CHEP 2013

Cloud Bursting with glideinWMS

Means to satisfy ever increasing computing
needs for Scientific Workflows

by
|. Sfiligoi’, P. Mhashilkar?, A. Tiradani?,
B. Holzman?, K. Larson? and M. Rynge’

'"University of California San Diego 2Fermi National Accelerator Laboratory
SUniversity of Southern California, I1SI

CHEP 2013 Cloud Bursting with glideinWMS



Some history

* Most major scientific communities have
outgrown single machines a long ago

- Distributed computing has become a must
* Local clusters started to pop up at institutes

- But many communities fast outgrew the resources
available on a single site

* Using multiple clusters became a need

- “The Grid” created to provide a federated model
- But job partitioning became a major problem

CHEP 2013 Cloud Bursting with glideinWMS



glideinWMS — A Pilot system

 Users want a single cluster to submit to
- So let's create (a logical) one
* The Pilot paradigm was born

- Separates provisioning from scheduling

- Provisioning ~= Get ownership of a resource

- Scheduling ~= Schedule a user job on that resource
* glideinWMS is a Pilot implementation

— Build on top of HTCoNdOr s i escoi )

CHEP 2013 Cloud Bursting with glideinWMS 3



glideinWMS architecture

Very simplified version

%« iﬁ ~ Site 1

% | B User job

O Site N

User jcu

N

CHEP 2013 Cloud Bursting with glideinWMS



glideinWMS today

» glideinWMS is today the leading Pilot
implementation in the Open Science Grid

- More than ten VOs use it
e CMS uses it to submit both to OSG and EGI

- Primary scheduling system for the past year

CHEP 2013 Cloud Bursting with glideinWMS



Moving beyond the Grid

* Cloud computing has emerged as a major new
source of compute resources

- Pioneered by Amazon with EC2 s
- But many alternatives exist today

* Cloud computing is conceptually similar
to Grid computing

- But expects a full OS image, not just the application
* Pilot infrastructures again essential

- Scientists just want to run jobs

CHEP 2013 Cloud Bursting with glideinWMS



How iIs Cloud different?

* There is the issue/opportunity of t
* But the bigger issue is that virtual

ne OS image

Y NO

Cloud provider offers Grid-compatible interfaces

- Federated x509 credentials not accepted wit few exceptions)
- EC2-compatible API instead of GRAM/CREAM

* Current state-of-the-art not great

— Only partial API compatibility between

Implementations
— No concept of credential federation

CHEP 2013 Cloud Bursting with glideinWMS



glideinWMS and Cloud provisioning

* glideinWMS always relied on
HTCondor-G for provisioning

- All Grid submissions already go through HTCondor-G
- Adding logic to request Cloud resources

But we contributed

was thus a minor code change for us " evolution.
* HTCondor-G does the heavy lifting >

* Configuring the resource once we get it
IS Instead something we do

- Significant effort needed here

CHEP 2013 Cloud Bursting with glideinWMS 8



Configuring Cloud resources

* In the Grid, the WN dynamically gets at least
- Executable
- Arguments
- X.509 proxy

* |n the Cloud, the only dynamic part is the
- UserData string >y 7
e glideinWMS had to encode T;iﬁaecgj;‘i‘;ﬁfjeeﬁ g
Args+Proxy — UserData
- We don't strictly need a dynamic executable

CHEP 2013 Cloud Bursting with glideinWMS



Cloud startup script

 As mentioned before, in the Grid
one dynamically delivers the startup script

* |In the Cloud, it is baked into the OS image

 We implemented it as one of the services
- So it starts up during OS boot

* To keep uniformity, it is just a lightweight
wrapper that downloads the real startup script
from the glideinWMS instance and runs it

CHEP 2013 Cloud Bursting with glideinWMS 10



Missing functionality

* In the Grid, it is normal to expect
stdout and stderr of a job
to be returned to the submitter

- glideinWMS was thus heavily relying on it
for auditing purposes

* There is nothing equivalent in the Cloud
- We still need to solve this part

CHEP 2013 Cloud Bursting with glideinWMS

11



Internal changes

* The glideinWMS internal architecture calls
for two distinct players
- A glidein factory — Talks to the resource providers
- AVO Frontend — Implements the provisioning logic
- In N-to-M relationship

* The internal protocol was assuming
Grid-type resources

 Had to extend it to support
- Multiple credential types (i.e. not just x509)
— Multiple trust domains see next siide)
— Optionally, VO-provided OS image

CHEP 2013 Cloud Bursting with glideinWMS 12



glideinWMS internals

in a very simplified picture

Here serving 2 VOs with a single GF \/
{ Grid/Cloud
\
‘\

=

o
e
A

Glidein Factory

For more details, see: http://www.slideshare.net/igor_sfiligoi/glideinwms-training-jan-2012-glideinwms-architecture

CHEP 2013 Cloud Bursting with glideinWMS 13


http://www.slideshare.net/igor_sfiligoi/glideinwms-training-jan-2012-glideinwms-architecture

Implications of multiple credentials

* In the Grid, one proxy can be used to
dCCessS any Grid Site (with very few exceptions)

* WWhen you have a mix of Grid and Cloud
resources, you will almost certainly
need multiple credentials as well
- 1.e. an Amazon credential will not work at CERN

* glideinWMS solved the problem
by introducing trust domains

- A credential belonging to a trust domain is
expected to be usable on all “sites” belonging to it

— The provisioning logic will thus match on it

CHEP 2013 Cloud Bursting with glideinWMS 14



Presented functional prototype at
CHEP2010

* The basic Cloud functionality was available in
glideinWMS already during CHEP2010

http://iopscience.iop.org/1742-6596/331/6/062014

 But the devil is in the detalls!

e And most of those details are
not even under our control

- Basically, various Cloud Middlewares are
not fully implementing the “Cloud specs”

Required close collaboration
with HTCondor team —

CHEP 2013 Cloud Bursting with glideinWMS 15


http://iopscience.iop.org/1742-6596/331/6/062014

Cloud Middlewares

e Amazon EC2 is of course the most famous one

- If that was the only Cloud we needed to support,
the CHEP'10 code was almost ready for prime-time

 But most scientific communities seemed more
Interested in other Middlewares

- ANL's Magellan based on Eucalyptus
— CERN's HLT based on OpenStack
- Fermilab's FermiCloud based on OpenNebula

CHEP 2013 Cloud Bursting with glideinWMS 16



CHEP 2013

Issues along the road

* Three categories

- EC2 Submission APl issues
- EC2 Runtime issues
- Scalability issues

Cloud Bursting with glideinWMS

17



The EC2 submission API

* The non-Amazon Cloud Middlewares have a very
loose interpretation of the EC2 AP| semantics

- 2010 HTCondor-G would simply not work

- Required extended collaboration with
HTCondor team

 But now OpenStack and OpenNebula usable
* A couple concrete examples:

- API calls not idempotent
- VMs refuse to properly terminate

CHEP 2013 Cloud Bursting with glideinWMS 18



The EC2 Runtime environment

 Each Cloud Middleware provides different
ways to contextualize the OS image

— Not even a common API

- Each time we add a new Cloud provider, we have
to discover how to use it

— Our startup script has to have different
execution paths for different Middlewares

» Concrete example:

- There is no uniform way to get
the UserData into the Cloud instance

CHEP 2013 Cloud Bursting with glideinWMS 19



Scalability issues

* Every time we tried to get a significant amount
of resources out of Cloud providers, we ended
kKilling the service

- Again, close collaboration with HTCondor team
to mitigate the problem until bearable

 Concrete example:

- OpenStack's Nova scheduler seems to be limited
to 500 polling requests every 5 minutes

CHEP 2013 Cloud Bursting with glideinWMS 20



Deployment plans

« CMS has been running an advanced beta of
the Cloud-enabled glideinWMS for about a
year on the CERN's HLT farm

 NOVA has been test-using it on FermiCloud
since early Sep'13

 The Cloud-enabled glideinWMS was declared
production quality early Oct'13

- And has been put in production soon after
on a OSG glidein factory

CHEP 2013 Cloud Bursting with glideinWMS 21



A few graphs

8000
M Running @ Registered
T000
6000
5000
4000
3000
2000 120
1000
100
’ Jun 1 le{l_&_ Jun 16 Jun 23 Jull
80
. 60
NOVA on FermiCloud —»
over OpenNebula v
up to 90 VMs 20
upto 90 cores 0

CHEP 2013

<= CMS on CERN's HLT
over Openstack
up to 500 VMs
up to ©0.1K cores

M Running @ Registered

Sep 22 Sep 24 Sep 26 Sep 28 Sep 30 Oct 2

Cloud Bursting with glideinWMS 22



Summary

* The Cloud is conceptually similar to the Grid
so creating a Pilot-based overlay makes sense

- But different enough to require significant
iInternal changes in glideinWMS

* Moving between Cloud providers hard due to
significant implementation differences

- Required significant workarounds to be usable

» glideinWMS has helped CMS using
Cloud resources for about a year

- And now available for other VOs as well

CHEP 2013 Cloud Bursting with glideinWMS 23



Acknowledgements

 Fermilab is operated by Fermi Research

Alliance, LLC under Contract number
DE-AC02-07CH11359 with the United States
Department of Energy (DOE).

* The work was partially sponsored by

- DOE and KISTI under a joint Cooperative
Research and Development Agreement
CRADA-FRA 2013-0001 / KISTI-C13013

- US National Science Foundation (NSF) grants
PHY-1120138 and OCI-0943725.

CHEP 2013 Cloud Bursting with glideinWMS 24



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

