Linac4 Beam Commissioning Above 12 MeV 1.0 rf phase & amplitude

J. Stovall, M. Tedula, G. Bellodi, J.B. Lallement, K. Crandall

19 November, 2009

CCDTL longitudinal diagnostics

CCDTL longitudinal acceptance

CERN/BE-ABP

•Pencil beam

- I≈1 mA
- ε_{99%} . ≈0.25π mm-mR
- $\Delta x = \pm 1 \text{ mm}$

• $\sigma_{0l}\approx67^{\circ}/module$

CCDTL "output" amplitude scans have no distinctive identifiable features: ϕ_{out} -W_{out}

CCDTL "input" amplitude scans have distinctive peaks & phase widths : ϕ_{in} -W_{out}

Single-particle phase scans simulate pencil-beam centroids

Pencil beam injected at $+\phi_s$ is only slightly debunched at 2^{nd} pickup

PIMS Longitudinal Diagnostics

- · Can modules be powered and phased independently?
- Drive modules in pairs
 - monitor/control relative phases
 - beam loading effects?

PIMS longitudinal acceptance

• $\sigma_{01} \approx 22^{\circ}$ /module, 44°/pair

SNS uses TOF phase scans to set ϕ_s in SCL tanks, amplitude is set for maximum acceleration

Measure the "center-of-mass" of the beam Horizontal, vertical, and arrival time

PIMS single-module amplitude scans are essentially sinusoidal

Module 1 ϕ_{in} -W_{out} σ_{0l} \approx 25°

 $\begin{array}{l} \text{Module 1} \\ \phi_{\text{out}} \text{-} W_{\text{out}} \end{array}$

PIMS 2-module scans have distinctive peaks & phase widths

Module 1 & 2 ϕ_{in} -W_{out} $\sigma_{0l} \approx 50^{\circ}$ Module 1 & 2 ϕ_{out} -W_{out}

SNS DTL Phase Advance \approx 11.2 π

- $W_{final}W=87$ MeV, 216 cells, $\sigma_{0l}\approx 2020^{\circ}$
- Large phase advance (longitudinal) and energy gain per accelerating structure

CERN/BE-ABP

• Single correct RF phase and amplitude setting

SNS DTL "absorber-collector"

- in-line device mounted on actuators
- collector can take 50µs full current beam pulse at 1 Hz and 185 MeV (300W max)
- absorber : removing low energy tail of beam
- collector (Faraday cup) : collecting the surviving beam particles

SNS DTL phase scan

SNS DTL phase scan with two BPMs

SNS DTL Phase Scans

•Each cavity has a unique response (signature) to phase and amplitude scans

•Phase scan signature matching method uses model to match measurements and determine RF amplitude and phase setpoints

Linac4 DTL Phase Advance \approx 6.7 π

DTL Tank 3 amplitude scans have distinctive measurable features

DTL Tank 3 amplitude scans are distinctive but unaccelerated beam debunches too rapidly

DTL-2 Longitudinal Diagnostics

 $\frac{\Delta W}{W} \approx 1\% \approx 30 \, keV$

DTL Tank 2 amplitude scans have few distinctive features

SNS Neutron Detector

- 35 mm poly moderator
- Li (n,alpha)
- Scintillator
- PMT
- 10⁴ 10⁸n/cm²/s
- 0.03eV 3MeV
- Advantages:
 - No RF contamination
 - Detects beam loss generated in well shielded structures (e.g. DTL tanks)

- Disadvantage
 - Hard to localize the loss source
 - Slow (10 μsec)

DTL-3 Longitudinal Diagnostics

 $\frac{\Delta W}{W} \approx 1\% \approx 50 \, keV$

