Top physics with CMS

Daiske Tornier

daiske.tornier@physik.rwth-aachen.de

III. Physikalisches Institut B RWTH Aachen

on behalf of the CMS collaboration

LHC days, Split, 02.10.2006

Introduction

• *tt* Physics at LHC

2) *tī*t Decays

- Dilepton Channel
- Lepton+Jets Channel
- Hadronic Channel
- $t\overline{t}$ Events with J/ψ
- Spin Correlation in $t\overline{t}$ Events
- 3 Spin Correlation in $t\overline{t}$ Events
 - FCNC
- 5 Single Top Production
 - Summary

$t\overline{t}$ Physics at LHC

- approximately one $t\bar{t}$ -pair per second at $\mathcal{L} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ \Rightarrow LHC is a top factory!
- BR $(t
 ightarrow bW) \sim 100\%$
- other rare SM decays either CKM suppressed or via FCNC

Dilepton Channel

clean final state signature

- two isolated opposite-sign high momentum leptons
- two jets from b quark hadronisation

lowest BR (1/9)

• 54 pb (LO) at LHC

• 27 pb (LO) without
$$W^{\pm}
ightarrow au^{\pm}
u$$

• high trigger probability

- signal can be seen with less than 1 fb $^{-1}$
- S/B = 12 achieved (e and μ)

Event Reconstruction in the Dilepton Channel

event kinematic has large sensitivity to m_t

$$\begin{array}{ll} 0 & = & \sum_{i \in \{\ell,\nu,b\}} p_{T}^{i} \\ m_{W^{\pm}}^{2} & = & (p^{\ell^{\pm}} + p^{\nu|\overline{\nu}})^{2} \\ m_{t}^{2} & = & (p^{\ell^{\pm}} + p^{\nu|\overline{\nu}} + p^{b|\overline{b}})^{2} \end{array} \right\} 0 = \sum_{i=0}^{4} c_{i}(m_{t}, p^{\ell^{\pm}}, p^{b}, p^{\overline{b}})(p_{x}^{\overline{\nu}})^{i} \\ \end{array}$$

kinematically underconstrained

- use m_W , assume m_t and try to solve kinematics
- weight solutions with SM neutrino spectrum
 - \rightarrow distribution of most likely

solutions / top mass

Measurements in the Dilepton Channel

mass measurement (1 and 10 fb $^{-1}$)

main systematics: b-jet energy scale

1 fb⁻¹:
$$\Delta m_t = \pm 1.5 \text{ (stat.)} \pm 4.5 \text{ (syst.)} \text{ GeV/c}^2$$

0 fb⁻¹: $\Delta m_t = \pm 0.5 \text{ (stat.)} \pm 1.1 \text{ (syst.)} \text{ GeV/c}^2$

cross section measurement (10 fb^{-1})

only $e - \mu$ dilepton events to remove Drell-Yan background

Effect	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$	Effect	$\Delta \sigma_{t\overline{t}}/\sigma_{t\overline{t}}$
Jet Energy Scale	3.6%	Pile-Up	3.6%
b-tag efficiency	3.8%	Underlying Event	4.1%
Lepton reco.	1.6%	Heavy quark fragm.	5.1%
$E_{\mathrm{T}}^{\mathrm{miss}}$	1.1%	PDF uncertainties	5.2%
		ISR and FSR	2.5%

$$\Delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}}=\pm0.9\%\,\text{(stat.)}\pm11\%\,\text{(syst.)}\pm3\%\,\text{(lumi.)}$$

Daiske Tornier, RWTH Aachen 3b

Lepton+Jets Channel

golden channel

- clean signature
- large branching ratio

selection in $\boldsymbol{\mu}$ channel

- single-muon trigger
- isolated muon
- four non-overlapping jets two b-tagged, two anti-b-tagged
- kinematic fit (*m_W* constraint)
- likelihood ratio

< 4% non- $t\overline{t}$ background S/B > 8 achieved in μ channel

Top Quark Mass Estimator

event-by-event likelihood approach

- probability or ideogram of an event $P(y|m_t) \sim \exp\left(-\frac{1}{2} \cdot \chi^2(y|m_t)\right)$ with $\chi^2(y|m_t) = \left(\frac{m_t - m_t^{fit}}{\sigma_{m_t}^{fit}}\right)^2$
- convolution with th. expected probability density $P(m_t|M_t)$ $\mathcal{L}_i(M_t) = \int P(y|m_t) \cdot P(m_t|M_t) dm_t$

 $P(m_t|M_t)$ includes Breit-Wigner shape of signal, combinatorial and process background; with M_t as the true value of the top mass

 maximum likelihood method on combination of all convoluted ideograms

Ideograms for event 404 in run 125100002 constructed scanned 0.8 0.6 0.4 0.2 120 1/10 160 180 200 rec. hadr. m ΔX² gaussian ideogram 7000 scanned ideogra 6000 5000

Mass Measurement in the Lepton+Jets Channel

			Standard Selection	n
ideogram method		Gaussian Fit	Gaussian Ideogram	Full Scan Ideogram
0		Δm_t	Δm_t	Δm_t
a colf collibrating using m		(GeV/c ²)	(GeV/c ²)	(GeV/c ²)
• sen campracing using mw	Pile-Up	0.32	0.23	0.21
a a matura turt	Underlying Event	0.50	0.35	0.25
constraint	Jet Energy Scale (light)	1.80	0.15	0.06
	Jet Energy Scale (heavy)	1.05	0.98	0.90
reduced bias and	Radiation (pQCD)	0.80	0.27	0.22
systematic error	Fragmentation	0.40	0.40	0.30
	b-tagging	0.80	0.20	0.18
Systematic entor	Background	0.30	0.25	0.25
	Parton Density Functions	0.12	0.10	0.08
	Total Systematical uncertainty	3.21	1.27	1.13
$\Lambda = 1 C \sqrt{2}$	Statistical Uncertainty (10fb ⁻¹)	0.32	0.36	0.21
$\Delta m_t \approx 1 \text{GeV/c}$ possible	Total Uncertainty	3.23	1.32	1.15
£ F	~ 5 			

cross section error pprox 10%

Daiske Tornier, RWTH Aachen 3b

Top physics with CMS

LHC days, Split, 02.10.2006

Hadronic Channel

well defined multi-jet final state

six jets

• two b-jets, four light quark jets

enormous QCD background

selection

- specific multi-jet trigger with online b-tagging
 - 17% signal efficiency
 - S/B ≈ 1/300
- event shape variables, e.g. centrality
- simple cut based and neural network

$S/B \approx 2/3$ (cut based) cross section measurement to $\approx 20\%$

Mass Measurement in the Hadronic Channel

	$\Delta m_t [{ m GeV}/c^2]$
Pile Up	0.4
Underlying Event	0.6
PDF	1.4
IS/FS Radiation	2.3
Fragmentation	0.9
Jet Energy Scale	2.3
b-Tagging	0.3
Background	2.0

systematic uncertainties

$1 \, \mathrm{fb}^{-1}$

already systematics dominated $\Delta m_t = \pm 0.6 \, ({
m stat.}) \pm 4.2 \, ({
m syst.}) \, {
m GeV/c}^2$

$t\bar{t}$ Events with J/ψ (Mass Measurement)

very clean experimental reconstruction

- only leptons, no jets
- no b-tagging, limited use of jet energy

extremely low BR

 $5.5 \cdot 10^{-4} \rightarrow 4500$ events per 10 fb⁻¹

selection of J/ψ and ℓ from W

- inclusive lepton trigger
- J/ψ candidate using $m_{\ell\ell}$ and angle
- isolated high $p_{\rm T}$ lepton from W
- remove same flavour leptons near Z mass

Mass Measurements in the J/ψ Channel

different contributions to systematics than in other $t\bar{t}$ studies (esp. theory)

$\delta m_t (\text{GeV}/c^2)$
0.31
0.56
0.71
0.51
0.46
0.64
0.28
1.37
0.21
0.38
0.19
0.12
0.05
0.05
0.21
0.54
1.47

for 20 fb⁻¹ already systematics dominated $\Delta m_t = \pm 1.2$ (stat.) ± 1.5 (syst.) GeV/c²

Daiske Tornier, RWTH Aachen 3b

Top physics with CMS

LHC days, Split, 02.10.2006

Daiske Tornier, RWTH Aachen 3b

Spin Correlation in $t\overline{t}$ Events

large width of top quark

- decay before hadronisation
- angular distribution of decay products ightarrow spin information of $t\overline{t}$

$$\mathcal{A} = \frac{N_{||} - N_X}{N_{||} + N_X} = \frac{N(t_L \overline{t}_L + t_R \overline{t}_R) - N(t_L \overline{t}_R + t_R \overline{t}_L)}{N(t_L \overline{t}_L + t_R \overline{t}_R) + N(t_L \overline{t}_R + t_R \overline{t}_L)}$$

• quark annih.:
$$\mathcal{A} = -0.469$$

• gluon fusion: $\mathcal{A} = 0.431$

measured in double diff. distribution:

$$\frac{1}{N}\frac{d^2N}{d\cos\theta_I\,d\cos\theta_q} = \frac{1}{4}(1-\mathcal{A}\kappa_I\kappa_q\cos\theta_I\cos\theta_q)$$

- TOPREX generator used
- weighted PYTHIA events simulated

$$\Delta \mathcal{A}_{b-t,l-t}/\mathcal{A}_{b-t,l-t} = 27\%$$

 $\Delta \mathcal{A}_{q-t,l-t}/\mathcal{A}_{q-t,l-t} = 17\%$

$t\overline{t}$ FCNC Events

Decay	SM	two-Higgs	SUSY with R	Exotic Quarks	Exper. Limits(95% CL)
$t \rightarrow gq$	5×10^{-11}	$\sim 10^{-5}$	$\sim 10^{-3}$	$\sim 5 \times 10^{-4}$	< 0.29 (CDF+TH)
$t \rightarrow \gamma q$	5×10^{-13}	$\sim 10^{-7}$	$\sim 10^{-5}$	$\sim 10^{-5}$	< 0.0059 (HERA)
$t \to Zq$	$\sim 10^{-13}$	$\sim 10^{-6}$	$\sim 10^{-4}$	$\sim 10^{-2}$	< 0.14 (LEP-2)

selection

 $t\overline{t}$ events generated with TOPREX one SM decaying top + jet and Z or γ

main background $t\overline{t}$ mass cut on jet and Z or γ

Single Top Production at LHC

$\sigma \cdot BR(W \to \ell \nu)$				
t-channel:	81.7 pb			
s-channel:	3.3 pb			
<i>tW</i> -channel:	40 pb			

- direct measurement of the CKM matrix element V_{tb}
- investigation of the structure of *tWb* vertex
- \bullet generated with ${\rm SINGLETOP}$ and ${\rm TOPREX}$

background

- $t\overline{t}$ (830 pb) with similar final state
- multi-jet QCD and W+jets events
 - \rightarrow use only leptonic W decays from top quark & background determined from control samples

Daiske Tornier, RWTH Aachen 3b

Top physics with CMS

Single Top Cross Section

t-channel selection

- muon, b-jet & light forward jet $p_{\rm T}$ and η cut
- $|\vec{\sum_{T}}|$ cut window
- top mass window

tW-channel selection

ratio method

- define $t\overline{t}$ -rich control region
- use ratio of efficiencies in control and signal region $S = \frac{R_{t\bar{t}}(N_S - N_S^0) - (N_C - N_C^0)}{R_{t\bar{t}} - R_{tW}}$ $\rightarrow \text{ systematics (PDF, JES, b-tag, lumi.) cancel to large extent}$

$\sigma \cdot BR(W o \ell u)$ and est. error				
t-channel:	81.7 pb	10%		
s-channel:	3.3 pb	36%		
<i>tW</i> -channel:	40 pb	17-24%		

improvements

● tŦ

- $\Delta m_t pprox 1\,{
 m GeV/c}^2$ possible with O(10 $\,{
 m fb}^{-1})$
- $\Delta\sigma/\sigma \approx 10\%$ (di-, semileptonic) 20 (hadronic)%
- \bullet spin correlation correlation coefficient measurable to 17%-27% in Lepton+Jets channel
- FCNC decays BSM decays detectable at 5 σ (BR pprox 10⁻⁴)
- single top

cross section in the different channels to 10%-36% measurable

LHC will be a top factory

Large cross section and favourable S/B ratio will permit much improved measurements of top quark properties.

Daiske Tornier, RWTH Aachen 3b

Top physics with CMS