

Hadronic Interaction Studies for LHCb

Nigel Watson/Birmingham

Outline

- Physics Lists (PL) in Geant4
 - What we are using, what is important to us, better alternatives?
 - Initial studies with LHCb default PL
- Extend study to different PLs
 - Cross-sections
 - Multiplicities in hadronic interactions
- How different PLs affect our detector in reality
 - Occupancies (hit multiplicities, digits, ...)
 - Particularly concerned about thin layers
- Plans to extend study to more data
 - First glimpse

Physics Lists

- Set of EM PLs implementing difference precisions available
 - Matt Reid talk this morning
- Set of hadronic PLs implementing combination of models
 - Applicability varies with energy/species

- Sources of bias in detector important for us, e.g. CP studies
 - ► Hardware: geometric/alignment, sub-detector system inefficiencies
 - Software/algorithms: momenta/position vs. magnetic field vs. acceptance
 - Interaction modelling: particle/antiparticle behaviour differs
- All need to be understood, consider whether our use of G4 models can be improved

Interaction σ studies: configuration

- Simple, standalone geometry
- G4 9.2.p03
- \rightarrow δ turned off

- [1...10²] GeV
- Varying Al plate thickness
 - ▶ [1, 10, 50, 100]mm (consistency checks)
 - Studied also Si and Be targets
- ▶ Use this setup to estimate P_{int}=#interacted / #generated

- Compare with COMPAS measurements (as available) and cross-sections for LHEP fits
 - $P_{int} = \sigma \rho Nx/A$ (valid $P_{int} << I$)
- Material upstream RICH2 $\sim 0.6X_0$, so verified stable to at least 5cm Al
- Work within LHCb Gauss framework, ensure technical handling of PLs/options transport directly to production system

Material interaction σ , pp on 1mm Al

• • • • • • • • • • • • • • • • • • • •	5. ccc =		, simple medel	
Particle	p(GeV/c)	P_{int}	ratio $P_{int}(\bar{p}/p)$	PDG
p	1.	$\begin{array}{c} 0.0038 \pm 0.0006 \\ 0.0143 \pm 0.0012 \end{array}$	3.76 ± 0.67	3.4-4.2
$\frac{\bar{p}}{p}$	1. 1.52	0.0143 ± 0.0012 0.0047 ± 0.0007		3.1 1.2
\bar{p}	1.45	0.0123 ± 0.0011		
p	5.	0.0037 ± 0.0006	1.67 ± 0.35	
$\frac{\bar{p}}{n}$	5. 10.	0.0062 ± 0.0008 0.0037 ± 0.0006	1.24 ± 0.28	
$p \over ar{p}$	10.	0.0037 ± 0.0000 0.0046 ± 0.0007	1.24 ± 0.20	1.2-1.4
p	20.	0.0036 ± 0.0006	0.92 ± 0.23	
\bar{p}	20.	0.0033 ± 0.0006		
$\frac{p}{\bar{p}}$	100. 100.	0.0035 ± 0.0006 0.0028 ± 0.0007	0.8 ± 0.24	1.0-1.1

Material interaction σ , π^{\pm} on 1mm Al

p (GeV/c)

10

Good agreement: LHEP fits/simple model

Particle	p(GeV/c)	P_{int}	ratio $P_{int}(\pi^-/\pi^+)$
π^+	1.	0.0043 ± 0.0002	1.02 ± 0.07
π^-	1.	0.0044 ± 0.0002	
π^+	5.	0.0032 ± 0.0002	1.0 ± 0.09
π^-	5.	0.0032 ± 0.0002	
π^+	10.	0.0030 ± 0.0002	1.03 ± 0.10
π^-	10.	0.0031 ± 0.0002	
π^+	100.	0.0026 ± 0.0002	1.0 ± 0.11
π^-	100.	0.0026 ± 0.0002	

Material interaction σ , K^{\pm} on 1mm Al

Good agreement: LHEP fits/simple model Some differences K at lowest momenta

Particle	p(GeV/c)	P_{int}	ratio $P_{int}K^-/K^+$
k^+	1.	0.0026 ± 0.0002	1.92 ± 0.17
k^-	1.	0.0050 ± 0.0002	
k^+	5.	0.0018 ± 0.0001	1.33 ± 0.13
k^-	5.	0.0024 ± 0.0002	
k^+	10.	0.0019 ± 0.0001	1.21 ± 0.12
k^-	10.	0.0023 ± 0.0002	
k^+	100.	0.0021 ± 0.0001	1.0 ± 0.06
k^-	100.	0.0021 ± 0.0001	

Interaction cross-section initial tests

- Verified interaction cross sections simulated inside Geant4 in LHCb framework
 - p, K, pi using Al, Be, Si targets
 - Default PL LHEP
 - Compared to COMPAS database, PDG
- Results from simple configuration agree with LHEP fits
 - Technical consistency check, expected
- Extended studies to include QGSP_BERT, FTFP_BERT
 - For p, similar results all PL.
 - \sim 7% difference in $\sigma_{inelastic}$ at IGeV, LHEP vs. QGSP_BERT/FTFP_BERT
 - For π^{\pm} , differences small, less than 2-3%, all P
 - ▶ For K[±], same cross-sections in all PL
 - Pbar cross-sections rather consistent between models?
 - e.g. p/pbar on 5cm Al

	Particle	p(GeV/c)	$P_{int}(LHEP)$	$P_{int}(QGSP_BERT)$	$P_{int}(FTFP_BERT)$
	p	1.	0.1679 ± 0.0037	0.1814 ± 0.0039	0.1814 ± 0.0039
١	$ar{p}$	1.	0.4871 ± 0.0050	0.4851 ± 0.0050	0.4851 ± 0.0050
ſ	p	5.	0.1778 ± 0.0038	0.1810 ± 0.0039	0.1810 ± 0.0039
	$ar{p}$	5.	0.2548 ± 0.0044	0.2548 ± 0.0044	0.2548 ± 0.0044
	p	10.	0.1746 ± 0.0037	0.1780 ± 0.0038	0.1780 ± 0.0038
١	$ar{p}$	10.	0.2029 ± 0.0040	0.2029 ± 0.0040	0.2029 ± 0.0040
1	p	100.	0.1711 ± 0.0038	0.1745 ± 0.0038	0.1745 ± 0.0038
١	$ar{p}$	100.	0.1565 ± 0.0036	0.1565 ± 0.0036	0.1565 ± 0.0036

Inelastic hadronic interaction multiplicities

- Example: 10 GeV p on Imm Al
- Disagreements dominated by photons
 - Particlarly low E_{kin}
 - No gammas from inelastic interactions in LHEP
 - ▶ E_{kin} threshold for LHCb=IMeV
- ... No large consequences for observed average multiplicity in detector

Inelastic hadronic interaction multiplicities

- Example: 10 GeV p on 1mm Al
- Disagreements dominated by photons
 - Particlarly low E_{kin}
 - No gammas from inelastic interactions in LHEP
 - E_{kin} threshold for LHCb=IMeV
- ... No large consequences for observed average multiplicity in detector

Hadronic Multiplicities: p/pbar, 1mm Al

		LHEF)	QGSP_B	ERT	FTFP_BI	ERT
Part.	p(GeV/c)	< Mult >	RMS	$\langle Mult \rangle$	RMS	$\langle Mult \rangle$	RMS
p	1.	10.7	4.30	8.41	2.93	8.41	2.93
\bar{p}	1.	11.2	4.64	11.2	4.64	11.2	4.64
p	5.	14.07	5.09	13.31	6.53	13.55	6.38
\bar{p}	5.	14.3	5.54	14.3	5.54	14.3	5.54
p	10.	9.19	3.74	16.72	8.35	12.2	4.36
$ar{p}$	10.	10.22	3.81	10.22	3.81	10.22	3.81
p	13.	10.2	3.89	10.43	4.02	12.53	4.67
$ar{p}$	13.	11.25	4.18	11.25	4.18	11.25	4.18
p	100.	16.26	8.03	21.0	10.09	19.12	8.80
$ar{p}$	100.	17.04	7.93	17.4	7.93	17.04	7.93

- Multiplicities vary with PL, as expected with energy/model ranges
 - Identical, e.g. QGSP PLs for <4GeV, both 100% BERT</p>
 - ▶ Up to 80% difference at 10 GeV between LHEP vs. QGSP_BERT
 - Dominated by low energy gammas below our cut-offs
- pbar multiplicities identical for all PL at all energies
 - Same model used in all PL?

Hadronic Multiplicities: protons, 5cm Al

Same observations on pbar with thicker targets

		LHEI)	QGSP_BI	ERT	FTFP_BE	ERT
Particle	p(GeV/c)	< Mult >	RMS	< Mult >	RMS	< Mult >	RMS
p	1.	10.66	4.17	8.27	3.12	8.27	3.12
$ar{p}$	1.	11.19	4.55	11.19	4.35	11.19	4.55
p	5.	14.20	5.34	13.97	6.80	13.38	6.68
$ar{p}$	5.	14.74	5.89	14.74	5.89	14.74	5.89
p	10.	9.51	3.61	17.08	8.31	12.54	4.10
$ar{p}$	10.	10.21	3.76	10.21	3.76	10.21	3.76
p	100.	16.45	7.83	20.19	9.81	19.67	8.45
$ar{p}$	100.	16.29	7.58	16.67	7.58	16.67	7.58

Hadronic Multiplicities: π^{\pm} , K^{\pm} , 1mm Al

		LHEI)	QGSP_BI	ERT	FTFP_BE	ERT
Particle	p(GeV/c)	< Mult >	RMS	< Mult >	RMS	< Mult >	RMS
π^+	1.	9.84	4.06	10.13	4.44	10.13	4.44
π^-	1.	9.40	3.82	10.05	4.39	10.5	4.39
π^+	5.	14.94	5.72	16.62	7.30	11.88	4.16
π^-	5.	13.92	5.56	16.43	7.41	12.03	4.4
π^+	10.	10.02	3.88	11.0	5.59	12.22	3.7
π^-	10.	10.16	4.01	10.96	5.74	12.25	3.72
π^+	13.	11.47	4.90	11.64	5.06	12.79	4.15
π^-	13.	11.47	4.47	10.94	4.55	12.73	4.29
π^+	100.	17.24	8.75	18.94	8.42	17.75	7.58
π^-	100.	16.98	7.58	18.63	8.46	17.83	7.44

		LHEI)	QGSP_B1	ERT	FTFP_BI	ERT
Particle	p(GeV/c)	$< Mult >$	RMS	< Mult >	RMS	< Mult >	RMS
k^+	1.	9.6	3.66	8.905	3.36	8.905	3.36
k^-	1.	11.77	6.45	12.46	5.85	12.46	5.85
k^+	5.	14.59	6.12	15.12	6.72	12.53	5.63
k^-	5.	13.81	5.47	16.87	7.17	13.91	6.16
k ⁺	10.	9.76	3.76	17.6	8.67	11.37	3.27
k^-	10.	9.91	3.97	18.73	8.21	12.15	3.53
k ⁺	13.	10.51	4.21	10.59	4.35	11.94	3.40
k^-	13.	11.15	4.55	11.02	4.93	12.47	3.59
k ⁺	100.	16.78	8.07	17.29	8.40	18.07	7.17
k^-	100.	16.39	7.34	17.36	8.29	18.55	6.98

Similar conclusions to proton case (models, ranges, not anti-particles)

Summary

- Interaction cross-sections studied standalone model, using LHCb framework
- ▶ Generally good agreement, some significant model differences
 - e.g. in multiplicity, but we are less sensitive in given Ekine
 - or not, in case of pbar
- Areas of particular interest to us: thin layers
- Near-term future plans
- Test the new PL QGSP_BERT_CHIPS with GEANT4 v9.4.px
 - Improved K cross sections
 - Improved inelastic models and cross sections, anti-nucleons and hyperons
 - Re-evaluate hadronic PLs with our production versions (see Gloria talk Fri.)
 - Decision to adopting new PLs by end of 2011
- Study interaction lengths using data
 - Use partially reconstructed decays, daughter is reconstructed in VELO
 - The momentum can be deduced from constraints

- Absorption of hadrons give large uncertainty on reconstruction efficiency
 - Distance up to RICH2: 20% of λ_I
 - Uncertainty on material budget 10%
 - \rightarrow (1-e-0.2)*0.1=1.8% uncertainty per track
 - Main systematic limitation for cross section and BR measurements
- Need to improve knowledge on the absorption length (i.e. material budget)

First step:

- Made plots of material in terms of λ_i
- Assumed hadronic interaction length for high-p neutrons (PDG). λ_I Simple formula used (from Material class)
 - G). $\lambda_I = \frac{\rho}{\rho}$
 - Absorption depends on p, particle type and difference particle anti-particle

Second step:

- Count MCParticles with hadronic interaction in MC simulation
 - Vertices for kaons and pions: hadronic interactions, decays and delta rays

Material scan in λ_{l} (1st step – MC only)

- Peak at $\eta = 4.38$ comes from the 25 mrad conical beam pipe inside RICH1
- Between 2<η<4.8 the material amounts to 20% of an absorption length
- Competition between decays and hadronic interactions (esp. low p)
- Work in progress (for those hungry for data/MC comparisons)

Backup

Hadronic σ , p/pbar on 1mm Al

Particle	p(GeV/c)	$P_{int}^{inel}(LHEP)$	$P_{int}^{inel}(QGSP_BERT)$	$P_{int}^{inel}(FTFP_BERT)$
p	1.	0.0022 ± 0.0001	0.0024 ± 0.0001	0.0024 ± 0.0001
$ar{p}$	1.	0.0078 ± 0.0003	0.0078 ± 0.0003	0.0078 ± 0.0003
p	5.	0.0026 ± 0.0002	0.0027 ± 0.0002	0.0027 ± 0.0002
$ar{p}$	5.	0.0042 ± 0.0002	0.0042 ± 0.0002	0.0042 ± 0.0002
p	10.	0.0026 ± 0.0002	0.0027 ± 0.0002	0.0027 ± 0.0002
$ar{p}$	10.	0.0035 ± 0.0002	0.0035 ± 0.0002	0.0035 ± 0.0002
p	13.	0.0026 ± 0.0002	0.0027 ± 0.0002	0.0027 ± 0.0002
$ar{p}$	13.	0.0033 ± 0.0002	0.0033 ± 0.0002	0.0033 ± 0.0002
p	100.	0.0026 ± 0.0002	0.0027 ± 0.0002	0.0027 ± 0.0002
$ar{p}$	100.	0.0026 ± 0.0002	0.0026 ± 0.0002	0.0026 ± 0.0002

π^{\pm} hadronic σ on 1mm Al

Particle	p(GeV/c)	$P_{int}^{inel}(LHEP)$	$P_{int}^{inel}(QGSP_BERT)$	$P_{int}^{inel}(FTFP_BERT)$
π^+	1.	0.0026 ± 0.0002	0.0027 ± 0.0002	0.0027 ± 0.0002
π^-	1.	0.0027 ± 0.0002	0.0027 ± 0.0002	0.0027 ± 0.0002
π^+	5.	0.0021 ± 0.0001	0.0022 ± 0.0001	0.0022 ± 0.0001
π^-	5.	0.0022 ± 0.0001	0.0022 ± 0.0001	0.0022 ± 0.0001
π^+	10.	0.0021 ± 0.0001	0.0022 ± 0.0001	0.0022 ± 0.0001
π^-	10.	0.0022 ± 0.0001	0.0022 ± 0.0001	0.0022 ± 0.0001
π^+	13.	0.0021 ± 0.0001	0.0022 ± 0.0001	0.0022 ± 0.0001
π^-	13.	0.0022 ± 0.0001	0.0022 ± 0.0001	0.0022 ± 0.0001
π^+	100.	0.0021 ± 0.0001	0.0021 ± 0.0001	0.0021 ± 0.0001
π^-	100.	0.0022 ± 0.0001	0.0021 ± 0.0001	0.0021 ± 0.0001

Inelastic cross-sections, very similar for all PL studied

K[±] cross-sections, on 1mm Al

Particle	p(GeV/c)	P_{int}^{tot}	P_{int}^{el}	P_{int}^{inel}
K^+	1.	0.0026 ± 0.0002	0.0013 ± 0.0001	0.0013 ± 0.0001
K^-	1.	0.0050 ± 0.0002	0.0019 ± 0.0001	0.0031 ± 0.0002
K^+	5.	0.0018 ± 0.0001	0.0003 ± 0.0001	0.0014 ± 0.0001
K^-	5.	0.0024 ± 0.0002	0.0003 ± 0.0001	0.0020 ± 0.0001
K^+	10.	0.0019 ± 0.0001	0.00028 ± 0.00005	0.0016 ± 0.0001
K^-	10.	0.0023 ± 0.0002	0.00028 ± 0.00005	0.0020 ± 0.0001
K^+	13.	0.0019 ± 0.0001	0.00028 ± 0.00005	0.0016 ± 0.0001
K^-	13.	0.0023 ± 0.0002	0.00026 ± 0.00005	0.0020 ± 0.0001
K^+	100.	0.0021 ± 0.0001	0.00023 ± 0.00005	0.0018 ± 0.0001
K^-	100.	0.0021 ± 0.0001	0.00021 ± 0.00005	0.0019 ± 0.0001

Same cross-sections for all PL studied