Observation of the χ_b states at ATLAS and a Ξ_b^{*0} baryon at CMS FPCP2012, USTC - Hefei, China

Andrew Chisholm, for the ATLAS and CMS Collaborations

University of Birmingham

21st May, 2012

Introduction: What are the χ_b states?

The χ_b represent the spin triplet (S = 1) *P*-wave (L = 1) states of the bottomonium ($b\bar{b}$) spectrum.

A third triplet, the $\chi_b(3P)$ is also expected below the $B\overline{B}$ threshold:

- Theoretical Predictions: Phys. Rev. D 36 3401 (1987), Phys. Rev. D 38 279 (1988), Eur. Phys. J. C. 4 107 (1998)
- Mass centre of gravity expected around 10.525 GeV

Figure: K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

The ATLAS Detector at the LHC

The ATLAS detector is a general purpose particle physics detector designed to study physics at the TeV scale:

Mon Delocitor Te Calorinetor Unud Argon Calorinetor

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

The LHC and ATLAS performed very well throughout 2011:

ATLAS has a diverse physics programme including Higgs Searches, SUSY + Exotics Searches, SM Physics, Heavy Flavour Physics and more! ATLAS collected over 5 fb⁻¹ of data during the 2011 LHC run at $\sqrt{s} = 7$ TeV

Detector Components I

Inner Detector (ID) ($|\eta| < 2.5$)

 Silicon Pixels and Strips (SCT) with Transition Radiation Tracker (TRT)

Liquid Argon EM Calorimeter ($|\eta| < 3.2$)

 Highly granular and longitudinally segmented in 3-4 layers

FPCP2012 Observation of the χ_b and Ξ_b states at the LHC 4 / 34

Detector Components II

Muon Spectrometer (MS) ($|\eta| < 2.7$)

Toroid Magnet, 4 detector technologies, dedicated tracking and trigger chambers

- Barrel: MDT (Tracking) and RPC (Trigger)
- Endcaps: MDT + CSC (Tracking) and TGC (Trigger)

Observation of a new χ_b state in radiative transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$ at ATLAS Phys. Rev. Lett. 108, 152001 (2012) (arXiv:1112.5154 [hep-ex])

Radiative χ_b decays are studied with two simultaneous analyses which exploit different reconstruction methods and detectors:

- Photons reconstructed using the EM calorimeter (denoted unconverted)
- $\gamma \rightarrow e^+e^-$ conversions reconstructed with the Inner Detector (denoted converted)
- Both share a common $\Upsilon \to \mu^+ \mu^-$ selection

The two reconstruction methods have their own advantages and disadvantages. In particular, the minimum $p_T(\gamma)$ threshold (2.5 GeV and 1.0 GeV respectively) determines which radiative decays can be reconstructed:

- ► The unconverted photon analysis is capable of reconstructing $\chi_b \rightarrow \Upsilon(1S) \gamma$ decays alone
- The converted photon analysis is capable of reconstructing both *χ_b* → Υ(1*S*) γ and *χ_b* → Υ(2*S*) γ decays

Data Sample and Trigger Selection

The analysis uses 4.4 fb⁻¹ of *pp* collision data at $\sqrt{s} = 7$ TeV recorded throughout the 2011 LHC run:

Trigger Strategy:

- Events containing radiative χ_b decays are triggered by the di-muon decay $\Upsilon \rightarrow \mu^+ \mu^-$ (the photons are too soft to trigger the event)
- > The trigger records events which contain di-muon pairs or single high p_T muons
- ▶ The majority of events are selected by dedicated $\Upsilon \rightarrow \mu^+ \mu^-$ di-muon triggers (blue shaded histograms)

Common Υ Selection

Selection of $\Upsilon(1,2S)\to \mu^+\mu^-$ candidates is common to both the unconverted and converted photon analyses:

Muon Selection

- ▶ p_T(µ[±]) > 4.0 GeV
- |η(μ[±])| < 2.3
 </p>
- Reconstructed from track in ID combined with MS track
- $\Upsilon
 ightarrow \mu^+ \mu^-$ Selection
 - Oppositely charged di-muon pair
 - $\mu^+\mu^-$ common vertex fit $\chi^2/N_{D.o.F} < 20$
 - $p_T(\mu^+\mu^-) > 12 \text{ GeV}$
 - Rapidity $|y(\mu^+\mu^-)| < 2.0$
 - Both muons associated to same primary pp interaction

 $\frac{\Upsilon \to \mu^+ \mu^- \text{ invariant mass selection}}{\blacktriangleright A - \Upsilon(1S): 9.25 < m(\mu^+ \mu^-) < 9.65 \text{ GeV}}$ $\blacktriangleright B - \Upsilon(2S): 9.80 < m(\mu^+ \mu^-) < 10.10 \text{ GeV}$ FPCP2012 Observation of the χ_b and Ξ_b states at the LHC 8 / 34

Unconverted Photon Analysis

An event containing a candidate $\chi_b \to \Upsilon \gamma$ decay in which the photon is unconverted

Unconverted Photon Selection

EM calorimeter energy deposits not matched to any track are considered as **unconverted** photon candidates:

- $E_T(\gamma) > 2.5 \text{ GeV}$
- ▶ $|\eta(\gamma)| < 2.37$ (Barrel-Endcap transition region $1.37 < |\eta| < 1.52$ excluded)
- "Loose"¹ photon ID selection: Including limits on hadronic leakage and requirements on the EM shower shape (designed to reject backgrounds from narrow jets and π⁰ decays)

Unconverted Photon Pointing Correction

- The polar angle of the photon 3-vector is corrected to point back to $\mu^+\mu^-$ vertex
- ▶ Loose cut of $\chi^2/N_{D.o.F} < 200$ rejects photons not compatible with having originated from the $\mu^+\mu^-$ vertex

- $\chi_b \to \Upsilon(1S) \gamma$ Selection
 - Reconstructed Υ(1S) → μ⁺μ⁻ candidates are associated with corrected unconverted photons to form X_b candidates

¹Described in detail in: Phys. Rev. D 83, 052005 (2011) (arXiv:1012.4389)

Unconverted Photon Result I

The resulting $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-) + m_{\Upsilon(1S)}^{PDG}$ distribution exhibits three peaks:

- Final selection of p_T(µ⁺µ[−]) > 20 GeV chosen to maximise X_b(1P) and X_b(2P) significance irrespective of effect on the third peak
- Statistical significance of third signal is greater than 6σ calculated from a likelihood ratio approach (including systematic variations)

An extended unbinned maximum likelihood fit is performed to the $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-) + m_{\Upsilon(15)}^{PDG}$ distribution to extract an estimate of the $\chi_b(3P)$ mass barycentre:

Fit Model

- **Signal:** Single Gaussian for each $\chi_b(nP)$ peak, each with a free mean value and width
- ► **Background:** Described by $\exp(A \cdot (\Delta M) + B \cdot (\Delta M)^{-2})$ where A and B are free parameters

Assigned Systematic Uncertainties

- Unconverted photon energy scale uncertainty (estimated at ±2% of the ΔM position)
- Modelling of the background distribution (estimated from refitting with various alternative models)

	Fitted Mass (MeV)
$\chi_b(1P)$	$9910\pm 6~(ext{stat.})\pm 11~(ext{syst.})$
$\chi_b(2P)$	$10246\pm5~(ext{stat.})\pm18~(ext{syst.})$
$\chi_b(3P)$	10541 ± 11 (stat.) \pm 30 (syst.)

The statistical significance of third signal remains greater than 6σ with each systematic variation

Converted Photon Analysis

An event containing a candidate $\chi_b \to \Upsilon \gamma$ decay in which the photon has converted ($\gamma \to e^+e^-$)

FPCP2012

Converted Photon Selection I

Reconstructing photons from e^+e^- conversions in the Inner Detector (ID) offers improved resolution and access to softer photons:

- Reconstructed from ID measurements *alone* (no EM cluster matching)
- Minimum track momentum p_T(e[±]) > 500 MeV
- ▶ $p_T(\gamma) > 1$ GeV
- |η(γ)| < 2.3
 </p>
- Only two-track conversions are retained
- 4 silicon detector hits required for each electron track

- Candidate electron tracks must not already be selected as di-muon candidate tracks
- Radius of conversion vertex R > 40 mm to reduce background contamination

Converted Photon Selection II

The 3D impact parameter of the converted photon with respect to the di-muon vertex, a_0 , is a powerful variable which can be used to select photons associated with the di-muon vertex:

▶ a₀ < 2 mm is required to reject photon combinatorics not compatible with having originated from the di-muon vertex

• The χ^2 probability of the conversion vertex fit is required to be greater than 0.01

Both the $\chi_b \to \Upsilon(1S) \gamma$ and $\chi_b \to \Upsilon(2S) \gamma$ distributions are shown together:

- Statistical significance of the third signal (around 10.5 GeV) is greater than 6σ calculated from a likelihood ratio approach (including systematic variations)
- Data points are not corrected for energy losses due to Bremsstrahlung (taken into account in fit)

Under the interpretation of the third signal as $\chi_b(3P)$, the experimental mass barycentre is measured from a simultaneous unbinned extended maximum likelihood fit to both the $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ mass distributions:

 The simultaneous fit allows a number of parameters to be shared across the two samples to help constrain the model, with additional constraints applied from the known masses (PDG)

Fit Model:

- As the J = 0 branching fraction is significantly smaller than for J = 1, 2 its contribution can be neglected
- ► The \(\chi_b(nP)\) state is therefore modelled by two Crystal Ball (CB) functions to describe the low-mass Bremsstrahlung tail
- ▶ For n = 1, 2, the masses of the individual J=1,2 states are fixed to the known PDG values, and for n=3 the hyperfine splitting is fixed to the theoretically predicted value of 12 MeV
- ▶ The relative normalisations of the J=1 and J=2 components are fixed to be equal
- A free parameter λ , common to all the peaks, accounts for additional energy losses and appears in the form $\overline{\Delta m} \cdot \lambda$
- The background is modelled by $(\Delta m q_0)^{\alpha} \cdot \exp \{(\Delta m q_0) \cdot \beta\}$

Converted Photon Result II

Assigned Systematic Uncertainties:

- ▶ Vary relative J = 1, 2 signal normalisation by ± 0.25 (or left free in fit): ± 5 MeV
- Alternative signal and background models: ±5 MeV
- Decoupled fits to the $\Upsilon(1S)$ and $\Upsilon(2S)$ distributions: ± 5 MeV
- Individually releasing constraints to the PDG values for the $\chi_b(1P)$ and $\chi_b(2P)$ masses: ± 3 MeV

Fit Result:

- Energy scale factor $\lambda = 0.961 \pm 0.003$
- Experimental mass barycentre for $\chi_b(3P)$ signal determined by fit to converted photon candidates **alone** is:

$$\overline{m}_3 = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.)}$$
 GeV

Summary

- The known χ_b(1, 2P) states are observed in radiative decays to Υ(1S) γ
- A new structure at a higher mass is also observed in the $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ spectra
- The interpretation of this as the \$\chi_b(3P)\$ states is consistent with theoretical predictions
- The mass of the structure is measured with two separate analyses using converted and unconverted photons with compatible results
- The mass measurement with smaller systematic uncertainties from the converted photon analysis is chosen to represent the final measurement

Observed bottomonium radiative decays in ATLAS, L = 4.4 fb¹

FPCP2012

Confirmation by DØ

Shortly after the publication of the ATLAS result, the $D\emptyset$ collaboration confirmed the observation of a new structure in the $\Upsilon(1S)\gamma$ mass spectrum:

Observation of a narrow state decaying into $\Upsilon(1S) + \gamma$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

Submitted to Phys. Rev. D - Rapid Communications arXiv:1203.6034 [hep-ex]

"...a third peak is observed at a mass consistent with the new state observed by the ATLAS collaboration."

 $\overline{m}_3 = 10.551 \pm 0.014 \text{ (stat.)} \pm 0.017 \text{ (syst.) GeV}$

FPCP2012

Observation of the χ_b and Ξ_b states at the LHC 20 / 34

Observation of a new Ξ_b^{*0} baryon at CMS

The CMS Detector

"Observation of an excited Ξ_b baryon" - The CMS Collaboration

Submitted to Phys. Rev. Lett. (arXiv:1204.5955 [hep-ex])

FPCP2012

Ξ_b^- (+ C.C.) Reconstruction

Data recorded from the 2011 LHC run at $\sqrt{s} = 7$ TeV corresponding to 5.3 fb⁻¹

Event containing a Ξ_b^{*0} candidate

FPCP2012

 Ξ_{b}^{-} Reconstruction

Cut & count optimizing FOM $S/\sqrt{S+B}$ Only the Ξ_{h} selection is optimized (not $\Xi_{\rm b}^*$ signal) Estimate background from sidebands p^+ Vary 30 variables iteratively: π_{Λ} • $p_{T}(p), p_{T}(\pi)$ •Impact parameter 3D I/ σ_{I} Probability vertex fit J/ψ Probability of vertex fit Displacement significance J/ψΞ •Flight significance Λ in xy •Flight significance J/ψ in xy Proper decay time $\cdot p_T(\Xi_h)$ in barrel/endcap π_{Ξ} Mass window Flight significance 3D(Ξ_b PV) μ^+ J/ψ Ξ_{k} • $p_{\tau}(\mu)$ for barrel/endcap • $p_{T}(J/\psi), \eta(J/\psi)$ Mass window

Next: Combine Ξ_{h}^{-} candidate with a track from the primary interaction vertex...

FPCP2012 Observation of the χ_b and Ξ_b states at the LHC 27 / 34

Background expected to be dominated by combinations of Ξ_b^- candidates and prompt tracks:

- Extract randomly p(Ξ_b⁻), p(π), α (angle between Ξ_b⁻ and π) from their same-sign distributions 10⁸ times
- Due to low statistical precision of the p(Ξ_b⁻) distribution, it is fit with an analytical distribution
- Calculate \(\frac{\pi}{b}\)^{*0} background candidate mass from the three variables to get Q distribution
- ► Fit the distribution with f(Q) = Q^{a1} * (exp(-a₂Q) + exp(-a₃Q) + exp(-a₄Q)) (red dashed line)
- The p(Ξ_b⁻) distribution is fitted to several functions to estimate the systematic uncertainty on the background function parameters a_i
- This uncertainty is then propagated into the significance calculation

 Ξ_b^{*0} Result

Combine Ξ_b^- candidate (mass within 2.5 σ of fitted mean) with track of opposite sign with at least 2 pixel (5 tracker) hits and 3D distance to PV within $3\sigma_{PV}$:

Voigtian (σ =1.9±0.1 MeV from MC) +combinatorial background

Significance: 6.9 σ Width: Γ = 2.1±1.7 MeV (Theory: 0.93 MeV) Mean: Q = 14.84 + 0.74 MeV

Simulation \rightarrow no excess due to other b-hadrons (B⁰,B⁺,B_s,\Lambda_b)

Systematic Uncertainties

- different background models
- differences data simulation

→ m = 5945.0 ± 2.7 _{PDG} ± 0.7 _{stat} ± 0.3 _{syst} MeV

.. the first particle discovered by CMS, and the first baryon at the LHC

Cross Checks

▶ No excess seen from Ξ_b^- candidates from the mass distribution side-bands

• No excess seen in inclusive $\Lambda_b \rightarrow J/\psi X$ MC samples

Additionally, no events are seen in the Q distribution from MC for other B hadron species: B^+ , B^0 , B_s

Conclusion

The ATLAS experiment has observed a new structure in the $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ mass spectra at a mass of around 10.53 GeV:

- The observed structure is compatible with theoretical predictions for the $\chi_b(3P)$ system
- Under this interpretation, the experimental mass barycentre is measured to be:

 $\overline{m}_3 = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.) GeV}$

 Further measurements by ATLAS and other experiments will help to shed more light on the nature of the new state(s)

The CMS experiment has observed a new neutral Ξ_b^* baryon:

The mass of the new baryon is measured to be:

$$m_{\Xi_{h}^{*0}} = 5945.0 \pm 0.7 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \pm 2.7 (PDG) \text{ MeV}$$

Supplementary Material

CMS Ξ_b^{*0} : Ξ_b^- Selection Algorithm

CMS Ξ_b^{*0} : Systematic uncertainty on measurement of Ξ_b^{*0} fitted Q value

The systematic uncertainty on the measured \mathbf{Q} value is first evaluated through a detailed MC simulation:

- $\blacktriangleright\,$ The reconstructed Q value in MC is measured to be 0.23 ± 0.10 MeV above the generated value
- ▶ This is consistent with the observation that the measured Λ^0 and Ξ^- masses are above their world-averages by 0.16 ± 0.05 and 0.18 ± 0.14 MeV respectively
- The sum in quadrature of the shift and its statistical uncertainty, 0.25 MeV, is considered as the systematic uncertainty due to this effect

The systematic uncertainty is also estimated from variations in the fit model:

As an extreme fitting scenario, a flat function is used for the background shape, leading to a Q value 0.12 MeV higher than the value measured

Adding these two uncertainties in quadrature gives a total Q systematic uncertainty of 0.28 MeV