
CHEP 2013 Cloud Bursting with glideinWMS 1

CHEP 2013

Cloud Bursting with glideinWMS

Means to satisfy ever increasing computing 
needs for Scientific Workflows

 
by

I. Sfiligoi1, P. Mhashilkar2, A. Tiradani2, 
B. Holzman2, K. Larson2 and M. Rynge3

1University of California San Diego   2Fermi National Accelerator Laboratory
3University of Southern California, ISI



CHEP 2013 Cloud Bursting with glideinWMS 2

Some history

● Most major scientific communities have 
outgrown single machines a long ago
– Distributed computing has become a must

● Local clusters started to pop up at institutes
– But many communities fast outgrew the resources 

available on a single site 

● Using multiple clusters became a need
– “The Grid” created to provide a federated model

– But  job partitioning became a major problem



CHEP 2013 Cloud Bursting with glideinWMS 3

glideinWMS – A Pilot system

● Users want a single cluster to submit to
– So let's create (a logical) one

● The Pilot paradigm was born
– Separates provisioning from scheduling

– Provisioning ~= Get ownership of a resource

– Scheduling ~= Schedule a user job on that resource

● glideinWMS is a Pilot implementation
– Build on top of HTCondor (formally known as Condor)



CHEP 2013 Cloud Bursting with glideinWMS 4

glideinWMS architecture

Site 1

Site N

HTCondor
Scheduler

HTCondor Startd

glideinWMS startup

HTCondor Startd

glideinWMS startup

GlideinWMS
Provisioning

HTCondor-G

User job

User job

Very simplified version



CHEP 2013 Cloud Bursting with glideinWMS 5

glideinWMS today

● glideinWMS is today the leading Pilot 
implementation in the Open Science Grid
– More than ten VOs use it

● CMS uses it to submit both to OSG and EGI
– Primary scheduling system for the past year



CHEP 2013 Cloud Bursting with glideinWMS 6

Moving beyond the Grid

● Cloud computing has emerged as a major new 
source of compute resources
– Pioneered by Amazon with EC2

– But many alternatives exist today

● Cloud computing is conceptually similar 
to Grid computing
– But expects a full OS image, not just the application 

● Pilot infrastructures again essential
– Scientists just want to run jobs

IaaS



CHEP 2013 Cloud Bursting with glideinWMS 7

How is Cloud different?

● There is the issue/opportunity of the OS image
● But the bigger issue is that virtually no 

Cloud provider offers Grid-compatible interfaces
– Federated x509 credentials not accepted (with few exceptions)

– EC2-compatible API instead of GRAM/CREAM

● Current state-of-the-art not great
– Only partial API compatibility between 

implementations

– No concept of credential federation



CHEP 2013 Cloud Bursting with glideinWMS 8

glideinWMS and Cloud provisioning

● glideinWMS always relied on 
HTCondor-G for provisioning
– All Grid submissions already go through HTCondor-G
– Adding logic to request Cloud resources 

was thus a minor code change for us
● HTCondor-G does the heavy lifting

● Configuring the resource once we get it
is instead something we do
– Significant effort needed here

But we contributed
to its evolution. 



CHEP 2013 Cloud Bursting with glideinWMS 9

Configuring Cloud resources

● In the Grid, the WN dynamically gets at least
– Executable
– Arguments
– x.509 proxy

● In the Cloud, the only dynamic part is the
– UserData string

● glideinWMS had to encode 
Args+Proxy → UserData
– We don't strictly need a dynamic executable

Privacy supposed
to be guaranteed



CHEP 2013 Cloud Bursting with glideinWMS 10

Cloud startup script

● As mentioned before, in the Grid 
one dynamically delivers the startup script

● In the Cloud, it is baked into the OS image

● We implemented it as one of the services
– So it starts up during OS boot

● To keep uniformity, it is just a lightweight 
wrapper that downloads the real startup script 
from the glideinWMS instance and runs it



CHEP 2013 Cloud Bursting with glideinWMS 11

Missing functionality

● In the Grid, it is normal to expect 
stdout and stderr of a job 
to be returned to the submitter
– glideinWMS was thus heavily relying on it 

for auditing purposes

● There is nothing equivalent in the Cloud
– We still need to solve this part



CHEP 2013 Cloud Bursting with glideinWMS 12

Internal changes

● The glideinWMS internal architecture calls 
for two distinct players
– A glidein factory – Talks to the resource providers
– A VO Frontend – Implements the provisioning logic
– In N-to-M relationship

● The internal protocol was assuming 
Grid-type resources

● Had to extend it to support
– Multiple credential types (i.e. not just x509)
– Multiple trust domains (see next slide)

– Optionally, VO-provided OS image



CHEP 2013 Cloud Bursting with glideinWMS 13

glideinWMS internals
in a very simplified picture

Grid/Cloud

HTCondor
Scheduler 1

HTCondor Startd

glideinWMS startup

HTCondor Startd

glideinWMS startup

Glidein Factory

HTCondor-G
User job

User job

HTCondor
Scheduler 2

VO Frontend 1

Here serving 2 VOs with a single GF

For more details, see: http://www.slideshare.net/igor_sfiligoi/glideinwms-training-jan-2012-glideinwms-architecture

VO Frontend 2

http://www.slideshare.net/igor_sfiligoi/glideinwms-training-jan-2012-glideinwms-architecture


CHEP 2013 Cloud Bursting with glideinWMS 14

Implications of multiple credentials

● In the Grid, one proxy can be used to 
access any Grid site (with very few exceptions)

● When you have a mix of Grid and Cloud 
resources, you will almost certainly 
need multiple credentials as well
– i.e. an Amazon credential will not work at CERN

● glideinWMS solved the problem 
by introducing trust domains
– A credential belonging to a trust domain is 

expected to be usable on all “sites” belonging to it
– The provisioning logic will thus match on it 



CHEP 2013 Cloud Bursting with glideinWMS 15

Presented functional prototype at 
CHEP2010

● The basic Cloud functionality was available in 
glideinWMS already during CHEP2010
http://iopscience.iop.org/1742-6596/331/6/062014 

● But the devil is in the details!
● And most of those details are 

not even under our control
– Basically, various Cloud Middlewares are 

not fully implementing the “Cloud specs”

Required close collaboration
with HTCondor team

http://iopscience.iop.org/1742-6596/331/6/062014


CHEP 2013 Cloud Bursting with glideinWMS 16

Cloud Middlewares

● Amazon EC2 is of course the most famous one
– If that was the only Cloud we needed to support, 

the CHEP'10 code was almost ready for prime-time 

● But most scientific communities seemed more 
interested in other Middlewares
– ANL's Magellan based on Eucalyptus

– CERN's HLT based on OpenStack

– Fermilab's FermiCloud based on OpenNebula 



CHEP 2013 Cloud Bursting with glideinWMS 17

Issues along the road

● Three categories
– EC2 Submission API issues

– EC2 Runtime issues

– Scalability issues



CHEP 2013 Cloud Bursting with glideinWMS 18

The EC2 submission API

● The non-Amazon Cloud Middlewares have a very 
loose interpretation of the EC2 API semantics
– 2010 HTCondor-G would simply not work

– Required extended collaboration with 
HTCondor team

● But now OpenStack and OpenNebula usable

●  A couple concrete examples:
– API calls not idempotent

– VMs refuse to properly terminate



CHEP 2013 Cloud Bursting with glideinWMS 19

The EC2 Runtime environment

● Each Cloud Middleware provides different 
ways to contextualize the OS image 
– Not even a common API
– Each time we add a new Cloud provider, we have 

to discover how to use it
– Our startup script has to have different 

execution paths for different Middlewares 

● Concrete example:
– There is no uniform way to get 

the UserData into the Cloud instance 



CHEP 2013 Cloud Bursting with glideinWMS 20

Scalability issues

● Every time we tried to get a significant amount 
of resources out of Cloud providers, we ended 
killing the service
– Again, close collaboration with HTCondor team 

to mitigate the problem until bearable

● Concrete example:
– OpenStack's Nova scheduler seems to be limited 

to 500 polling requests every 5 minutes



CHEP 2013 Cloud Bursting with glideinWMS 21

Deployment plans

● CMS has been running an advanced beta of 
the Cloud-enabled glideinWMS for about a 
year on the CERN's HLT farm

● NOVA has been test-using it on FermiCloud 
since early Sep'13

● The Cloud-enabled glideinWMS was declared 
production quality early Oct'13
– And has been put in production soon after 

on a OSG glidein factory



CHEP 2013 Cloud Bursting with glideinWMS 22

A few graphs

CMS on CERN's HLT
over Openstack
up to 500 VMs
up to 6.1k cores

NOVA on FermiCloud
over OpenNebula
up to 90 VMs
up to 90 cores



CHEP 2013 Cloud Bursting with glideinWMS 23

Summary

● The Cloud is conceptually similar to the Grid
so creating a Pilot-based overlay makes sense
– But different enough to require significant 

internal changes in glideinWMS 

● Moving between Cloud providers hard due to 
significant implementation differences
– Required significant workarounds to be usable

● glideinWMS has helped CMS using 
Cloud resources for about a year
– And now available for other VOs as well 



CHEP 2013 Cloud Bursting with glideinWMS 24

Acknowledgements

● Fermilab is operated by Fermi Research 
Alliance, LLC under Contract number 
DE-AC02-07CH11359 with the United States 
Department of Energy (DOE). 

● The work was partially sponsored by 
– DOE and KISTI under a joint Cooperative 

Research and Development Agreement 
CRADA-FRA 2013-0001 / KISTI-C13013

– US National Science Foundation (NSF) grants 
PHY-1120138 and OCI-0943725. 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

