6 pb)

VH
(1.1 pb)

ttH
(0.1 pb)
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Discovery Channels Today
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Results by Decay
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Decay Exp. Obs.

bb

ττ

γγ

WW

ZZ

2.2σ 2.1σ

2.6σ 2.8σ

3.9σ 3.2σ

5.3σ 3.9σ

7.1σ 6.7σ

Consistency with SM Hypothesis 

Combined signal strength: μ=0.80±0.14 

p-value= 0.52  w.r.t. =1  p-value= 0.65  w.r.t. =1  

Here and further: bb results based on 12 fb-1 at 8 TeV and 5 fb-1 at 7 TeV 

Significance of the Signal

Combined signal strength: σ/σSM = 0.80 ± 0.14

3.4 σ

HIG-13-005
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Results by Prod. Mech.

18

Consistency with SM Hypothesis 

Combined signal strength: μ=0.80±0.14 

p-value= 0.52  w.r.t. =1  p-value= 0.65  w.r.t. =1  

Here and further: bb results based on 12 fb-1 at 8 TeV and 5 fb-1 at 7 TeV 

All consistent with SM, but 
some, like ttH, have large 
uncertainties (still room for 
surprises)

Combined signal strength: σ/σSM = 0.80 ± 0.14

HIG-13-005
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Couplings

Overall, very 
consistent with SM 
so far
Large enough 
uncertainties that 
could still find 
surprises
BRBSM prefers zero, 
but fairly large values 
still allowed

19

Summary of the Couplings Test 

for a generic five parameter model  
(no eff. loop couplings)  

Summary of the fits for deviations in the couplings  
 for a LHC XS WG benchmark model 

parametrisation (arXiv:1209.0040) 

The best fit values of the most interesting parameters are shown, with the corresponding 68% 
and 95% CL intervals, and the overall p-value pSM of the SM Higgs hypothesis is given.  
 

Γ
BSM  =

 0 

HIG-13-005
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Couplings vs Mass

In this case allow 
couplings to τ, b, W, 
Z, and top to float 
independently
So far, again, 
everything looks 
consistent with SM

20

HIG-13-005
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Spin/Parity
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Kinematic discriminant built to describe the kinematics  of 
production and decay of different JP state of a "Higgs"  
 

0+ vs 0- 

CLs=0.16% 

More JP hypotheses have been tested in a similar way  

Spin/Parity Hypothesis Tests 
Spin/parity hypothesis tests:  H → ZZ → 4l channel    

Design a variable that’s 
sensitive to JP of Higgs

Kinematic discriminant built to describe the kinematics  of 
production and decay of different JP state of a "Higgs"  
 

0+ vs 0- 

CLs=0.16% 

More JP hypotheses have been tested in a similar way  

Spin/Parity Hypothesis Tests 
Spin/parity hypothesis tests:  H → ZZ → 4l channel    

Repeat for other 
hypotheses

Kinematic discriminant built to describe the kinematics  of 
production and decay of different JP state of a "Higgs"  
 

0+ vs 0- 

CLs=0.16% 

More JP hypotheses have been tested in a similar way  

Spin/Parity Hypothesis Tests 
Spin/parity hypothesis tests:  H → ZZ → 4l channel    

Test 0+ Hyptothesis 
against others

Uses H→ZZ→4l channel

HIG-13-002
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SUSY Extension to SM

Tells us what particles to expect, but not masses
Mass spectrum determines phenomenological properties

23

Minimal Extensions to the SM 

•  Fundamental idea of Supersymmetry (SUSY) 
•  Introduce an additional symmetry: fermion !" boson 
•  Provides a ‘natural’ solution to fine-tuning problem 

15/05/2013 F. Salvatore, LHCP2013, Barcelona  2 
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SUSY Production
Largest production would 
come from light squarks and 
gluinos

Could have been the first 
LHC discovery if masses 
were light enough

Considering observed Higgs 
mass: “Natural SUSY”

Having light 3rd generation 
(especially stop) and gluinos 
avoids fine tuning for Higgs 
mass

If all charginos/neutralinos 
the lightest, then EWK 
production will dominate

Smaller cross sections → 
Harder to detect

24

8 Lepton-Photon, 24–29 June, 2013  Andreas Hoecker — Searches for Supersymmetry at Colliders  

Where do we start? 

Huge parameter space, but guiding principles 

SUSY searches strategy driven by cross section and luminosity 

Early analyses dominated by 
broad and inclusive searches for 
gluino and squark production,  
but right from the start also addressed 
experimentally challenging searches such 
as for long-lived particles and RPV 

Increasing luminosity gave 
access to rarer production 
channels. Additional motivation 
from Natural SUSY paradigm 

It was quickly realised that 
dedicated searches had to be 
developed to adequately cover 
the rich decay spectrum  
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Figure 9.3: Feynman diagrams for gluino and squark producti on at hadron colliders from strong quark-
antiquark annihilation and quark-quark scattering.

belong to theC +
1 C

−
1 and C 1N 2 channels, because they have signi!cant couplings to γ, Z and W bosons,

respectively, and because of kinematics. At the LHC, the sit uation is typically reversed, with production
of gluinos and squarks by gluon-gluon and gluon-quark fusion usually dominating, unless the gluino and
squarks are heavier than 1 TeV or so. At both colliders, one ca n also have associated production of a
chargino or neutralino together with a squark or gluino, but most models predict that the cross-sections
(of mixed electroweak and QCD strength) are much lower than f or the ones in (9.1)-(9.6). Slepton pair
production as in (9.2) may be rather small at the Tevatron, bu t might be observable there or at the
LHC [210]. Cross-sections for sparticle production at hadr on colliders can be found in refs. [211], and
have been incorporated in computer programs including [186],[212]-[217].

The decays of the produced sparticles result in !nal states w ith two neutralino LSPs, which escape
the detector. The LSPs carry away at least 2 mN 1

of missing energy, but at hadron colliders only
the component of the missing energy that is manifest in momenta transverse to the colliding beams
(denoted /E T ) is observable. So, in general the observable signals for su persymmetry at hadron colliders
are n leptons + m jets + /E T , where either n or m might be 0. There are important Standard Model
backgrounds to many of these signals, especially from proce sses involving production of W and Z
bosons that decay to neutrinos, which provide the /E T . Therefore it is important to identify speci!c
signals for which the backgrounds can be reduced. Of course, this depends on which sparticles are
being produced and how they decay.

The classic /E T signal for supersymmetry at hadron colliders is events with jets and /E T but no
energetic isolated leptons. The latter requirement reduce s backgrounds from Standard Model processes
with leptonic W decays, and is obviously most e"ective if the relevant spart icle decays have sizable
branching fractions into channels with no leptons in the !na l state. One must choose the /E T cut high
enough to reduce backgrounds from detector mismeasurements o# et energies. The jets+ /E T signature
is one of the main signals currently being searched for at the Tevatron, and is also a favorite possibility
for the !rst evidence for supersymmetry to be found at the LHC . It can get contributions from every
type of sparticle pair production, except sleptons.

The trilepton signal [218] is another possible discovery mo de, featuring three leptons plus /E T , and
possibly hadronic jets. At the Tevatron, this would most lik ely come about from electroweak C 1N 2
production followed by the decays indicated in eq. (8.4), in which case high-pT hadronic activity should
be absent in the event. A typical Feynman diagram for such an e vent is shown in !g. 9.4. It could
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Simplified Models
SUSY has many free parameters

Determine the masses of SUSY particles
Many different models with different simplifying 
assumptions

To make it possible to quote general results, use 
“simplified models”

Focus on production of X → LSP + SM
Quote results

As limit on cross section for X assuming 100% BR to LSP+SM
As function of masses of X and LSP
Also set explicit limits on benchmark model (usually CMSSM)

25
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Gluino Results
Looking for gluinos in a “natural” scenario (gluino 
decays to stop or sbottom quarks

26
28 Lepton-Photon, 24–29 June, 2013  Andreas Hoecker — Searches for Supersymmetry at Colliders  

Searches for “Natural” SUSY scenarios 

Lightest squarks are stop/sbottom, gluinos possibly too heavy, gauginos accessible ? 

In particular direct stop and chargino/neutralino production 
require dedicated analyses covering all possible decay modes 
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Gluino Results

No signal seen: Limits 
set in terms of gluino and 
LSP mass
Shown here: 
combination of several 
different anlayses
Depending on LSP 
mass, exclude gluinos 
with mass up to ~1.3 TeV
Similar results for gluino 
to bottom pair plus LSP

27
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Gluino Results

No signal seen: Limits 
set in terms of gluino and 
LSP mass
Shown here: 
combination of several 
different anlayses
Depending on LSP 
mass, exclude gluinos 
with mass up to ~1.3 TeV
Similar results for gluino 
to bottom pair plus LSP
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Gluino Results

No signal seen: Limits 
set in terms of gluino and 
LSP mass
Shown here: 
combination of several 
different anlayses
Depending on LSP 
mass, exclude gluinos 
with mass up to ~1.3 TeV
Similar results for gluino 
to bottom pair plus LSP
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Stop Results
If gluino too heavy, look for direct stop production

30

28 Lepton-Photon, 24–29 June, 2013  Andreas Hoecker — Searches for Supersymmetry at Colliders  

Searches for “Natural” SUSY scenarios 

Lightest squarks are stop/sbottom, gluinos possibly too heavy, gauginos accessible ? 

In particular direct stop and chargino/neutralino production 
require dedicated analyses covering all possible decay modes 
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Spectacular events with 4 b-
quarks and/or multileptons (or 
2 leptons of same charge) + 
additional jets and MET in 
finals state 

Direct stop production has small cross section  

Events resemble that of top-pair production 

Less spectacular signature: Looks very 
much like ttbar background, but with 

extra MET
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Stop Results
No signal seen; set limits in 
terms of stop and LSP mass
Interesting behavior when LSP 
mass gets too large (off shell 
top, etc.)
Limits:

Stop: ~650 GeV for massless 
LSP, lower for masive LSP
No limit if LSP mass ≳ 250 GeV
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Summary

32
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Bigger Picture
Higgs and SUSY 
attractive because solve 
multiple problems with 
single theory:

Higgs: EWSB + particle 
masses
SUSY: Hierarchy 
problem, DM, new 
source of CP violation

No guarantee that 
nature provides a single 
simple solution

Many alternatives that 
solve these problems

3424 June 2013

Anything Else?

• Could organize into 
“signature-based” 
categories

• I think this may miss a 
bit of the picture at 
this stage

7

Hitoshi Murayama

Lots of possibilities!
SUSY here

Everything else...
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Resonance Searches
Interesting to look for resonances in 3rd gen. particles (t/b)
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Boosted Topologies
For really massive particles, decay products become highly 
collimated
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Quark Partners
A number of 
models (like Little 
Higgs mentioned 
yesterday) have 
extra heavy vector-
like quarks

Example, vector 
like top quark 
partner T, decays 
to bW, tZ or tH

Inclusive search 
for T using all of 
the above decays

38

Input variables: 
Njets, Nb-tags, HT, 
MET, 3rd and 4th 
jet pT, Merged W 
and top jet info
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Merged%
W%jet?%
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2,3%

≥%5%
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Count events 
divided by 
lepton flavor: 
all electron, 
all muon, or 
mixed
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Quark Partners
No signal observed; set limits between 687 GeV to 782 GeV, 
depending on decay fractions to bW, tZ, and tH
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Summary
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Overview

Success of preceding searches depends on good 
understanding of background from SM
Wealth of LHC data with showing no signs of new 
physics (yet) means many measurements to help 
refine SM predictions

42
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Top Production
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Differential cross Sections

Move beyond inclusive cross section
Unfolded to correct for detector resolution
Generally good agreement

Can be used to improve MC tuning
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EWK and QCD Processes

Excellent agreement across many processes and 
many orders of magnitude
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J/Psi Polarization

Occasionally, still run into unexpected disagreement
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Comparison with NLO NRQCD:  (2S)

Quarkonium polarization in pp collisions with CMS Carlos Lourenço (CERN) 13 / 15
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(2S)s

�h
Systematic Uncertainties

• Efficiency measurement:
– Vary measured trigger efficiencies by !"#$

• Monte Carlo statistics:
– Impact of finite sample sizes in acceptance calculated using toy 

Monte Carlo experiments
• Background scale factor:

– Compare linear and quadratic interpolation from sidebands into 
% &' signal region

• Frame invariance tests:
– Treat ()* + #)*,- . )*-/ as a systematic uncertainty
– Consistent with statistical fluctuations in almost all cases

• All are generally much smaller than statistical uncertainty

41

�#

• The CMS results disagree with existing NLO NRQCD theoretical calculations

• Calculations by Mathias Butenschoen and Bernd Kniehl; arXiv:1212.2037 [hep-ph]
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in photoproduction at HERA and hadroproduction at the Tevatron and the LHC.
In the case of hadroproduction at the Tevatron, the prediction of strongly trans-
verse J/ψ polarization in the helicity frame stands in severe contrast to the precise
CDF II measurement,46 which found the J/ψ mesons to be unpolarized. Using
the CO LDME sets recently extracted from hadroproduction data by two other
groups52,53 does not help us to reach a satisfactory description of all the avail-
able precision data. Thus, we conclude that the universality of the J/ψ production
LDMEs is challenged. Possible remedies include the following:

(i) The eagerly awaited J/ψ polarization measurements at the LHC might not
confirm the CDF II results.

(ii) Although unlikely, measurements at a future ep collider, such as the LHeC,49

might reveal that the pT distribution of J/ψ photoproduction exhibits a drasti-
cally weaker slope beyond pT = 10 GeV, the reach of HERA, so that the LDME
sets of Refs. 52, 53 might yield better agreement with the data there.

(iii) The assumption that the v expansion is convergent might not be valid for
charmonium, leaving the possibility that the LDME universality is intact.
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“In a way, NRQCD factorization ... is the only game in town, which makes 
its experimental verification such a matter of paramount importance...”

the quarkonia polarization crisis                        

My conclusion: there is a big problem here
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Summary of CMS Results
After a little more than two years of data taking

One major new discovery
Many limits on new physics
Wealth of precision measurements to help tune description 
of SM backgrounds

Reasons to anticipate new particles still as valid as ever
Perhaps next big breakthrough is just around the corner 
in 13 TeV running
If not, we will learn something about our (lack of) 
understanding of nature

Stay tuned!
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Compact Muon Solenoid

50

Total Weight: 12500 T
Diameter: 15 m (50 ft)
Length: 21.5 m (70 ft)

CMS ATLAS

Total Weight: 7000 T
Diameter: 25 m (82 ft)
Length: 46 m (151 ft)

Compact = 2× mass in 20% of the volume!
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WW vs ZZ
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SUSY Signatures
Decays of SUSY particles to SM produce jets and leptons
Exact nature of signature depends on whether SUSY can decay to 
only SM particles

No (SUSY → SM + SUSY): R-Parity Conserving (RPC)
Yes ( SUSY → SM): R-Parity Violating (RPV)

52

RPVRPC
Lightest SUSY particle (LSP) does not decay 
→ MET
Discriminate with variables that key in on 
presence of MET and masses of mother 
particles:
MET, mT, mT2, αT, etc...

Lightest SUSY particle (LSP) does decay
Look for jet+lepton resonances
or
Non-standard signatures:  Stable charged 
particles, stopped particle decays, lepton jets, 
etc.
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Unusual Results

If we allow RPV, many unusual signatures possible

53
2

Decay 
LengthO(10)mm O(100)mm > O(1000)mm

StableMetaStable

leaving the 
detector

slow

stable massive particle

disappearing 
track or kink

displaced vertex

stopped 
delayed 
decay non-pointing photons 

Walk through recent results from right to left

odd dE/dx

lepton jets

LFV

e

μ

RPV

Sigve Haug, AEC University of Bern

• Experimental motivation: Keep an eye open for the unexpected ...
• Theoretical motivations: RPV, Split, GMSB ... SUSY, hidden valleys ...

Sigve Haug, AEC University of Bern, LHC2013
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RPV Search with 4-Lep. Events

Look for excess of events with for charge leptons 
above SM backgrounds
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1
0
χ∼q 

1
0
χ∼q → q~q~ →pp 
ν

-l+ l→ 
1
0
χ∼

=425 GeVq~m
=225 GeV

1
0χ∼

m

No signals seen so far.  Set limits:

Gluinos: Exclude masses below ~1.4 TeV (for 
neutralino mass above 400 GeV

Top squark: Exclude masses below ~950 GeV

As always, limit depend on model assumptions, masses 
of LSP and other SUSY particles, etc.
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