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Some history

● Most major scientific communities have 
outgrown single machines a long ago
– Distributed computing has become a must

● Local clusters started to pop up at institutes
– But many communities fast outgrew the resources 

available on a single site 

● Using multiple clusters became a need
– “The Grid” created to provide a federated model

– But  job partitioning became a major problem
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glideinWMS – A Pilot system

● Users want a single cluster to submit to
– So let's create (a logical) one

● The Pilot paradigm was born
– Separates provisioning from scheduling

– Provisioning ~= Get ownership of a resource

– Scheduling ~= Schedule a user job on that resource

● glideinWMS is a Pilot implementation
– Build on top of HTCondor (formally known as Condor)



CHEP 2013 Cloud Bursting with glideinWMS 4

glideinWMS architecture
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HTCondor
Scheduler

HTCondor Startd

glideinWMS startup

HTCondor Startd

glideinWMS startup

GlideinWMS
Provisioning

HTCondor-G

User job

User job

Very simplified version
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glideinWMS today

● glideinWMS is today the leading Pilot 
implementation in the Open Science Grid
– More than ten VOs use it

● CMS uses it to submit both to OSG and EGI
– Primary scheduling system for the past year
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Moving beyond the Grid

● Cloud computing has emerged as a major new 
source of compute resources
– Pioneered by Amazon with EC2

– But many alternatives exist today

● Cloud computing is conceptually similar 
to Grid computing
– But expects a full OS image, not just the application 

● Pilot infrastructures again essential
– Scientists just want to run jobs

IaaS
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How is Cloud different?

● There is the issue/opportunity of the OS image
● But the bigger issue is that virtually no 

Cloud provider offers Grid-compatible interfaces
– Federated x509 credentials not accepted (with few exceptions)

– EC2-compatible API instead of GRAM/CREAM

● Current state-of-the-art not great
– Only partial API compatibility between 

implementations

– No concept of credential federation
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glideinWMS and Cloud provisioning

● glideinWMS always relied on 
HTCondor-G for provisioning
– All Grid submissions already go through HTCondor-G
– Adding logic to request Cloud resources 

was thus a minor code change for us
● HTCondor-G does the heavy lifting

● Configuring the resource once we get it
is instead something we do
– Significant effort needed here

But we contributed
to its evolution. 
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Configuring Cloud resources

● In the Grid, the WN dynamically gets at least
– Executable
– Arguments
– x.509 proxy

● In the Cloud, the only dynamic part is the
– UserData string

● glideinWMS had to encode 
Args+Proxy → UserData
– We don't strictly need a dynamic executable

Privacy supposed
to be guaranteed
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Cloud startup script

● As mentioned before, in the Grid 
one dynamically delivers the startup script

● In the Cloud, it is baked into the OS image

● We implemented it as one of the services
– So it starts up during OS boot

● To keep uniformity, it is just a lightweight 
wrapper that downloads the real startup script 
from the glideinWMS instance and runs it
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Missing functionality

● In the Grid, it is normal to expect 
stdout and stderr of a job 
to be returned to the submitter
– glideinWMS was thus heavily relying on it 

for auditing purposes

● There is nothing equivalent in the Cloud
– We still need to solve this part



CHEP 2013 Cloud Bursting with glideinWMS 12

Internal changes

● The glideinWMS internal architecture calls 
for two distinct players
– A glidein factory – Talks to the resource providers
– A VO Frontend – Implements the provisioning logic
– In N-to-M relationship

● The internal protocol was assuming 
Grid-type resources

● Had to extend it to support
– Multiple credential types (i.e. not just x509)
– Multiple trust domains (see next slide)

– Optionally, VO-provided OS image
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glideinWMS internals
in a very simplified picture

Grid/Cloud

HTCondor
Scheduler 1

HTCondor Startd

glideinWMS startup

HTCondor Startd

glideinWMS startup

Glidein Factory

HTCondor-G
User job

User job

HTCondor
Scheduler 2

VO Frontend 1

Here serving 2 VOs with a single GF

For more details, see: http://www.slideshare.net/igor_sfiligoi/glideinwms-training-jan-2012-glideinwms-architecture

VO Frontend 2

http://www.slideshare.net/igor_sfiligoi/glideinwms-training-jan-2012-glideinwms-architecture
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Implications of multiple credentials

● In the Grid, one proxy can be used to 
access any Grid site (with very few exceptions)

● When you have a mix of Grid and Cloud 
resources, you will almost certainly 
need multiple credentials as well
– i.e. an Amazon credential will not work at CERN

● glideinWMS solved the problem 
by introducing trust domains
– A credential belonging to a trust domain is 

expected to be usable on all “sites” belonging to it
– The provisioning logic will thus match on it 
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Presented functional prototype at 
CHEP2010

● The basic Cloud functionality was available in 
glideinWMS already during CHEP2010
http://iopscience.iop.org/1742-6596/331/6/062014 

● But the devil is in the details!
● And most of those details are 

not even under our control
– Basically, various Cloud Middlewares are 

not fully implementing the “Cloud specs”

Required close collaboration
with HTCondor team

http://iopscience.iop.org/1742-6596/331/6/062014
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Cloud Middlewares

● Amazon EC2 is of course the most famous one
– If that was the only Cloud we needed to support, 

the CHEP'10 code was almost ready for prime-time 

● But most scientific communities seemed more 
interested in other Middlewares
– ANL's Magellan based on Eucalyptus

– CERN's HLT based on OpenStack

– Fermilab's FermiCloud based on OpenNebula 
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Issues along the road

● Three categories
– EC2 Submission API issues

– EC2 Runtime issues

– Scalability issues
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The EC2 submission API

● The non-Amazon Cloud Middlewares have a very 
loose interpretation of the EC2 API semantics
– 2010 HTCondor-G would simply not work

– Required extended collaboration with 
HTCondor team

● But now OpenStack and OpenNebula usable

●  A couple concrete examples:
– API calls not idempotent

– VMs refuse to properly terminate
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The EC2 Runtime environment

● Each Cloud Middleware provides different 
ways to contextualize the OS image 
– Not even a common API
– Each time we add a new Cloud provider, we have 

to discover how to use it
– Our startup script has to have different 

execution paths for different Middlewares 

● Concrete example:
– There is no uniform way to get 

the UserData into the Cloud instance 
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Scalability issues

● Every time we tried to get a significant amount 
of resources out of Cloud providers, we ended 
killing the service
– Again, close collaboration with HTCondor team 

to mitigate the problem until bearable

● Concrete example:
– OpenStack's Nova scheduler seems to be limited 

to 500 polling requests every 5 minutes
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Deployment plans

● CMS has been running an advanced beta of 
the Cloud-enabled glideinWMS for about a 
year on the CERN's HLT farm

● NOVA has been test-using it on FermiCloud 
since early Sep'13

● The Cloud-enabled glideinWMS was declared 
production quality early Oct'13
– And has been put in production soon after 

on a OSG glidein factory
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A few graphs

CMS on CERN's HLT
over Openstack
up to 500 VMs
up to 6.1k cores

NOVA on FermiCloud
over OpenNebula
up to 90 VMs
up to 90 cores
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Summary

● The Cloud is conceptually similar to the Grid
so creating a Pilot-based overlay makes sense
– But different enough to require significant 

internal changes in glideinWMS 

● Moving between Cloud providers hard due to 
significant implementation differences
– Required significant workarounds to be usable

● glideinWMS has helped CMS using 
Cloud resources for about a year
– And now available for other VOs as well 
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