

SPL session summary

- Talks & speakers
- Plans for proton linacs at CERN
- Lessons on superconducting proton linacs
- Synergies with other projects

Talks and speakers

Thursday 04 October 2007

9h00 - 12h30

	CERN plans	Lessons on sc linacs	Synergies with other projects
Linac-4 Maurizio Vretenar (CERN)	X		
Low Power SPL Frank Gerigk (CERN)	X		
SNS experience with a high-energy superconducting proton linac John Galambos (ORNL)		X	X
ESS plans and synergies with CERN Klaus Bongardt (FZ Juelich)			X
Development for laser-based H- stripping at SNS John Galambos (ORNL)			X
Reliability of a s.c. linac from the ADS perspective Paolo Pierini (INFN Milano)		X	X

Plans for proton linacs at CERN

Motivation

upgrade of the LHC proton injector chain:

- remove reliability concerns in the chain,
- provide a beam suitable for all foreseen LHC upgrade scenarios, provide an injector that can be upgraded to supply protons for:
- neutrino physics,
- Eurisol/ISOLDE upgrades,
- performance improvement for SPS fixed target physics,
- ⇒ see R. Garoby (Tuesday, 9:00 this workshop)

Linac4 and the new injectors

 1^{st} stage: Linac4 injects into the old PSB \rightarrow increased brightness for LHC, more beam to ISOLDE, increased reliability.

 2^{nd} stage: Linac4 into SPL (and PS2) \rightarrow renewed and improved LHC injection chain.

Linac4 parameters

Ion species	H-		
Output Energy	160	MeV	
Bunch Frequency	352.2	MHz	_
Max. Rep. Rate	2	Hz	x
Beam Pulse Length	400	μs	
Max. Beam Duty Cycle	80.0	%	
Chopper Beam-on Factor	62	%	
Chopping scheme:			
222 tran	emitted /	133 Am	nnty hi

H- particles + higher injection energy (160/50 MeV, factor 2 in $\beta\gamma^2$) \rightarrow more accumulated particles in the PSB.

Will re-use 352 MHz LEP RF components: klystrons, waveguides, circulators.

222 transmitted /133 empty buckets

Source current	80	mA
RFQ output current	70	mA
Linac pulse current	40	mA
N. particles per pulse	1.0	× 10 ¹⁴
Transverse emittance	0.4	π mm mrad

2 operating modes: low duty for LHC, high duty for highpower SPL (neutrino or RIB physics) at a later stage.

➤ Structures and klystrons dimensioned for 50 Hz
➤ Power supplies and electronics dimensioned for 2 Hz.

Max. rep. rate for accelerating structures 50 Hz

Linac4 Layout

Linac4 Master Plan

SPL block diagram

- Linac4 will inject at 160 MeV into the PSB,
- during construction and commissioning of the LPSPL, Linac4 will continue as PSB injector and provide beam to commission SPL/PS2,
- when PS2 is running, the "switching" area will be replaced with a 160-180 MeV normal conducting linac.

Linac4 (160 MeV) SC-linac (4/5 GeV) 3 MeV 50 MeV 102 MeV 180 MeV 643 MeV 4/5 GeV H source RFQ chopper DTL CCDTL PIMS β =0.65 β =1.0 \rightarrow 704.4 MHz

	SPL type	full-power	low-power
Ş	E [GeV]	5.0	4.0
0	P _{beam} [MW]	>4	0.192
t	f _{rep} [Hz]	50	2
9	l _{average} [mA]	40	20
parameters	t _{pulse} [ms]	0.4	1.2
D	n _{protons/pulse} [10 ¹⁴]	1.0	1.5
3	Max. filling time PS2 [ms]	0.6	1.2
26	n _{klystron} (Linac4 + SPL)	19+53	19+24
	NSC cavities	234	194
2 .	inst. P _{RF(peak)} [MW]	220	100
mair	P _{facility} [MW]	38.5	4.5
T	P _{cryo, electric} [MW]	4.5	1.5
_	T _{cryo} [K]	2	2
	length [m]	534	459

Preliminary tunnel layout

To do list ...

- finalise the siting exercise: feasibility study and civil engineering cost estimate for the end of 2007,
- FP7 bid for the construction of a full cryo-module with 2 cavities (+ 6 dummies?) in collaboration with CEA, INFN (?), DESY, IN2P3,
- FP7 bid for a high-power RF test stand at CERN, making use of the existing infrastructure in SM18 and equipping it for 704 MHz (5 MW klystron, RF distribution, modulator, etc),
- ... and of course: high-duty cycle H- source, SC quadrupoles, detailed beam dynamics, radiation protection, etc
- elaborate a technical design report including costs for a project decision in 2011/12.

Lessons on superconducting proton linacs

SNS Superconducting Linac

- Designed an built by Jefferson Laboratory
- SCL accelerates beam from 186 to 1000 MeV
- SCL consists of 81 cavities in 23 cryomodules
- Two cavities geometries are used to cover broad range in particle velocities
- Cavities are operated at 2.1 K with He supplied by Cryogenic Plant

Layout of Linac RF with NC and SRF Modules

- •SCL has 81 independently powered cavities
 - Many parts to keep running
 - Many values to set w.r.t. the beam

Cavity Limitations III - Collective behavior

(clear indication at higher rep. rate)

- Amplitude and phase setpoints of one cavity affect heating at other places
- Need to find setpoints that are friendly to neighboring cavities

Example:

CM13 individual limits 19.5, 15, 17, 14.5 MV/m

CM13 collective limits at 60 Hz; 14.5, 15, 15, 10.5 MV/m

SCL Sub-component Concern I – HOM Coupler

- HOM couplers added as insurance even though probability that they are needed was very low
- HOM feed-through is susceptible to damage (FE, MP interactions + fundamental mode coupling)

- Some cavities are limited by coupling of fundamental power coupling (stray field + filter not set properly).
- We would not include HOM filters if we were starting over

Accelerating gradients and statistics

SCL Cavity Phase Setup Times are Getting Shorter

- August 2005: 48 hrs
 - □ 560 MeV, initial run, > 20 cavities off
- Dec. 2005: 101 hrs
 - 925 MeV, turned on all planned cavities
- July 2006: 57 hrs
 - 855 MeV
- Oct 2006: 30 hrs
 - 905 MeV, used established cavity turn on procedure

Power cavities on sequentially

- Jan. 2007: 6 hrs
 - 905 MeV, beam blanking used, which allowed all cavities to be on during the tuning process
- The procedures used to setup the superconducting linac have matured, and the setup time is now minimal
- Still exists a need for fast recovery from changes in the SCL setup

Beam Loss / Activation

- SCL has a large aperture and should easily transport beam
- This past summer we observed higher than expected activation levels in some warm sections (with quadrupoles) between the cryomodules – not expected based on loss monitor levels
- Not well understood, possibly longitudinal loss
 - Purposeful detuning of the warm linac results in loss patterns with similar shape as the activation patterns
 - "Dark current" from the ion source?

Summary from SNS...

- We have been operating the SNS SCL for ~ 2 years with beam
- Generally it is quite forgiving
 - Run with many cavities off / entire cryo-module removed / gradients far from design
 - Need tools to adapt to rapidly changing conditions
- Cavities are like individuals each has it's own set of difficulties
 / strengths

Fifth International Workshop on the Utilisation and Reliability of High Power Proton Accelerators

Mol, Belgium, 6-9 May 2007

Reliability of a s.c. linac from the ADS perspective

Revised version

Paolo Pierini, INFN Milano LASA

with many contribution from DM1/WP1.3-Accelerator (IPNO/CEA/IBA/IAP/INFN) and ENEA

Overall EUROTRANS Goals

- Work towards a European Transmutation Demonstration (ETD) in a step-wise manner
- Advanced design of a 50 to 100 MWth eXperimental facility demonstrating the technical feasibility of Transmutation in an Accelerator Driven System (XT-ADS)
 - realization in a short-term, say about 10 years
- Generic conceptual design (several 100 MWth) of a modular
 European Facility for Industrial Transmutation (EFIT)
 - realisation in the long-term

Accelerator workpackage

- Accelerator design performed in the PDS-XADS program
 - Choice of superconducting linac
 - Modular: same concept for Prototype and Industrial scale

Design issues

 Often many "reliability" problems can be truly identified as component design issues (weak design) or improper operation (above rated values)

SPL session

- e.g. very successful SNS operation
 - concerns due to components providing non critical functionalities but with failure modes with drastic consequences

Parts count

With a "parts count" estimate we come to an obviously short MTBF ~
 30 h

Split into:

□ Injector: 7.7%

□ Spoke linac: 45.4%

☐ High energy linac: 43.5%

■ Beam line: 0.6%

□ Support systems: 2.7%

- Of course, the highest number of components is in the linac (nearly 100 RF units each, with each RF units having an MTBF of 5700 h...
- That already suggests where to implement strategies for redundancy and fault tolerance implementation

Final Scheme – Split RF Systems

- Keep 2 sources
- Split RF Units
 - Out of tunnel
 - Immediate repair
 - Any 2 can fail/section
 - In tunnel
 - 1 redundant/section
 - Repair @ system failure

System MTBF	550 hours
Number of failures	3.8
Steady State Availability	97.9 %

Increasing only MTBFx2 of support systems

System MTBF	720 hours
Number of failures	2.80
Steady State Availability	99.1 %

Conclusions (from ADS perspective)

- Even in the absence of a validated reliability database for accelerator components the standard reliability analysis procedures indicate where design effort should be concentrated:
 - providing large degree of fault tolerance whenever possible
 - Meaning: fault detection, isolation and correction procedures
 - providing additional design effort aimed at longer MTBF only in critical components
- Study here is an illustration of how, with minimal "tweaking" of the component MTBF, a simple model for an accelerator system can be altered (adding redundancy and fault tolerance capabilities) in order to meet the ADS goals

Synergies with other projects

Full ESS Facility: 5 MW SP & 5 MW LP target

Size of 850 m x 1150 m

ESS facility consists of a 10 MW, H- accelerator capable of delivering 5 MW, 1.4 μs pulses to a short pulse (SP) target at 50 Hz & 5 MW, 2 ms pulses to a long pulse (LP) target at 16 2/3 Hz. Both targets have 22 beamlines & liquid Hg is choosen as material.

Two stacked 1.334 GeV accumulator rings

 Chopping the incaming beam at 2.5 MeV helps minimizing the ring beam losses and reduces radiation damage.

Transverse & longitudinal profiles of injected H⁻ beam are cleaned by stripping foils in large 180 ° achromatic bending section.

ESS SC Reference Linac: 114 mA H beam, 1.334 GeV

• Short description: 2 x 65 mA H⁻ beams are combined together at 20 MeV in a funnel section. High frequency Superconducting (SC) cavities accelerate the beam from 400 MeV on. Moderate gradient of 10 MV/m in SC linac is used to keep RF power couplers within reasonable limits. After reducing energy spread by bunch rotation (BR) to ± 2 MeV, halo scraping in large 180 ° achromatic section.

ESS 2007, Changes in European Political Landscape

- ESFRI Road Map 2006 (modeled after DoE 20-year facilities outlook) + strong desire of European
 Commission to implement this. ESS is high on this 35-project list across all fields of science as one very mature projects.
- 2. UK Neutron Review March 2006: UK should participate in European next generation project. Decision on feasibility study into 1 MW upgrade of ISIS postponed until European efforts fail.
- 3. Several very serious site candidates backed by national governments with money; see next slide.

ESS 2007, Synergies with CERN SPL linac

- Both high currents ESS linacs, either 114 mA H⁻ one or 150 mA H⁺ one uses pulsed high ß SC cyromodules from 400 MeV. Timely construction of choosen ESS linac requires complete cyromodule as full power test-bed of pulsed SC cavities. *Common interest* with pulsed CERN SPL linac is evident.
- Depending on choosen ESS upgrade scenario, also low energy chopping line is required, maybe even for 150 mA H⁺ linac. If a dedicated low power target station, like ISIS 2. target or planned SNS LW target, becames of interest for ESS upgrade, then beam intensity of 1 ms pulse can by 50 % reduced in low energy chopping line.

Common interest with pulsed CERN SPL linac is evident.

Laser H- ion stripping: Three-Step Stripping Scheme

Main problem -beam energy spread

$$f(1- > 3) = f_{laser} \frac{\stackrel{\downarrow}{E}}{E0} (1 + \frac{v_{beam}}{c} \cos(\alpha))$$

Our team developed a novel approach for laser-stripping which uses a three-step method employing a narrowband laser

aser Beam

Step 1: Lorentz **Stripping**

$$H^{-} \rightarrow H^{0} + e^{-}$$

Step 2: Laser Excitation

$$H^{0}$$
 (n=1) + $\gamma \rightarrow H^{0*}$ (n=3) $H^{0*} \rightarrow p + e^{-}$

Step 3: Lorentz Stripping

$$H^{0*} \rightarrow p + e$$

Four Sets of Experiments Description

- 1st experimental run (December 2005)-no stripping seen. We wish we could get the answer to this puzzle
- 2nd experimental run preparation laser moved to the table. It tripled the laser beam power
- Laser beam incident angle and beam parameters (energy of the ions) were more carefully measured
- Second run (March 2006) led to a first success (about 50% of stripping)
- Third run (August 2006) –successful (around 85% of stripping achieved)
- Forth (final) run (October 2006) 90% stripping achieved, additional effects studied

Summary and prospects of Laser H- ion stripping

- 1) POP experiment was successful;
- 2) Intermediate experiment (high efficiency up to 100 μs pulse stripping) on planning stage;
- 3) Necessary lasers can be built (we have quotes from some laser companies);
- 4) Preliminary ion optics investigation is done the results are encouraging;
- 5) Beam recycling demonstration is now first priority.

After two options of beam recycling are explored, we start designing the stripping device for the long pulse stripping.