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What to keep in mind

� QCD is an asymptotically-free QFT, supported by hadron

spectroscopy and high-energy experiments

� Colour gives QCD amplitudes peculiar features

� Perturbative techniques can be used, but are not sufficient:

long-distance effects (hadrons) always contribute to

physical observables

� To deal with them, one must introduce (at least)

hadron-parton duality, infrared safety, factorization theorems



Hadron-parton duality

Inclusive hadronic observables can be expressed in terms of quark and

gluon degrees of freedom. More precisely
∫

dsw(s)Ohadron(s) =

∫
dsw(s)Oparton(s)

with w(s) a weight function of some energy scale s, peaked at s = s0

(s0 is a characteristic large scale of the process). In practice one always

uses local hadron-parton duality, for which

w(s) = δ(s − s0)

In other words: compute your observables in terms of quarks and gluons,
and assume the results would be the same if you were able to perform a
hadron-level computation (e.g., jets, with s0 = pT (jet))



Infrared safety

An observable O is infrared safe if the functions On(k1, · · · , kn) that define

it in terms of parton momenta have the following properties:

On(k1, · · · , ki, · · · , kn)
Ei→0−→ On−1(k1, · · · , kn)

On(k1, · · · , ki, · · · , kj , · · · , kn)
ki‖kj−→ On−1(k1, · · · , ki + kj , · · · , kn)

which can be iterated as many times as necessary

Translation: an observable must be insensitive to emissions of soft partons,

or to collinear splittings of partons

• IR-safe observables: thrust, pT of single-inclusive and hardest jet,...

• IR-unsafe observables: number of gluon jets, y of the hardest jet,...



Factorization theorems

dσH1H2
(P1, P2) =

∑

ij

∫
dx1dx2f

(H1)
i (x1, µ

2)f
(H2)
j (x2, µ

2)

× dσ̂ij(x1P1, x2P2; αS(µ2), µ2)

dσeH(P ) =
∑

i

∫
dxf

(H)
i (x, µ2)dσ̂ei(xP ; αS(µ2), µ2)

I The partonic cross sections dσ̂ij , dσ̂ei are computable in perturbation theory

I The PDFs fi must be extracted from data

Intuitive physical picture (Born & Oppenheimer): phenomena at
different time scales (hadronization and hard scattering) factorize

Factorization theorems are, apart from the case of DIS, formally unproved.
They are however largely accepted, and stand countless tests



dσeH(P ) =
∑

i

∫
dxf

(H)
i (x, µ2)dσ̂ei(xP ; αS(µ2), µ2)

=
i

i

The timescale 1/M for binding the hadron is much larger than the
timescale 1/Q for the hard scattering =⇒ incoherent scatterings

• µ arbitrarily separates hard from soft scales

• In practice: pull out a parton with a random fraction z of the hadron momentum,

scatter it with the photon. Ignore the hadron remnants

• There are “leakages”, ie corrections of type (1/Q)p

• Intuitively clear that f doesn’t depend on the nature of hard scattering



Final-state version (fragmentation)

The idea: partons produced in the hard collision move fast away from each

other. Each of them will eventually pick up (at large pT ) the missing colour

and flavour from the vacuum to create an observable hadron

Example: b hadroproduction. The single-inclusive pT spectrum of the

b-flavoured hadron is:

dσ̂ij→Hb

dpT (Hb)
=

∫
dz

z
Db→Hb(z, ε)

dσ̂ij→b

dpT(b)
, pT (Hb) = zpT (b)

� dσ̂ij→Hb
is convoluted with the PDFs to get H1H2 → Hb

� The fragmentation function DQ→HQ is analogous to the PDFs: it

cannot be computed in pQCD, but is universal

� One tipically uses e+e− to fit the parameter(s) ε; the functional form in

z must be guessed (Peterson, Kartvelishvili,...)



PERTURBATION THEORY

AT WORK

e+e− −→ hadrons



Let’s see in practice the way in which hadron-parton duality, infrared safety

and factorization theorems work

The simplest case is the total hadronic rate in e+e− collisions

I Hadron-parton duality =⇒ compute the total partonic rate

I Total rate is (trivially) infrared safe

Remember that it’s actually more convenient to compute:

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= N

[(
2

3

)2

+

(
−1

3

)2

+

(
−1

3

)2

+ . . .

]

Is this result systematically improvable, in the sense of perturbation

theory? This is what we expect from the βQCD computation



Perturbative corrections to R

At the first order beyond Born (i.e. next-to-leading order, NLO), there are two classes

of corrections (as in QED)

I Real contribution: all Feynman diagrams with an

additional (wrt Born) parton in the final state

I Virtual contribution: all one-loop Feynman dia-

grams that can be obtained from Born diagrams

R and V don’t interfere: diagrams have different number of legs

real = gSAR virtual = g2
S
AV

|ANLO|2 = |ALO|2 + αS

(
|AR|2 + 2<(ALOA?

V )
)

+ O(α2
S
)



Real contribution

xi =
2pi · Q

Q2
=

2Ei√
s

p1 + p2 + p3 = Q =⇒
x1 + x2 + x3 = 2

Phase space and matrix element:

dΦqq̄g =
s

32(2π)5
δ(2 − x1 − x2 − x3)dx1dx2dx3dΩ

|AR|2 = |ALO|2 CF

αS

2π

x2
1 + x2

2

(1 − x1)(1 − x2)

which lead to

σR =

∫
dΦqq̄g |AR|2 = ∞

It is instructive to see why this is divergent



1 − x1 = x2
E3√

s
(1 − cos θ23) =

(p2 + p3)
2

Q2

1 − x2 = x1
E3√

s
(1 − cos θ13) =

(p1 + p3)
2

Q2

The divergences of the matrix elements are at

x1 −→ 1 & x2 −→ 1 ⇐⇒ E3 −→ 0 soft

x1 −→ 1 ⇐⇒ θ23 −→ 0 collinear

x2 −→ 1 ⇐⇒ θ13 −→ 0 collinear

This clarifies that the divergences are not physical: we are pushing pQCD beyond its

range of applicability, since parton energies or parton-pair invariant masses are

comparable to hadron masses =⇒ confinement effects can’t be neglected

In other words: we are trying to resolve partons in a regime where the concept of parton

is not particularly meaningful – s0 is not large

Go home and throw hadron-parton duality (and pQCD) in the bin?



Not yet: what the previous computation tells us is that the cross section for

the production of qq̄g is not a meaningful quantity in perturbation theory

But this cross section is just one of the contributions to e+e− −→ hadrons

at O(αS) – we still have to consider the virtual contribution

So before throwing everything away, we have to prove that soft/collinear

emissions are dominant also after adding virtual corrections

Note that what we’ve got is not peculiar of QCD: you get the same if you
compute µ+µ−γ production in QED



Virtual contribution

xi =
2pi · Q

Q2
=

2Ei√
s

p1 + p2 = Q =⇒
x1 = 1, x2 = 1

One can easily see that

σV =

∫
dΦqq̄<(ALOA?

V ) = −∞

I Physical meaning: we are trying to compute the probability of having

exactly two quarks in the final state

I As in QED, this quantity diverges order-by-order in PT. The result

to all orders, however, is not the same as in QED, owing to the different

behaviour of the running coupling



σR + σV = ∞−∞ = ?



σR + σV = ∞−∞ = ?

! Regularize R and V contributions before summing them −→ in QCD,
this usually means computing the integrals in d = 4 − 2ε dimensions

∫ 1 dx

1 − x
= − log(0)

regularization−→
∫ 1 dx(1 − x)−2ε

1 − x
= − 1

2ε



σR + σV = ∞−∞ = ?

! Regularize R and V contributions before summing them −→ in QCD,
this usually means computing the integrals in d = 4 − 2ε dimensions

∫ 1 dx

1 − x
= − log(0)

regularization−→
∫ 1 dx(1 − x)−2ε

1 − x
= − 1

2ε

=⇒
σR = σLOCF

αS

2π

(
2

ε2
+

3

ε
+

19

2
− π2

)
+ O(ε)

σV = σLOCF

αS

2π

(
− 2

ε2
− 3

ε
− 8 + π2

)
+ O(ε)

lim
ε→0

(σR + σV ) =
αS

π
σLO

The singularities are gone! So we can obtain

R = N
∑

f

Q2
f

(
1 +

αS

π

)
+ O(α2

S
)

This is a small correction (< 5%), and improves the comparison to data –
we have proven that the total rate is insensitive to soft/collinear emissions



Physical meaning: soft/collinear real configurations are kinematically
degenerate with virtual configurations. Thus, it looks like finite
quantities are obtained by summing over degenerate (ie non-resolvable)
partonic configurations

This is in fact true, and true to all orders:

Kinoshita-Lee-Nauenberg (KLN) theorem: in the
computation of inclusive (enough) quantities, infrared
divergences cancel, and the result is finite

And this can indeed be checked by explicit computations −→



R = RLO

[
1 +

αS

π
+ 1.411

(αS

π

)2

− 12.8
(αS

π

)3
]

+ O(α4
S
)

The new terms improve further the agreement with data

This is a huge success! Keep in mind we have used several highly non

trivial ingredients

• Asymptotic freedom

• Hadron-parton duality

• Infrared safety

and we have also verified that the KLN theorem works



What to take home

� When considering perturbative corrections, IR divergences

appear

� Certain observables are finite, ie insensitive to the IR sector.

For this to happen, real and virtual contributions to the

perturbative corrections must both be considered at the

NLO

� Perturbative corrections are larger than in QED, but still

under control; a pQCD program makes sense...

� ... but one always needs hadron-parton duality, infrared

safety, factorization theorems (large distance unavoidable)



The distinction between contributions of real and virtual origin

is simplistic, since it stems from an NLO picture

Beyond NLO, one can have mixed cases

−→



LO
∣∣∣A(0)

qq̄′

∣∣∣
2

NLO
∣∣∣A(0)

qq̄′

∣∣∣
2

, <(A(0)
qq̄′A(1)?

qq̄′ )

NNLO

∣∣∣A(0)
qq̄′

∣∣∣
2

, <(A(0)
qq̄′A(1)?

qq̄′ ),

<(A(0)
qq̄′A(2)?

qq̄′ ),
∣∣∣A(1)

qq̄′

∣∣∣
2

and so forth...



It is clear that these computations grow rapidly in complexity. For

non-trivial observables, analytical results cannot be obtained.

How, then, can one check KLN cancellation without encountering

numerical instabilities?

The key point is that singularities must arise from soft and/or collinear

(collectively called unresolved) configurations. One must therefore study

the behaviour of the contribution due to n + m partons:

dσ(n+m) ∼ On+mM(n+m)dφn+m

when m of these become unresolved. One finds that

On+m −→ On

M(n+m) −→ M(n)K(m)

dφn+m −→ dφndφm



The conditions:

On+m −→ On , dφn+m −→ dφndφm

are IR safety, and kinematic factorization (intuitively easy to grasp, and not difficult

to prove formally). One then follows the logic:
∫

OnM(n)dφn difficult, finite =⇒ numerical

∫
K(m)dφm “easy′′, divergent =⇒ analytical

So the problem of determining the divergences (or the leading behaviour of

an observable) largely boils down to proving:

M(n+m) −→ M(n)K(m)

Let’s consider the simplest cases: collinear and soft limits at the NLO



Collinear limit

Use the following (Sudakov) parametrization of momenta
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b

c

a

kb = zka + kT + ζbn

kc = (1 − z)ka − kT + ζcn

k2
b = 0 ⇒ ζb = − k2

T

2zn · ka

k2
c = 0 ⇒ ζc = − k2

T

2(1 − z)n · ka

The collinear limit is kT → 0. Hence, one keeps only the dominant
terms in 1/kT in the matrix elements. By direct computation:

M(n+1) =
g2

kb · kc

(
CF

1 + z2

1 − z

)
M(n) + O

(
1√
k2

T

)

Note that k2
T
∼ kb · kc



As predicted by the general formula, the residue of the divergence is the

Born (which depends only on the momenta of the resolved partons), times a simple

kernel. At the NLO, one has the following cases

q → q(z)g(1 − z) =⇒ Pqq(z) = CF

1 + z2

1 − z

g → q(z)q̄(1 − z) =⇒ Pqg(z) = TR

(
z2 + (1 − z)2

)

q → g(z)q(1 − z) =⇒ Pgq(z) = CF

1 + (1 − z)2

z
= Pqq(1 − z)

g → g(z)g(1 − z) =⇒ Pgg(z) = CA

(
z

1 − z
+

1 − z

z
+ z(1 − z)

)

CF =
4

3
, CA = 3 , TR =

1

2

called the (unsubtracted) Altarelli-Parisi splitting kernels



History of AP kernels

Pab =
N∑

i=0

(αS

4π

)i

P
(i)
ab

I P
(0)
ab : Altarelli, Parisi (1977) (those just shown)

I P
(1)
ab : Curci, Furmanski, Petronzio (1980)

I P
(2)
ab : Moch, Vermaseren, Vogt (2004)

The calculation of P
(2)
ab is the toughest ever performed in perturbative QCD,

with 106 lines of dedicated algebraic code, and 20 man-year of work

• One loop =⇒ 18 Feynman diagrams

• Two loops =⇒ 350 Feynman diagrams

• Three loops =⇒ 9607 Feynman diagrams



Note:

Pqq(z)
z→1−→ CF

2

1 − z
−→ ∞ Pgg(z)

z→1−→ CA

2

1 − z
−→ ∞

I This is the soft singularity

I If two partons are collinear, nothing prevents them to also become soft

I Does this imply that the collinear residue is able to describe soft

singularities as well?

No!
(Technically, the Sudakov parametrization of momenta adopted before is not suited to

study the soft limit, since in this limit both kT → 0 and z → 1)



Soft limit

In the soft limit, one just rescales the soft momentum

k −→ λk

and then keeps only the most singular terms in 1/λ. One obtains

M(n+1) =
1

2
g2
∑

ij

ki · kj

(ki · k)(kj · k)
M(n)

ij + less singular

The kinematic factor in front of the Born cross section is known in QED:
it’s the eikonal factor. Note that, in the c.m. frame of the system ki + kj ,
we have

ki ·kj

(ki ·k)(kj ·k)
∝ 1

E2

1

1 − cos2 θ

The eikonal therefore has the leading soft singularity (which is obvious by
construction), and also the collinear singularities wrt to the partons from
which the gluon is emitted



Soft-gluon insertion rules

By looking at the expression we got before, it is easy to understand that
the soft limit is actually easier to interpret at the amplitude (rather than at the

amplitude squared) level. One introduces the soft current

~Jµ
i = g ~Qi

kµ
i

ki ·k

for the emission of a gluon of momentum k from a parton i (quark,
antiquark or gluon) of momentum ki

When squaring the amplitudes, one will obtain the typical structure

∑

ij

~Jµ
i · ~Jν

j (−gµν + gauge terms) = −g2
∑

ij

~Qi · ~Qj

ki ·kj

(ki ·k)(kj ·k)

Hence:

M(n+1) =
∣∣∣A(n+1)

∣∣∣
2

−→
∑

ij

ki ·kj

(ki ·k)(kj ·k)
M(n)

ij

M(n)
ij = −2 < A(n)| ~Qi · ~Qj |A(n) >



I M(n)
ij are called colour-linked Born amplitudes squared. They are s.t.:

M(n)
ij = M(n)

ji ,

n∑

j=1

j 6=i

M(n)
ij = 2C(i)M(n)

I The colour thus introduce a highly non trivial structure in the soft limit

I The soft-collinear limit computed with soft-gluon insertions coincides

with that computed via Altarelli-Parisi

I stress again that the structure is simpler at the amplitude level.

By considering dual amplitudes, there is actually an amazing further

simplification



The soft limit of a given dual amplitude is:

Â(n+1)(. . . kk, k, kl, . . .)
k→0−→ g2

(
kl · ε
kl · k

− kk · ε
kk · k

)
Â(n)(. . . kk, kl, . . .)

with ε the polarization vector of the soft gluon



The soft limit of a given dual amplitude is:

Â(n+1)(. . . kk, k, kl, . . .)
k→0−→ g2

(
kl · ε
kl · k

− kk · ε
kk · k

)
Â(n)(. . . kk, kl, . . .)

with ε the polarization vector of the soft gluon

� All singularities are associated with partons that are

adjacent to the soft gluon



The soft limit of a given dual amplitude is:

Â(n+1)(. . . kk, k, kl, . . .)
k→0−→ g2

(
kl · ε
kl · k

− kk · ε
kk · k

)
Â(n)(. . . kk, kl, . . .)

with ε the polarization vector of the soft gluon

� All singularities are associated with partons that are

adjacent to the soft gluon

� This implies that in the reduced dual amplitude Â(n) these

two partons are colour connected



The soft limit of a given dual amplitude is:

Â(n+1)(. . . kk, k, kl, . . .)
k→0−→ g2

(
kl · ε
kl · k

− kk · ε
kk · k

)
Â(n)(. . . kk, kl, . . .)

with ε the polarization vector of the soft gluon

� All singularities are associated with partons that are

adjacent to the soft gluon

� This implies that in the reduced dual amplitude Â(n) these

two partons are colour connected

� There is a similar result: the only collinear singularities of a dual

amplitude are due to adjacent partons



� The only singularities are associated with partons that are

adjacent to the soft gluon

� This implies that in the reduced dual amplitude Â(n) these

two partons are colour connected

� There is a similar result: the only collinear singularities of a dual

amplitude are due to adjacent partons

Keep in mind that dual amplitudes are orthogonal when N → ∞. Thus, at

the leading order in N there is a one-to-one correspondence between the

kinematically-dominant behaviour of the cross section (i.e., an amplitude

squared), and the colour structure of dual amplitudes



� The only singularities are associated with partons that are

adjacent to the soft gluon

� This implies that in the reduced dual amplitude Â(n) these

two partons are colour connected

� There is a similar result: the only collinear singularities of a dual

amplitude are due to adjacent partons

Keep in mind that dual amplitudes are orthogonal when N → ∞. Thus, at

the leading order in N there is a one-to-one correspondence between the

kinematically-dominant behaviour of the cross section (i.e., an amplitude

squared), and the colour structure of dual amplitudes

This property is crucially important for the correct treatment of soft
singularities in Event Generators. The order in which partons appear in a
dual amplitude is called colour flow in EvG’s



Summary

� The rich IR structure of QCD is both a curse and a resource

� It complicates exact computations, but allows one to attack

all-order problems, and guess asymptotic behaviour

� Matrix elements have factorization properties in the soft

and collinear limits, which match those of phase spaces

� The picture is simpler if dual amplitudes are considered



Consider now the case a process with an initial-state hadron: DIS

Remember that the leading order is Feynman’s parton-model formula

dσep(K) =
∑

q

∫
dxfq(x)dσeq(xK)

with dσeq the LO cross section for eq → eX

Following what done before, we consider NLO corrections to dσeq
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zk

k
(1−z)k



dσR + dσV =
αS

2π

∫
dk2

T
dz CF

1 + z2

1 − z

1

k2
T

(
dσ(0)(zka) − dσ(0)(ka)

)

Finite for z → 1 (soft), but divergent for kT → 0 (collinear)!

The real kinematic is not degenerate with the virtual one in the collinear

limit. This does not happen in the case of final-state emissions

Tentative conclusion: the parton model does not survive

radiative corrections

If so, pQCD can only be used for final-state hadrons

But there is a way out, which implies replacing the naive parton model by
its QCD equivalent, the factorization theorem



Recovering the parton model

Exclude the collinear divergence with a cutoff µ0 � Q. Inserting the
partonic cross section into the parton model we get after the kT integration

dσ(NLO)(K) =
αS

2π
log

Q2

µ2
0

∫
dydzf(y)P (z)dσ(0)(yzK)

and with some algebra

dσ(K)≡ dσ(0)(K) + dσ(NLO)(K) =

∫
dyf̂(y, µ2, µ2

0)dσ̂(yK, µ2, Q2)

with µ0 � µ ∼ Q

f̂(y, µ2, µ2
0) = f(y) +

αS

2π
log

µ2

µ2
0

∫ 1

y

dz

z
P (z)f(y/z)

dσ̂(K, µ2, Q2) = dσ(0)(K) +
αS

2π
log

Q2

µ2

∫ 1

0

dzP (z)dσ(0)(zK)

By deriving f̂ w.r.t. µ you get the Altarelli-Parisi equations!
(Note: it is f̂ that is usually denoted by f)



It is now manifest that the divergence is independent of the process

(as for final-state emissions). Consequences

� PDFs acquire a dependence upon mass scales: scaling violations

� PDFs cannot be expanded in perturbation theory

� Parton cross sections do have a perturbative expansion

The key assumption: Nature will kill the log µ0 divergence in the PDFs

(smearing typical of long-distance phenomena). We cannot compute PDFs,

but we can extract them from data

Parton model is formally recovered. An all-order proof of these
QCD-improved formulae gives a factorization theorem



APPLICATIONS TO LHC PHYSICS



The aim: predict/describe this

H → ZZ → 4µ as simulated by ATLAS

in the best possible way



Before going on, keep in mind the factorization theorem:

dσH1H2
(P1, P2) =

∑

ij

∫
dx1dx2f

(H1)
i (x1, µ

2)f
(H2)
j (x2, µ

2)

× dσ̂ij(x1P1, x2P2;αS(µ
2), µ2)

This implies that hadronic cross sections are the incoherent sums of

parton-parton cross sections, which from the pQCD viewpoint are identical

to e+e− ones (except for the fact that partons are strongly-interacting)

Hence, what was discussed so far applies without modifications

to LHC physics



A complete description must account for two ingredients:

1) the hard process: all the high-pT stuff, plus particles at small

relative pT or with small energies

2) the rest: this is generally low-pT stuff, and includes

• the underlying event

• the pile-up, ie other pp collisions

Truth be told, there’s no unambiguous separation between 1) and 2),

since to a certain extent it is always definition dependent



A complete description must account for two ingredients:

1) the hard process: all the high-pT stuff, plus particles at small

relative pT or with small energies

2) the rest: this is generally low-pT stuff, and includes

• the underlying event

• the pile-up, ie other pp collisions

Two different approaches

� Event Generators: aim at giving a description as realistic as possible,

including all the details of 1) and 2)

Examples: HERWIG, PYTHIA, ARIADNE, ...

� Cross Section Integrators: don’t include 2), and are only able to give

predictions for infrared-safe observables resulting from 1)

Examples: MCFM, ResBos, ...



For both Event Generators and Cross Section Integrators, the simulation of
the hard process proceeds schematically as follows

hadronization

radiation
Subprocess

Hard Hard
Process

I Hard subprocess: only large-pT particles, parton-level. Two partons

pulled out of the incoming hadrons scatter and produce few (2–6)

particles

I Radiation: adds more partons. Equivalent to considering higher-order

corrections in perturbative QCD

I Hadronization: converts incoming partons into scattering hadrons, and

outgoing partons into observed particles



Strategies

I For Hadronization

1 Use factorization theorems −→ Cross Section Integrators

2 Use phenomenological models at mass scales where pQCD is not

applicable −→ Event Generators

I For Higher-order Corrections

1 Compute exactly the result to a given order in αS

2 Estimate the dominant effects to all orders in αS

Cross Section Integrators may implement 1, 2, or a combination of the

two. Event Generators always implement 2, possibly combined with 1

In the following, I’ll talk about Event Generators


