
4. The electroweak sector of the Standard Model.

4.1. Gauge group and matter content.

Standard model = ”unified” description of weak and

electromagnetic interactions. From the Fermi theory

of weak interactions

with GF/
√

2 = g2/8M2
w, we know that we need at least

a charged gauge boson W±
m and the photon Am.
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Experimentally there also exists neutral currents (neu-

tral massive gauge boson) and coloured strong interac-

tions → gauge group

Gauge bosons : GA
m Aa

m Bm

G = SU(3)c × SU(2)L × U(1)Y .

- the Higgs mechanism generates the breaking SU(2)L×
U(1)Y → U(1)Q.

- Only left-handed quarks/leptons interact with SU(2)L

gauge fields. The SM lagrangian has the symbolic form

LSM = Lkin − V (Φ) + LYuk.
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where

Lkin = −1

4
F2

mn −
1

4
(Fa

mn)
2 + |DmΦ|2

+Ψ̄LiγmDmΨL + Ψ̄RiγmDmΨR ,

where

DmΨL = (∂m − ig
τa

2
Am − ig�

YL

2
Bm)ΨL

DmΨR = (∂m − ig�
YR

2
Bm)ΨR ,

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 ,

and LYuk. will be discussed later on. With our conven-

tions

Q = T3 +
Y

2
. (52)
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Matter content of the Standard Model:

Leptons : li =

�
νi
ei

�

L
: (1, 2)Y =−1 , eiR : (1, 1)Y =−2

Quarks : qi =

�
ui
di

�

L
: (3, 2)Y =1/3

uiR : (3, 1)Y =4/3 diR : (3, 1)Y =−2/3

Higgs field : Φ =

�
Φ+

Φ0

�

: (1, 2)Y =1
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4.2. Weak mixing angles and gauge boson masses.

With an SO(4) rotation, the Higgs vev can be written

as

Φ =

�
0
v√
2

�

,where v2 =
µ2

λ
� (246 GeV)2 (exp.)

(53)

Gauge boson masses arise from

|DmΦ|2 → g2v2

8
|A(1)

m − iA(2)
m |2 +

v2

8
|gA(3)

m − g�Bm|2

=
g2v2

4
W+,mW−

m +
(g2 + g�2)v2

8
ZmZm

where the definitions and masses of gauge bosons are
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W±
m =

1√
2
(A(1)

m ∓ iA(2)
m ) , Mw =

gv

2

Zm =
gA(3)

m − g�Bm�
g2 + g�2

, Mz =
v

2

�
g2 + g�2

Am =
g�A(3)

m + gBm�
g2 + g�2

, MA = 0 (54)

We introduce the electroweak angle

cos θw =
g

�
g2 + g�2

=
Mw

Mz
, tan θw =

g�

g
(55)

that rotates from the weak basis to the mass basis
�

Zm
Am

�

=

�
cos θw − sin θw
sin θw cos θw

� �
A(3)

m
Bm

�

(56)
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Notice that

ρ ≡ M2
w

M2
z cos2 θw

= 1 in the SM (57)

The electric charge is e = g sin θw.

4.3. Neutral and charged currents

Ex: With the definitions above, show that

Dm = ∂m − igAa
m

τa

2
− ig�

Y

2
Bm = ∂m − ieQAm

− ig

2
√

2
(W+

m τ+ + W−
mτ−)− ig

cos θw
Zm(T3 − sin2 θwQ)

We define the currents by

L = Ψ̄iiγ
m∂mΨi+g(W+

m Jm,+
W +W−

mJm,−
W +ZmJm

Z )+eAmJm
em

(58)
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Ex : Using the quantum numbers of the quarks/leptons,

show that

Jm,+
W =

1√
2
(ν̄i

Lγmei
L + ūi

Lγmdi
L) ,

Jm,−
W =

1√
2
(ēi

Lγmνi
L + d̄i

Lγmui
L) ,

Jm
em = −ēiγmei +

2

3
ūiγmui − 1

3
d̄iγmdi ,

Jm
Z =

1

cos θw

�1
2

ν̄i
Lγmνi

L + (−1

2
+ sin2 θw)ēi

Lγmei
L + sin2 θwēi

Rγmei
R

+(
1

2
− 2

3
sin2 θw)ūi

Lγmui
L −

2

3
sin2 θwūi

Rγmui
R

(−1

2
+

1

3
sin2 θw)d̄i

Lγmdi
L +

1

3
sin2 θwd̄i

Rγmdi
R

�
. (59)
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4.4. Fermion masses and the CKM matrix

Yukawas generate quarks/lepton masses after EWSB :

−Lmass = mu
ijū

i
Luj

R + md
ijd̄

i
Ldj

R + ml
ijē

i
Lej

R + c.c. , (60)

where mu,d,l
ij = hu,d,l

ij v/
√

2. We use for compactness a

matrix notation

−Lmass = ūLmuuR + d̄LmddR + ēLmleR + c.c. . (61)

Obs: No neutrino masses here, see lectures of B. Kayser.

We can define the mass eigenstate basis (as compared

to the weak eigenstate basis) with the help of the 3×3

unitary transformations
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uL,R = V u
L,Ru�L,R , dL,R = V d

L,Rd�L,R , eL,R = V e
L,Re�L,R ,

such that

(V u
L )†muV u

R = diag (mu, mc, mt) , etc

In the mass basis, the charged and e.m. currents re-

main the same, whereas the hadronic charged current

becomes

(Jm,+
W )quarks → 1√

2
ū�LγmVCKMd�L ≡

1√
2

ū�Lγmd̃L

where VCKM = (V u
L )†V d

L is the (unitary) CKM matrix,

1973.
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We also defined

d̃L = VCKMd�L ↔




d̃L
s̃L
b̃L



 =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb








d�L
s�L
b�L





There are therefore flavor changing transitions in the

SM : s → uW−, etc. Experimental measurements give

a hierarchical form of VCKM of the type (Wolfenstein

parametrization)




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



 (62)

where λ = sin θc � .0.22 is the Cabibbo angle.
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Cabibbo wrote first in 1962 the 2 × 2 version of the

CKM matrix
�

sin θc cos θc
− sin θc cos θc

�

(63)

• VCKM contain three rotation angles and a CP violat-

ing phase.

The unitarity of the CKM matrix

VikV ∗jk = δij , V ∗kiVkj = δij

has various important consequences. One of them is

the GIM mechanism (Glashow-Iliopoulos-Maiani, 1972).

60



The GIM mechanism

The FCNC (flavor changing neutral currents) effects

were measure to be small. This was puzzling in the

1970’s, but it is explained in the SM. Consider for ex.

the K0− K̄0 mixing, which can arise at the loop-level :

In the limit of equal or vanishing quark masses, the

amplitude vanishes due to the unitarity of VCKM :
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AK0K̄0 ∼
g4

M4
W

(
�

i

V ∗idVis)(
�

i

VssV
∗
jd) = 0 (64)

The main contribution turn out to be proportional to

(m2
c −m2

u)
2/M4

W and is in excellent agreement with the

experimental result.

HR : In 1972, only the u, d and s quarks were known.

The GIM mechanism is considered to be the first proof

of the existence of the charm quark.

Ex: Write down explicitly the diagrams for the K0−K̄0

mixing in the two generation case, with u and c quarks

in the loop.
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4.5. The custodial symmetry.

(Sikivie,Susskind,Voloshin,Zakharov,1980)

The tree-level relation ρ = M2
W/(M2

Z cos2 θw) = 1 is the

result of an (approximate) symmetry.

In any theory of electroweak interactions which con-

serves the electric charge and has an approximate global

SU(2) symmetry under which Aa
m transform as a triplet,

ρ = 1 at tree-level.

Approximate : in the limit of g� = 0 and in the absence

of the Yukawa couplings.
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Proof: The gauge boson mass matrix is then of the

form




M2 0 0 0
0 M2 0 0
0 0 M2 m2

1
0 0 m2

1 m2
2




(65)

No photon charge → M2m2
2 − m4

1 = 0. The W3 − A

mass matrix is then of the form : Exercice :


 M2
W ±MW

�
M2

Z −M2
W

±MW

�
M2

Z −M2
W M2

Z −M2
W



 (66)

It is then easy to check that MW = cos θwMZ.
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The Higgs potential V (Φ†Φ) is invariant under an SO(4)

symmetry. Indeed,

Φ =

�
Φ1 + iΦ2
Φ3 + iΦ4

�

, Φ†Φ =
4�

i=1
Φ2 →

SO(4) = SU(2)L × SU(2)R symmetry. The Higgs vev

Φ =

�
0
v√
2

�

breaks SO(4)→ SO(3) = SU(2)D

Other Higgs representations ? Exercice :

Consider Higgs triplets. Show that the Higgs vev gen-

erate the breaking SO(3) → SO(2). In this case there

is no custodial symmetry and ρ �= 1.
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A useful parametrization :

H =
�
iτ2Φ∗ Φ

�
=

�
Φ∗0 Φ+
−Φ∗+ Φ0

�

,Φ†Φ = TrH†H

V (Φ†Φ) is invariant under H→ ULHU†
R, with UL,R uni-

tary matrices implementing SU(2)L× SU(2)R transfor-

mations. Symmetry breaking

�H� = v√
2

I2×2 breaks SU(2)L × SU(2)R → SU(2)D

U(1)Y and Yukawas break the custodial symmetry. How-

ever

LYuk = h
�
t̄L b̄L

�
H

�
tR
bR

�

is invariant under SU(2)D (if ht = hb).
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A one-loop computation in the SM gives

δρ =
3g2(m2

t −m2
b )

64π2M2
W

− 3g2

32π2 ln
mH

MZ
+ · · ·

where · · · are subleading contributions from the SM

(or eventual new physics contributions, see lectures B.

Dobrescu) are smaller than 10−3.
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5. QUANTUM CORRECTIONS AND RENOR-

MALIZATION.

5.1. UV divergences and regularization.

Perturbation theory in QFT is plagued with UV diver-

gences. We have to keep an UV cutoff Λ in computing

physical quantities. There are three cases that arise :

- Super-renormalizable theories : only a finite number

of Feynman diagrams diverge.

- Renormalizable theories : a finite number of ampli-

tudes diverge. Divergences at all orders in pert. theory.

- Non-renormalizable theories : All amplitudes are di-

vergent at a certain order in perturbation theory.
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• In (super)renormalizable theories, UV divergences can

be absorbed into rescaling of fields and redefinitions

of the various couplings and masses. Taking the cou-

plings/masses from experience, the UV cutoff disap-

pears from physical quantities → the theory is predic-

tive at any energy scale.

• In non-renormalizable theories, we need an infinite

number of couplings and masses in order to absorbe

UV divergences. We would need an infinite amount of

experimental data to determine all these couplings →
at high-energies E > Λ the theory looses its predictive

power. At low-energy the theory is perfectly predictive.
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- 5.2. Relevant, marginal and irrelevant couplings

Consider a scalar theory of the form

SΛ =
�

d4x

�
1

2
(∂φ)2 +

m2φ2

2
+

�

n
λnφn

�

, (67)

where SΛ is the euclidian action defined with a cutoff

Λ. The couplings λn have (classical) mass dimensions

[λn] = 4 − n. Let us consider the theory with two dif-

ferent maximal euclidian momenta/cutoffs:

i) 0 < p < Λ

ii) 0 < p < Λ� = � Λ , where � < 1.

The theory ii) has therefore a lower cutoff.
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It is interpreted as a theory where the high-momenta

of theory i) were integrated out. The theory i) has

the action (67). In the theory ii) the cutoff can be

redefined to be the same as in i) with the help of a

scale transformation

x� = � x , p� = �−1p , φ� = �−1φ (68)

In terms of the rescaled field and coordinates, the action

of theory ii) become

SΛ� =
�

d4x�
�
1

2
(∂�φ�)2 +

m�2(φ�)2

2
+

�

n
λ�n(φ

�)n
�

,

(69)
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where

m�2 =
1

�2
m2 , λ�n = �n−4 λn (70)

Notice that the new mass and couplings scale with their

classical dimension. We see therefore that the mass

and couplings with positive dimension grow in the IR,

whereas couplings with negative dimension decrease in

the IR. It is said that

[λn] > 0 → relevant coupling

[λn] = 0 → marginal coupling

[λn] < 0 → irrelevant coupling

72



5.3. (Non)renormalizability and couplings dims.

There is a straight connection between renormalizability

and the three type of couplings above:

- relevant couplings → super-renormalizability.

- marginal couplings → renormalizability.

- irrelevant couplings → non-renormalizability.

It is easy to argue for this by dimensional arguments.

Take some simple examples.

a) - Relevant coupling

L =
1

2
(∂φ)2 − m2φ2

2
− λ3φ3 . (71)

The coupling has dimension [λ3] = +1, so it is relevant.
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At one-loop, the UV divergent terms lead to (Ex:)

δL1 ∼ λ3Λ
2φ + λ2

3φ2 lnΛ ,

which are both of super-renormalizable type. The first

lead to mass renormalization, whereas the second leads

to a scalar tadpole.

At two loops, the only UV divergences are a cosmo-

logical constant and a scalar tadpole. At three loops,

there is only a log UV divergence in the cosmological

constant. No UV divergences exist at higher loops.

Dim. argument : The highest UV divergent term in
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the coupling is the three-loop vacuum energy

λ4
3 lnΛ (72)

Higher loops have higher powers in λ3 and cannot con-

tribute to the UV divergent terms in the effective la-

grangian

Obs: 1/m2 terms are IR, not UV contributions).

b) - Irrelevant coupling

L =
1

2
(∂φ)2 − m2φ2

2
− λ6φ6 . (73)

The coupling has dimension [λ6] = −2, so it is irrele-

vant. At one-loop, the UV divergent terms in the
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eight-point amplitude lead to (Ex:)

Γ(8)
1−loop(pi) ∼ c λ2

6 lnΛ + · · · .

To cancel this divergence, one has to add a new cou-

pling to the original action

δL1 ∼ λ8φ8 ,

and to adjust the coupling λ8 such that

λ8 + c λ2
6 lnΛ = finite

At two-loops, we get new new UV divergences, like the

one in the six-point amplitude, prop. to

Γ(6)
2−loops(pi) ∼ c� (pipj)λ

2
6 lnΛ ,
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which can be canceled by adding another coupling

δL2 ∼ λ�8 φ4(∂φ)2 ,

such that

λ�8 + c� λ2
6 lnΛ = finite

The UV divergences proliferate at higher loop orders,

generating an infinite tower of operators of higher and

higher dimension.

Dimensional argument: Terms of the type λn
6φ4+2n lnΛ,

λn
6(∂φ)2φ2n lnΛ have the correct dimension to be gen-

erate for any n. Predictivity at high-energy is lost.
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• However, let us define λ6 ∼ 1/M2. Then :

In the IR E < M , the effect of non-renormalizable op-

erators on physical quantities is prop. to some power

or E/M and/or m/M , so their effects is negligible.

Effective theories with cutoff Λ (ex. General relativity,

Λ = MP ) are predictive at energies E << Λ.

Another viewpoint: for Lint =
�

n λnφn, leading cross-

section for 2→ 2 particle scattering is

σ =
�

n
cnλ2

nE2n−10 ∼ 1

E2

�

n
cn(

E

M
)2n

for λn ∼ 1/Mn−4 → predictive power lost for E ≥ M .

78



Ex : Coupling renormalization for φ4 theory.

Consider the φ4 theory

L =
1

2
(∂φ)2 − m2

0
2

φ2 − λ0

4!
φ4

and compute the four-point function at one-loop

Γ(k1k2k3k4) = −iλ0 +
(−iλ0)2

2
×

� d4p

(2π)4
i

p2 −m2
0

i

(p− k1 − k2)2 −m2
0

+ two crossing terms

After the Wick rotation to euclidian momenta

Γ(k1k2k3k4) = −iλ0 +
iλ2

0
2

� d4p

(2π)4
1

p2 + m2
0

1

(p− k1 − k2)2 + m2
0

+ two crossing terms
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The integral is log divergent in the UV. There are vari-

ous ways to ”renormalize” the integral. Here is a simple

way : Define

V (s) ≡
� d4p

(2π)4
1

p2 + m2
0

1

(p− k1 − k2)2 + m2
0

=
� Λ

p2≥µ2

d4p

(2π)4
1

p2 + finite ,

where the energy scale µ is arbitrary. We find

Γ(k1k2k3k4) = −iλ0+
3iλ2

0
16π2 ln

Λ

µ
+finite = −iλ(µ)+finite

What is the physical interpretation of this manipula-

tion?
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i) λ0 is not a physical parameter. It can be chosen to

depend on Λ such that

λ(µ) = λ0(Λ)− 3λ2
0

16π2 ln
Λ

µ

is independent of Λ.

ii) Any value of µ leads to the same physical result. λ0

is independent of µ? Therefore

dλ

d lnµ
=

3λ2

16π2 = β(λ) (74)

describes the renormalization group equation (RGE) of

λ at one-loop. (74) is then a differential eq., whose

solution is
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λ(µ) = λ(µ0) +
λ(µ0)

1− 3λ(µ0)
16π2 ln µ

µ0

There is an equivalent prescription : add a local ”coun-

terterm” to the lagrangian

L + δL = L0 ,

which cancels the UV divergence.

In renormalizable theories, a finite number of countert-

erms are needed in order to render the theory UV fi-

nite. In non-renormalizable theories, an infinite number

of counterterms are needed.
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5.4. Quantum anomalies∗

Symmetries of the classical action can have anomalies

at the quantum level. They are generate by one-loop

triangle diagrams.

- For global symmetries, this does not creates problems.

Ex: π0 → γγ is related to the axial U(1)A anomaly.

- For gauge symmetries, if present, they generate in-

consistencies.
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The corresponding currents are of chiral type

JA
m = Ψ̄ γm γ5 Ta Ψ = Ψ̄RγmTaΨR − Ψ̄LγmTaΨL

The resulting gauge anomaly that has to vanish is

AABC = tr [{TA, TB}TC]L − tr [{TA, TB}TC]R = 0 ,

where the trace is taken over all the fermions. For

the SM, the only possible anomalies are (To check:)

SU(2)2LU(1)Y , U(1)3Y and SU(3)2c U(1)Y . The results

in the SM are

84



tr [{τa

2
,
τ b

2
}Y ]L =

1

2
δab(trY )L = 3× (Nc ×

1

3
− 1) = 0 ,

tr [{Y, Y }Y ]L−R = · · · = 6(−2Nc + 6) = 0

tr [{λA

2
,
λB

2
}Y ]L−R =

1

3
δAB(trY )L−R = · · · = 0

• Anomaly cancelation happens precisely for three col-

ors Nc = 3 !

• Anomaly cancelation provides a deep connection be-

tween quarks and leptons in the SM, maybe a hint to-

wards Grand Unified Theories ? ( Bogdan lectures ?)
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6. The Higgs / Symmetry breaking sector of the

Standard Model.

6.1.1 Perturbativity bounds

The RGE for the Higgs self-coupling in the SM is

16π2 dλ

d lnµ
= 24λ2 − (3g�2 + 3g2 − 12h2

t ) λ

+
3

8
(g�4 + 2g2g�2 + 3g4)− 6h4

t + · · · ,

where · · · denote smaller Yukawas. In the large Higgs

mass limit λ >> g2, h2
t , it reduces to

dλ

λ2 =
3

2π2 d lnµ → 1

λ(µ)
=

1

λ(Λ)
+

3

2π2 ln
Λ

µ
.

This can be interpreted in two alternative ways :
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i) If the Higgs mass is known, SM has a Landau pole

(non-pert. regime) λ(Λ) >> 1 for

Λ = v e
2π2
3λ = v e

4π2v2

3M2
h

ii) Conversely, asking for perturbativity up to scale Λ

(say MGUT ), we obtain an upper bound on the Higgs

mass

M2
h ≤ 4π2v2

3 ln Λ
v

.
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6.1.2 Stability bounds

SM has another instability in the small Higgs mass limit,

since λ can become negative at high-energy.

If λ << h2
t , the leading RGE’s are

16π2 dλ

d lnµ
= −6h4

t , 16π2 dht

d lnµ
=

9h3
t

2
which integrates to

λ(µ) = λ(λ) +

3h4
t (Λ)
8π2 ln Λ

µ

1 +
9h2

t (Λ)
16π2 ln Λ

µ

,

h2
t (µ) =

h2
t

1 +
9h2

t (Λ)
16π2 ln Λ

µ

.
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This can be interpreted in two ways :

i) For a fixed, known value of the Higgs mass : take

µ = v. Then, new physics should show up before the

scale Λ where λ(Λ) = 0

Λ ≤ v e
8π2λ
3h4

t = v e

4π2M2
h

3h4
t v2

ii) For a fixed Λ, we get a lower bound on the Higgs

mass

M2
h ≥ 3h4

t v2

4π2 ln
Λ

v
=

3m4
t

π2v2 ln
Λ

v
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These theoretical Higgs mass limits are summarized in

the following plot
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- 6.2. W W scattering and unitarity.

Let us consider the longitudinal WLWL → WLWL scat-

tering
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For a massive gauge particle of momentum k and mass

MW , Am = �m eikx, the three polarizations satisfy

�m�m = −1, km�m = 0. For km = (E,0,0, k), they are

transverse : �m1 = (0,1,0,0) , �m
2 = (0,0,1,0) ,

longitudinal : �mL = (
k

MW
,0,0,

E

MW
) ∼ km

M
+O(

E

MW
) .

Since the longitudinal polarization is proportional to the

energy, we expect a tree-level amplitude behaving as

A = A(4)(
E

MW
)4 + A(2)(

E

MW
)2 + · · ·

Actually, the diagrams a),b) and c) give A = g2( E
MW

)2.

On the other hand, unitarity constrains the amplitude

to stay small enough at any energy.
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Start with the unitarity of the S-matrix S†S = 1. Then

S = 1 + iA → i(A−A†) +A†A = 0

Let us sandwich this eq. between a two-particle state

|i > :

i(A−A†)ii +
�

f

|Afi|2 = 0 (75)

which is the optical theorem : the imaginary part of the

forward amplitude of the process i → i is proportional

to the total cross section of i → anything.

Let us decompose the scattering amplitude into partial

waves
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A =
∞�

l=0
(2l + 1) Pl(cos θ)al ,

where al are partial wave amplitudes of elastic scatter-

ing of two particles. Projecting (75) into the partial

wave l gives Im al = |al|2 . This is only possible if

|Re al| ≤ 1/2 , 0 ≤ Im al ≤ 1 → |al|2 ≤ 5/4 ,

which is the unitarity bound we were searching for.

• For the SM without the Higgs boson

a0 =
g2E2

M2
W

→ unitarity breaks down for
√

s ∼ 1.2 TeV
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With the Higgs boson, amplitudes d),e) cancel the rais-

ing energy term, such that

a0 =
g2M2

H

4M2
W

→ unitarity breaks down unless MH ≤ 1.2 TeV

By considering other channels, one get the stronger

bound MH ≤ 800GeV .

Intepretation :

- If LHC finds no Higgs with a mass MH ≤ 800GeV ,

unitarity of S-matrix will be violated ! New light degrees

of freedom should exist in order to restore unitarity →
the no-loose ”theorem” for LHC.
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Most theories have a biased towards a light Higgs, since

it provides a better fit for the SM precision tests.
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Latest news (”Lepton-Photon”, august 2011): Both

ATLAS+CMS exclude the SM Higgs at 95 % CL for

145 ≤ MH ≤ 446 GeV except 288− 296 GeV

M. Peskin (LP2011) ”There is therefore strong evi-

dence that either :

- Higgs is light, compatible with electroweak precision

tests and theoretical prejudice, or

- the Higgs boson is very heavy and strongly self-coupled”.
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