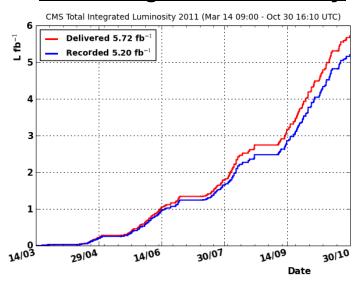
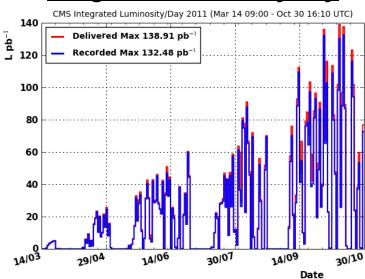

Update on Searches for New Physics in CMS

CERN PH-LHC Seminar January 31, 2012

Eva Halkiadakis
Rutgers, the State University of NJ


LHC and CMS Performances

Spectacular performance of the LHC in 2011


Thank you for delivering 5.7 fb⁻¹!

Eagerly awaiting this year's data

Total integrated luminosity

Integrated luminosity/day

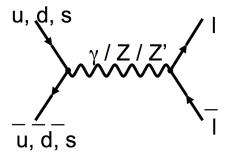
Excellent performance of CMS experiment

→ 91% data-taking efficiency

Outline

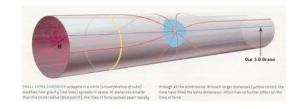
- I will cover "exotic" and SUSY searches:
 - Heavy Resonances and Extra Dimensions
 - → ordered in increasing complexity of final state
 - 4th Generation Quarks
 - Leptoquarks
 - Long-lived Particles
 - SUSY and RPV SUSY
- Many new physics results with 2011 data
 - Analyses today done with ~1 4.7 fb⁻¹
 - → 5 new analyses with full dataset!
 - Impossible to cover everything
- All CMS new physics results can be found at:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults


Searches for Heavy Resonances

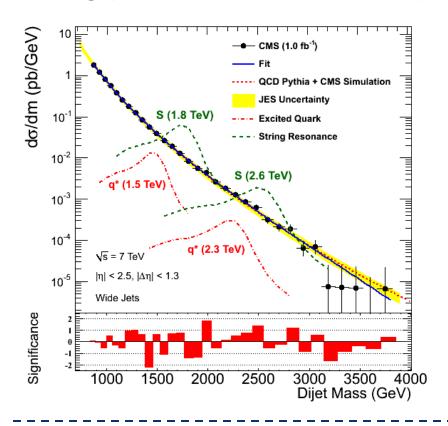
- Search for excesses in invariant mass spectra
 - Bump hunt
 - Generic, powerful and track record for discovery in the past
 - Predicted by several BSM models

with extended gauge symmetries


- Z' and W' with SM-like couplings
- Kaluza-Klein excitations from RS model of extra dimensions
- E6 models
- Technicolor

–

Searches for Non-Resonant Signatures

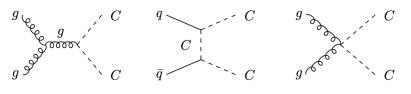

- Searches non-resonant excess in kinematic distributions and mass spectra
- Predicted by many Extra Dimension Models
 - Universal Extra Dimensions (UED)
 - All particles propagate the bulk
 - Large Extra Dimensions:
 - e.g. ADD
 - Only Graviton propagates the bulk
 - Warped Extra Dimensions:
 - e.g. Randall-Sundrum
 - Warped geometry

$$M_{Pl}^2 \sim M_D^{2+n} R^n$$

Dijet Resonances

High sensitivity to strongly produced new resonances decaying to pairs of jets predicted in numerous models: string phenomena, excited quarks, colorons, diquarks

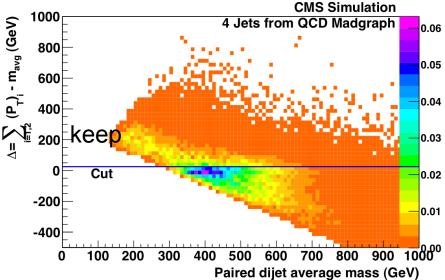
Mass limits up to 4 TeV


Model	Excluded Mass (TeV)			
	Observed	Expected		
String Resonances	4.00	3.90		
E ₆ Diquarks	3.52	3.28		
Excited Quarks	2.49	2.68		
Axigluons/Colorons	2.47	2.66		
W' Bosons	1.51	1.40		

First search published with 1 fb⁻¹ PLB 704, 123 (2011)

Paired Dijet Resonances

2.2 fb⁻¹


Extension of inclusive dijet resonance search ^g Paired dijet production predicted by several models: coloron, axigluon, hyperpions

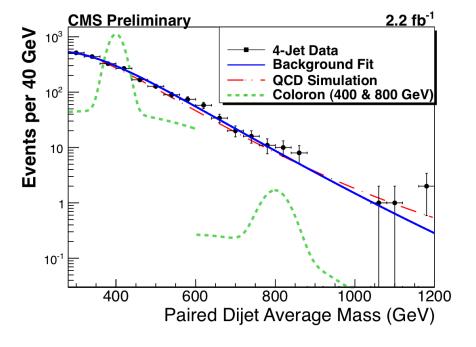
- Consider 4 leading jets with p_T > 150 GeV
 - Require dijet mass pairs to be equal, within resolution
 - Consider average dijet masses
- To further suppress QCD, cut in 2D plane of SumPt(jj) and Mjj(avg)

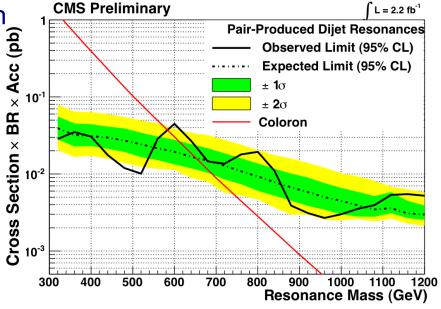
$$\Delta = \sum_{i=1,2} (P_T)_i - m_{avg}$$

- Ensures a smoothly falling background
- Enhances the resonant part of the signal
 - → Would appear as a vertical stripe in plot on the right

QCD shaped by p_T thresholds

Paired Dijet Resonances

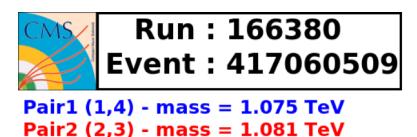

2.2 fb⁻¹

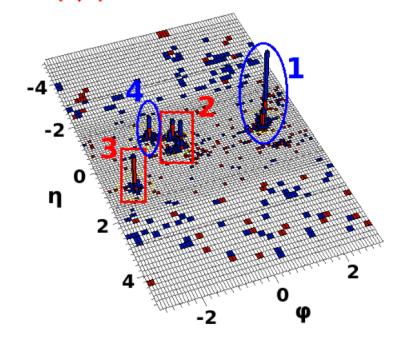

First such search from CMS

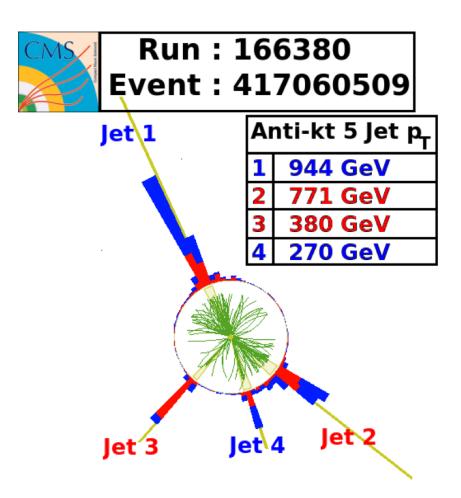
Use 4-parameter parameterization as in the inclusive Dijet Resonance search

Largest fluctuation ~615 GeV

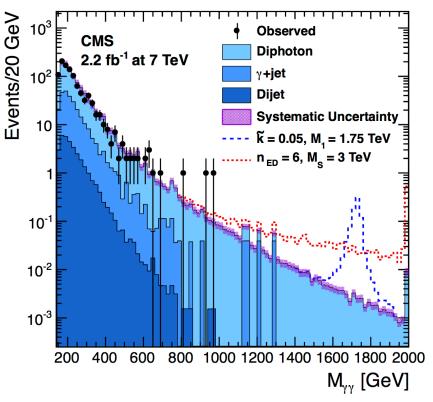
 $2.7\sigma \rightarrow 1.5\sigma$ after LEE



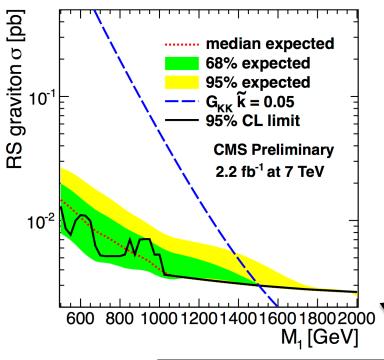



No evidence for new physics

Exclude pair production of colorons with mass between 320 – 580 GeV


High Paired Dijet Mass Event

Search for resonant and non-resonant diphoton production



- Select two photons in barrel with $E_T > 70$ GeV and $M_{yy} > 140$ GeV
- Optimal search region for ADD M_{yy} > 0.9 TeV
 - Observed: 2 events
 - Background: 1.5 ± 0.3 events
 - Primarily SM diphoton production
 - → Estimated with Pythia + NLO (DIPHOX+GAMMA2MC)

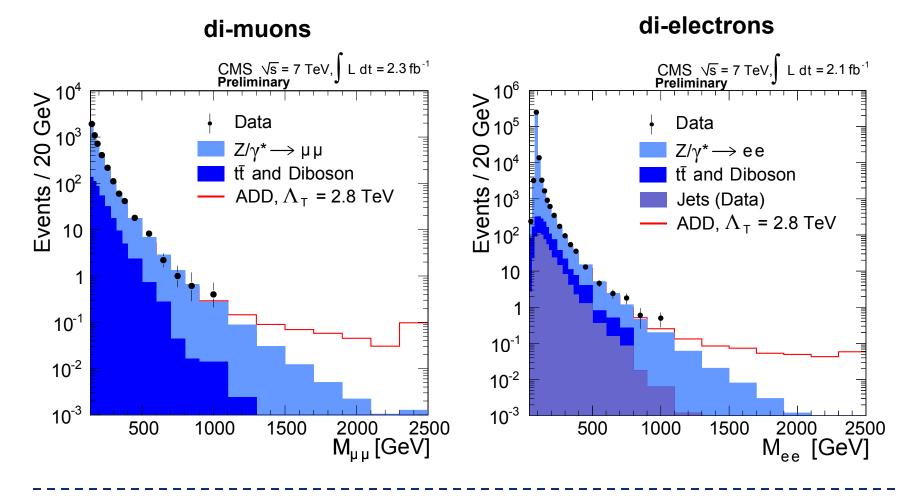
Limits on Extra Dimensions and RS gravitons

Exclusion limits on RS gravitons (0.86-1.84 TeV) and several ADD models (2.3-3.8 TeV)

2.2 fb⁻¹

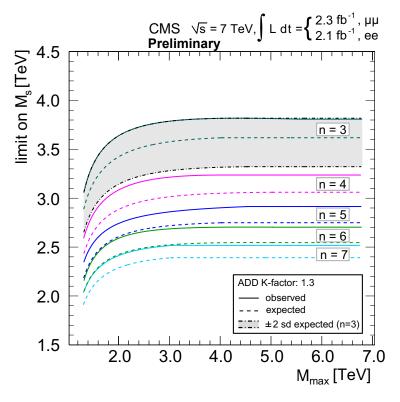
Effective Planck scale (TeV) in ADD

K factor GRV	CDM	Hev	wett	$\mathrm{HLZ}\left(n_{\mathrm{ED}} ight)$					
K lactor	GKW	pos.	neg.	2	3	4	5	6	7
1.0	2.94	2.63	2.28	3.29	3.50	2.94	2.66	2.47	2.34
1.6	3.18	2.84	2.41	3.68	3.79	3.18	2.88	2.68	2.53


RS gravitons: Mass (TeV)

\tilde{k} M_1 [TeV]	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11
<i>M</i> ₁ [TeV]	0.86	1.13	1.27	1.39	1.50	1.59	1.67	1.74	1.80	1.84	1.88

Dilepton Mass Spectra


~2 fb⁻¹

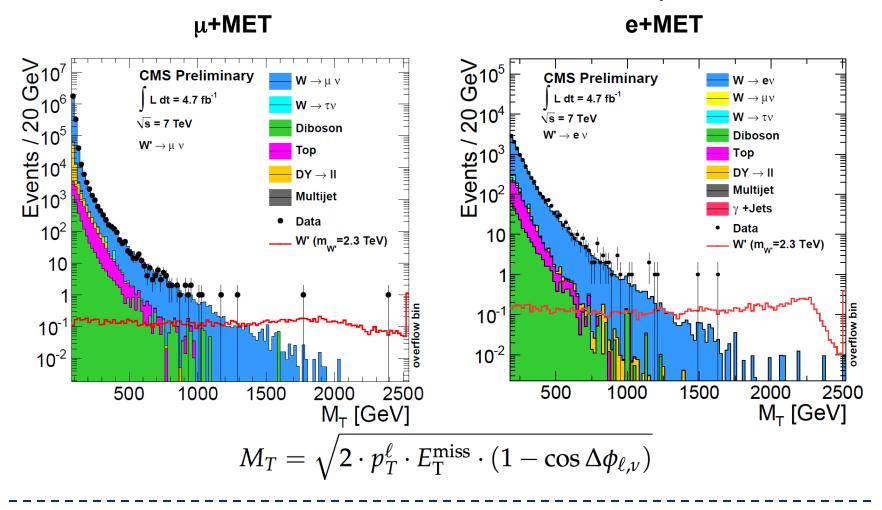
Search for non-resonant excess in M_"

Limits on Large Extra Dimensions

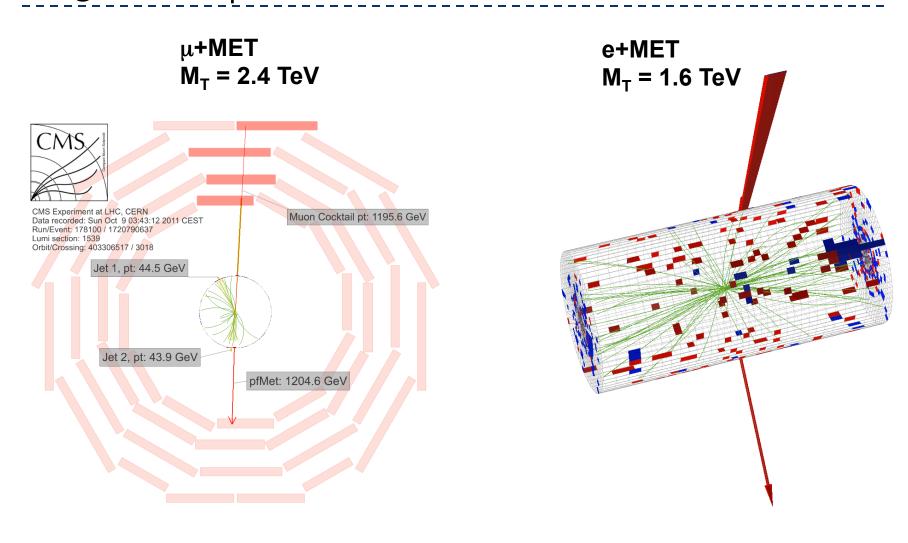
~2 fb-

Search for excess above 1.1 TeV

Combined ee and $\mu\mu$ exclusion limits for ADD models for several parameters (2.5-3.8 TeV)

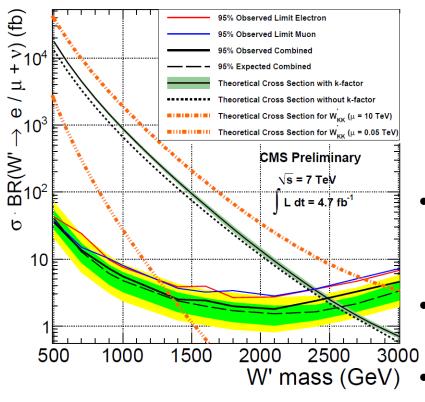

Combined ee and μμ with γγ:

ADD K-factor	Λ_T [TeV] (GRW)	M _s [TeV] (HLZ)						
		n = 2	n = 3	n = 4	n = 5	n = 6	n = 7	
μμ, ee, and γγ								
1.3 (μμ and ee), 1.6 (γγ)	3.3	4.1	3.9	3.3	3.0	2.8	2.6	


Lepton+MET Channel

4.7 fb⁻¹

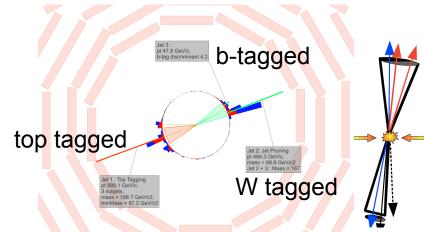
Look for an excess in the transverse mass spectrum



Highest M_T Events

Limits on W'

4.7 fb⁻¹




- Exclusion limits for different W' models:
 - RH W' with SM-like couplings
 - LH W' including their interference with the SM W
 - Kaluza-Klein W'_{KK}-states in the framework of UED
- First exclusion limits where interference has been considered for the leptonic channels
- W' with SM-like couplings is excluded below 2.5 TeV
- Including interference, we exclude below:
 - → 2.63 TeV (constructive)
 - → 2.43 TeV (destructive)

ttbar Resonances

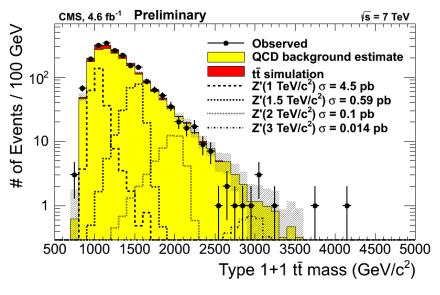
4.6 fb⁻¹

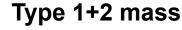
Boosted All-Hadronic State

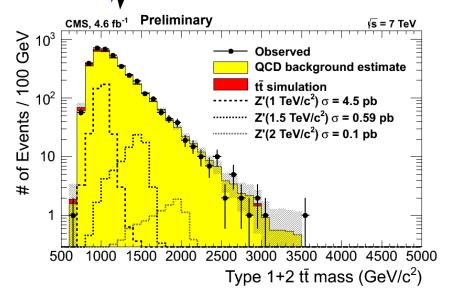
Top decay products either partially or fully merged into one jet.

Top-tagging tools using jet substructure with Cambridge-Aachen R=0.8 jets.

- 1+1 or Type 1
 - dijet event: two fully merged top candidates
- 1+2 or Type 2
 - trijet event: one fully merged top jet in one hemisphere, and two jets in the other (a b-jet and a merged W-jet)


W mass within jets in μ + boosted jet sample used to measure subjet energy scale

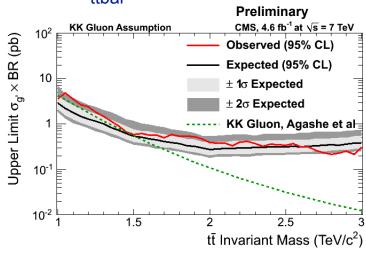

ttbar Resonances

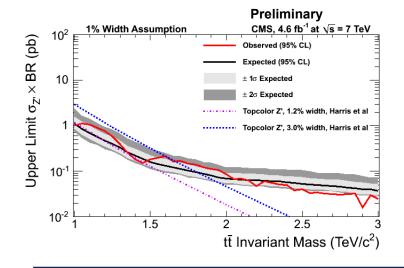

CMS PAS-EXO-11-006

4.6 fb⁻¹

Type 1+1 mass

- Type 1 jet p_T > 350 GeV
- W jet p_T > 200 GeV
- Other jet p_T > 30 GeV
- Plus jet mass and mass drop requirements consistent with top and W
- Data-driven techniques used in QCD background estimate


ttbar Resonances


4.6 fb⁻¹

Exclusion limits on Z' of varying widths with SM couplings and RS KK gluon models

New physics enhancements to σ_{ttbar} must be less than 2.8 times NLO

for $M_{ttbar} > 1 \text{ TeV}$

KK Gluon

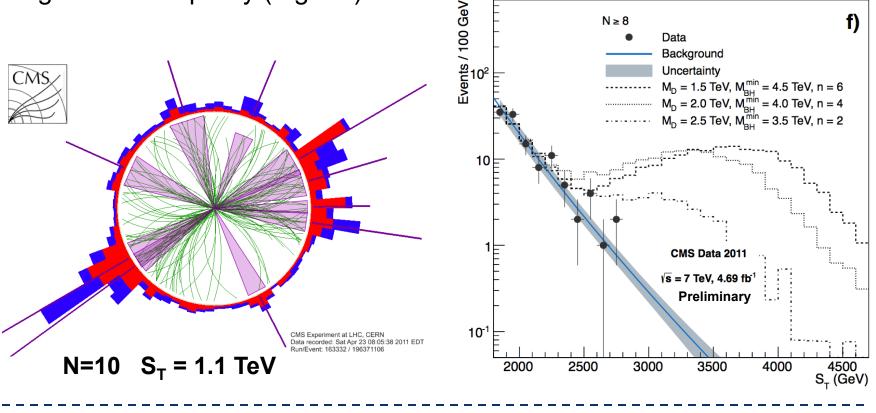
1.0 < M < 1.4 TeV

 $1.0 < M_{Z'} < 1.4 \text{ TeV} (1.2\% \text{ width})$

 $1.0 < M_{7'} < 1.7 \text{ TeV } (3\% \text{ width})$

 $1.0 < M_{Z'} < 1.9 \text{ TeV} (10\% \text{ width})$

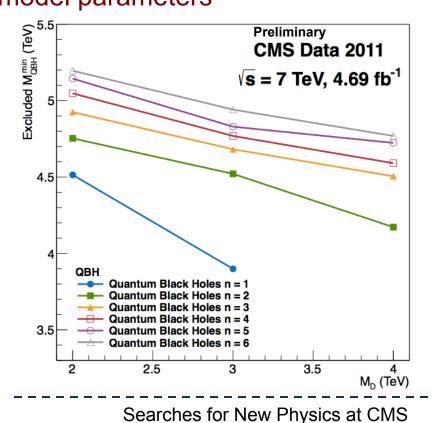
Black Holes


4.7 fb⁻¹

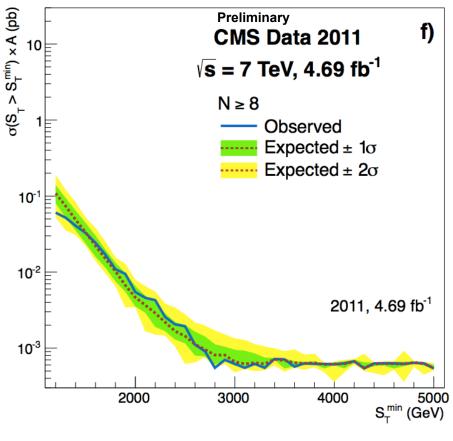
BH production in ADD model (large flat extra spatial dimensions)

- Democratic and isotropic decay
- High S_T events (total transverse energy)

High total multiplicity (e.g. ≥4)

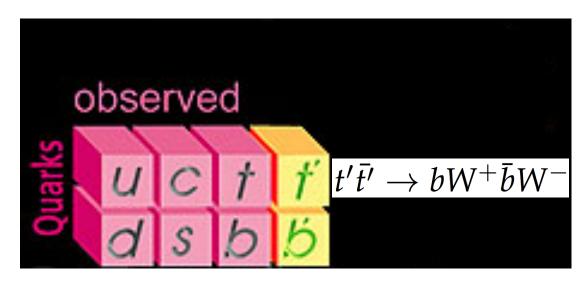

Limits on Black Holes

4.7 fb⁻¹


21

Model-specific limits on minimum black hole (ADD), string balls, and quantum black holes (→NEW)

3.8 – 5.3 TeV range for large variety of model parameters



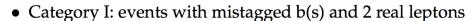
Also model-independent limits

E. Halkiadakis

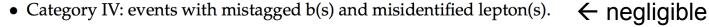
Searches for 4th Generation Quarks

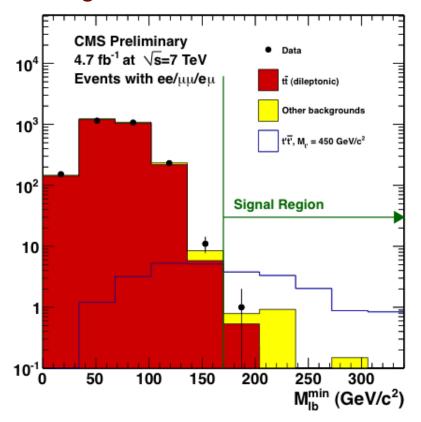
Searches for the extension of the generations of fermions

Heavy Top-like Quark


4.7 fb⁻¹

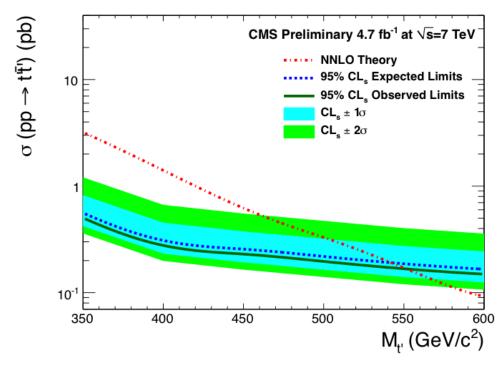
Search for production of: $t'\bar{t'} \to bW^+\bar{b}W^-$ In dilepton channels: ee, eµ, µµ with opposite sign

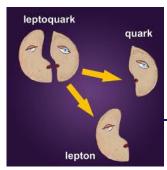

Use M_{lb} (min): minimum value of four possible combinations Select events with M_{lb} (min) > 170 GeV to reduce ttbar background


Backgrounds:

Sample	Yield
Category I (data-driven)	0.74 ± 0.79
Category II (data-driven)	$0^{+0.4}_{-0.0}$
Category III (simulated)	0.99 ± 0.69
Total prediction	1.73 ± 1.12
Data	1

- Category II: events with misidentified lepton(s) and 2 real bs
- Category III: events with 2 real bs and 2 real leptons

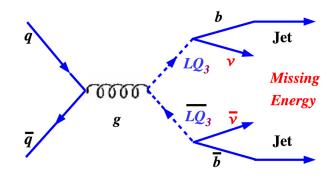



Limits on Heavy Top-like Quark Production

t' excluded below 552 GeV

4.7 fb⁻¹

$M_{t'}$	$350 \text{GeV}/c^2$	$400 \text{GeV}/c^2$	$450 {\rm GeV}/c^2$	$500 \text{GeV}/c^2$	$550 \text{ GeV}/c^2$	600 GeV/ c^2
Theory (pb)	3.200	1.406	0.622	0.330	0.171	0.092
Expected (pb)	0.560	0.309	0.256	0.219	0.187	0.166
Observed (pb)	0.503	0.278	0.230	0.196	0.168	0.149

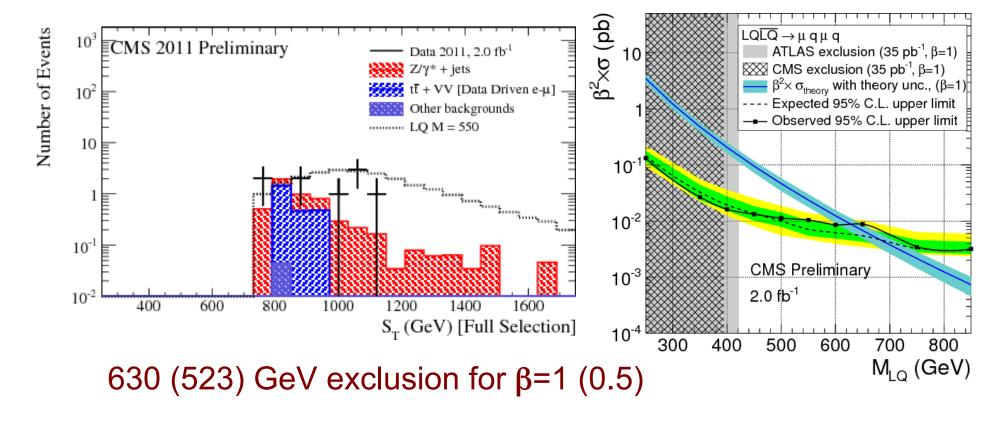

Searches for Leptoquarks

Fractionally charged colored boson

 \rightarrow quark + charged lepton (BR= β)

<u>OR</u>

 \rightarrow quark + neutrino (BR=1- β)

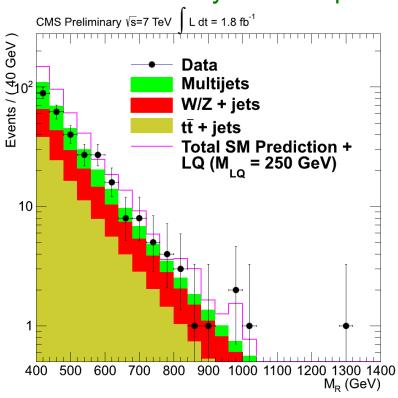


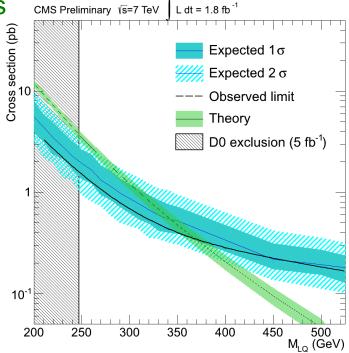
Coupling = λ Pair Production

- 2nd generation decays and signatures: CMS PAS-EXO-11-028
 - $-\mu$ -q-μ-q (2μ+2j), μ-q-ν-q (1μ+MET) [also, ν-q-ν-q]
 - Analyze in $S_T = \Sigma$ muon p_T + jet p_T (+MET)
- 3rd generation: CMS PAS-EXO-11-030
 - ν -b- ν -b (2b-jets+MET) [also, τ -b- τ -b & τ -b- ν -b]
 - Analyze with razor variable R (dimensionless, related to MET)

Leptoquarks (2nd generation) 2.0 fb⁻¹

Cut thresholds on kinematic variables including S_T optimized for LQ mass Example: S_T for 550 GeV LQ signal shown below in μq - μq channel (β =1) Overall consistency with SM predictions


Leptoquarks (3rd generation)


1.8 fb⁻¹

Signal region optimized for *razor* variables: M_R> 400 GeV, and R² (varying with LQ mass)

Backgrounds: ttbar and multijet shapes data-driven

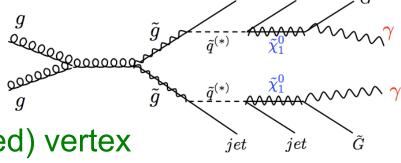
Overall consistency with SM predictions

350 GeV exclusion for β =1

Long lived particles

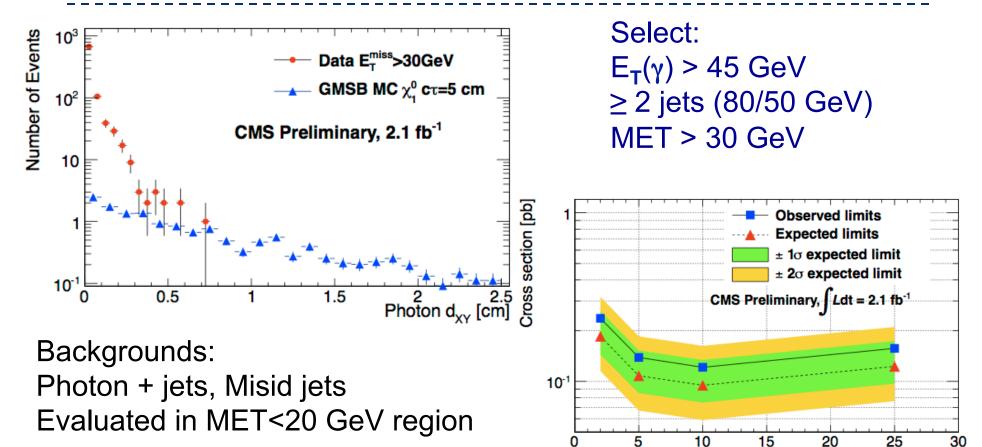
 Predicted in many extensions of the SM: SUSY, hidden valley, etc.

- Several ways to look for them
 - Displaced tracks
 - Highly ionizing tracks
 - Out-of-time particles
 - Non-pointing photons
 - **–** ...
- I will focus on two new results


http://en.wikipedia.org/wiki/Jeanne Calment


- Long lived particles decaying to photons
- Heavy Stable Charged Particles (HSCP)

Somewhat Lazy Photons

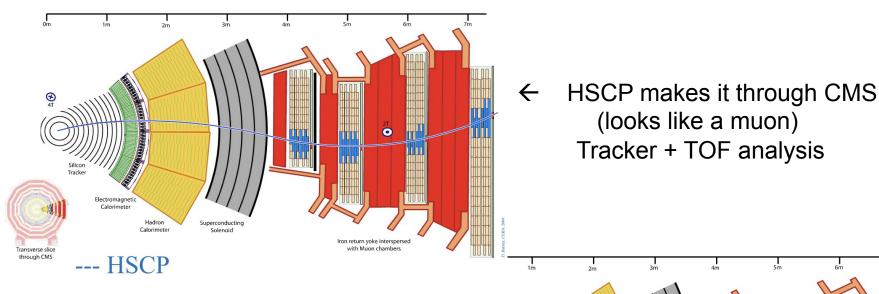

2.1 fb⁻¹

- Long-lived neutral → Non-prompt Photon + invisibles (MET)
 - cτ not that large, ~2 to 20cm, e.g. GMSB neutralino below
 - Pair production (diphotons)
 - Accompanying jets
 - Converted photon → (displaced) vertex

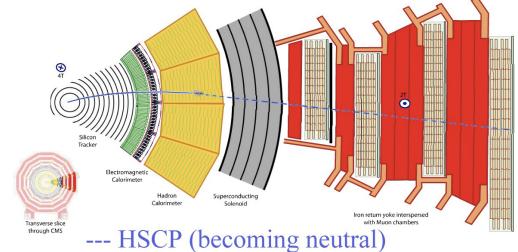
Non-prompt (mildly displaced) photons 2.1 fb-1

Limits on neutralino cross section as a function of neutralino lifetime

Neutralino lifetime [cm]

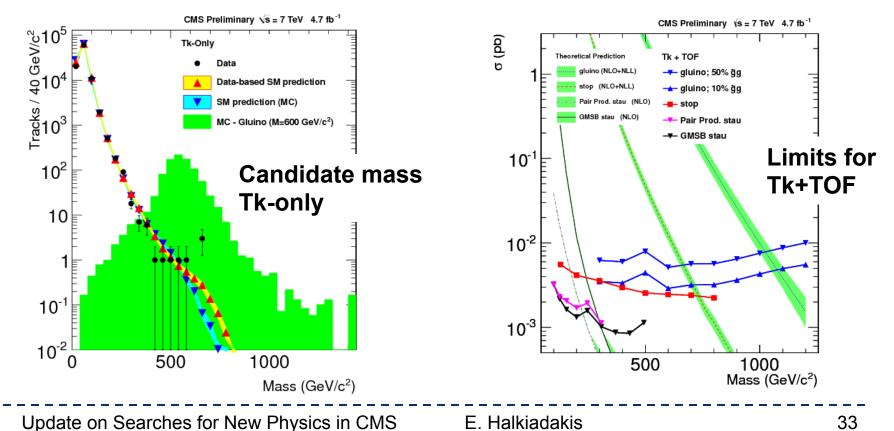

Searches for Heavy Stable Charged Particles

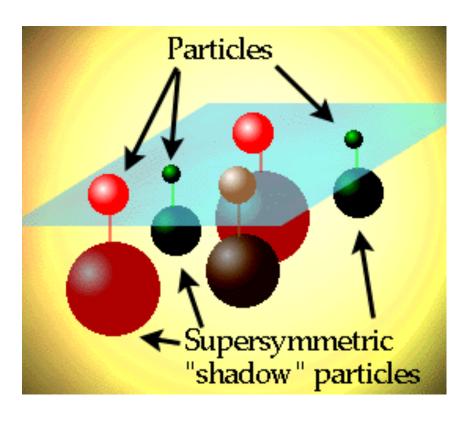
- R-hadron: Strongly interacting particle forms bound state in process of hadronization
 - squarks or gluinos hadronize with quarks/gluons


- Long-lived NLSP
 - Split-SUSY, GMSB, UED etc.
- Characteristic: High momentum, but slower than light
 - Tracker hits show high dE/dx (→ particle mass)
 - Late arrival: Long Time Of Flight (TOF) to the muon system
 - Charge exchange possible in material: live without muon hits
- Two approaches → model independent
 - Inner tracker only
 - Full tracking (reconstruct as a muon) and require TOF

Searches for Heavy Stable Charged Particles

HSCP through CMS, suffering charge exchange in the hadron calorimeter

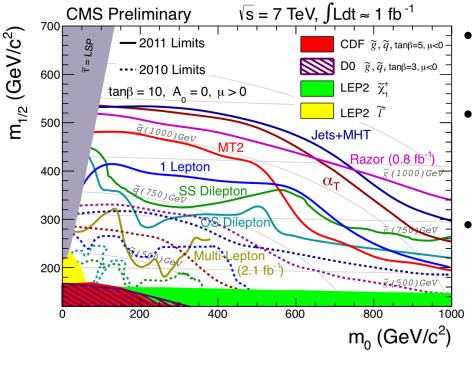

Inner tracker only analysis


Searches for Heavy Stable Charged Particles

In both Tk-only and Tk+TOF analyses, data consistent with expected background, estimated with a data-driven technique

Limits on a variety of models: M(gluino)>1091 GeV, M(scalar top)>734 GeV, M(scalar tau) > 221 GeV, and on hyper-K and hyper- ρ

Supersymmetry

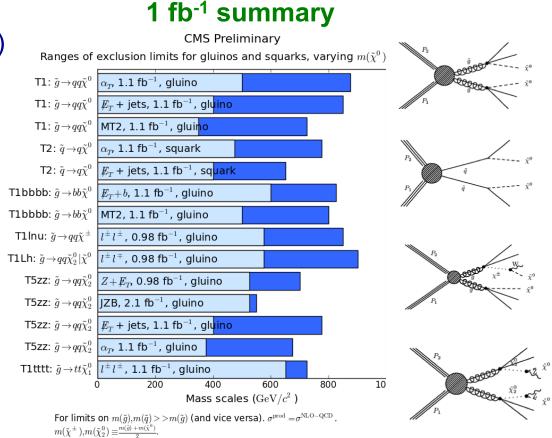

Why SUSY?

- Symmetry between bosons and fermions
- Unification of forces
- Provides a dark matter candidate
- No "fine-tuning"

I will focus on these new results

- Razor analysis
- Multilepton final state
- Z+jets+MET final state
 - → Two complementary analyses
 - → First SUSY result with full dataset! (More coming soon....)

Searches for SUSY at CMS

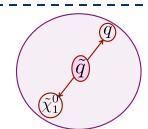


- A number of channels and methods pursued
- Focus has been on simple signatures
 - Common to wide variety of models
- Gearing toward dedicated sbottom and stop searches
 - Stay tuned!
- Our results have been most commonly presented in the CMSSM m_0 vs $m_{1/2}$ plane
 - Shows breadth of analyses and large gain in coverage

Interpretation of Limits

Results interpreted in terms of simplified model spectra (SMS)

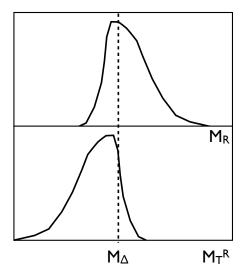
- Use limited set of new hypothetical particles and decays to produce a given topological signature
- Excluded mass scales for gluinos and squarks, where large mass splittings between them are assumed, as well as for varying neutralino masses
- Limits are quite dependent on model assumptions.
 - · But they are quantified



 $m(\tilde{\chi}^0)$ is varied from 0 GeV/ c^2 (dark blue) to $m(\tilde{g})-200$ GeV/ c^2 (light blue).

Search for SUSY using Razor variables ~1 fb-1

- Search for pair production heavy particles
 - squarks and gluinos

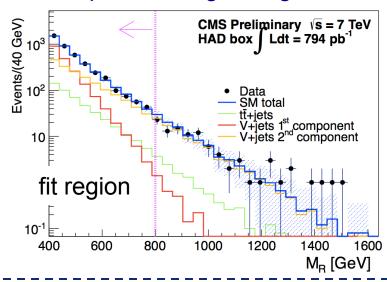


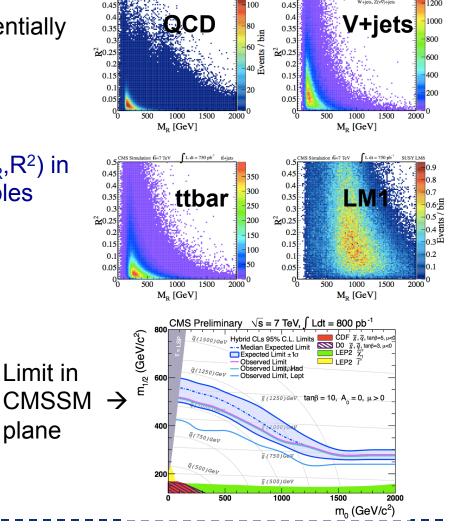
$$M_{\Delta} \equiv rac{M_{ ilde{q}}^2 - M_{ ilde{\chi}}^2}{M_{ ilde{q}}}$$

- perform event-by-event test that they represent visible portion of decays
- Use two kinematic variables: M_R and R
 - Evaluated in razor frame:

M_R is invariant under this longitudinal boost

$$M_R \equiv \sqrt{(E_{j_1}+E_{j_2})^2-(p_z^{j_1}+p_z^{j_2})^2}$$
. \leftarrow M_R peaks at M _{Δ}



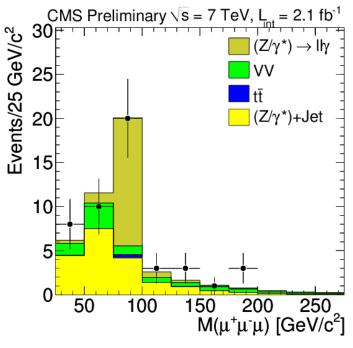

$$R \equiv \frac{M_T^R}{M_R}$$

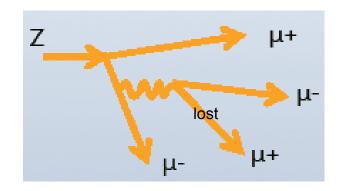
← R is ratio of the two and related to MET

Search for SUSY using Razor variables

- Search is done in 2D: R² & M_R
 - Backgrounds expected to fall exponentially in both variables
 - Signal would ~ peak in M_R
- Background modeling based on data
- Shapes predicted from 2D fit to low (M_R,R²) in multi-jet, lepton & dilepton control samples
 - Extrapolate to signal region

plane


CMS PAS-EXO-11-045 CMS PAS-SUS-11-013 2.1 fb⁻¹

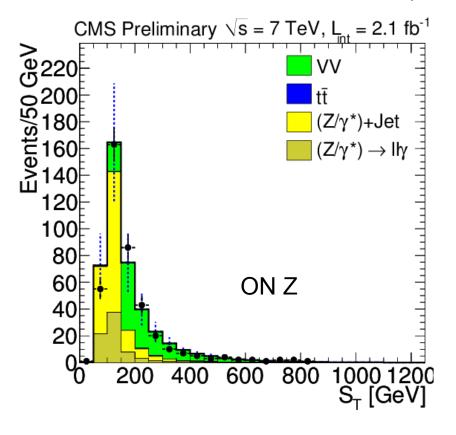

Multileptons (e, μ , τ)

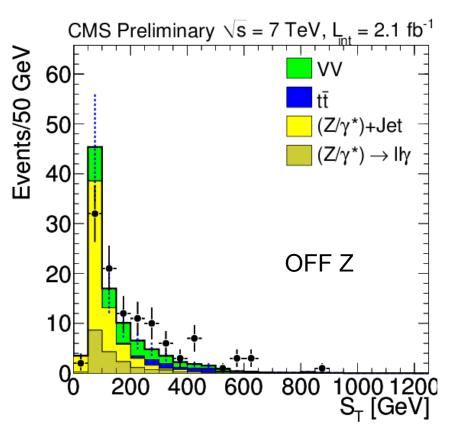
- A universal low-background signature (≥3 leptons)
 - R-Parity-conserving & RPV-SUSY
 - → GMSB, mSUGRA/EWK production
 - \rightarrow high tan β (with tau's)
 - (Fermiophobic) Higgs
 - 4th generation (b') (with b tags), See-saw...
- Search: $\geq 3 e, \mu, \tau$ with or w/o H_T, MET & on-Z/off-Z, binned in S_T
- Backgrounds: Drell Yan, ttbar, Dibosons (irreducible)
 - With high statistics: ttW, ttZ, WH, ttH (!!)
- A broad model-independent multichannel search
- Exclusive channels ordered by SM background
 - Large background channels also control (validation) regions

Multileptons (e,μ,τ)

A surprise on the way to the result : Internal conversion background

Asymmetric internal (Dalitz) conversion of FSR from Z followed by the loss of soft lepton

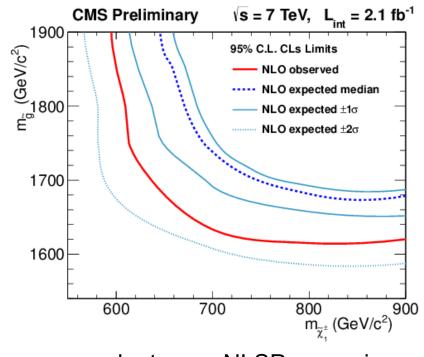

Affects mostly an on-Z control channel for this analysis


But corresponding $W\gamma^*$ internal conversion affects H to WW search (Now being taken into account by CMS and ATLAS)

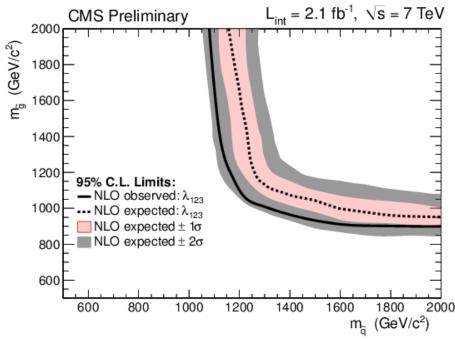
Multileptons (e,μ,τ)

Many channels explored – overall agreement with SM predictions.

Example bin: $3(e/\mu)$ channel S_T distributions



Interpretation of Multileptons

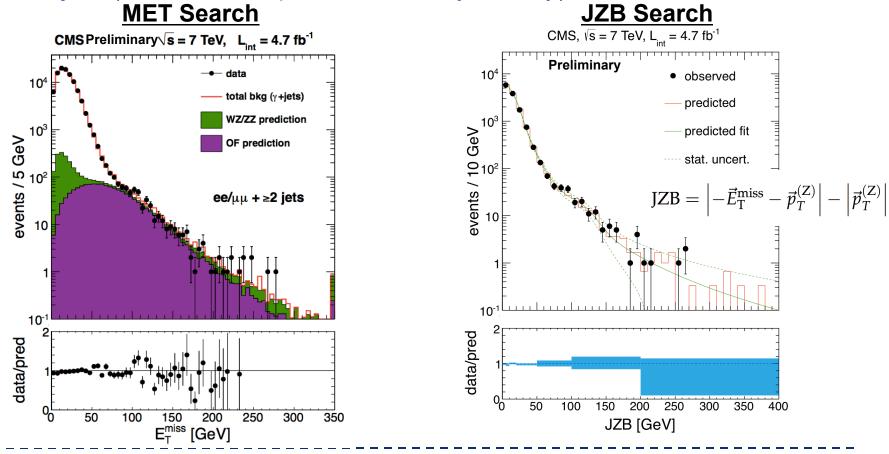

Sensitive to gluino-squark production via q-g and g-g interactions

RP conserving limit in gluino-wino-like chargino plane (left)

RPV limit in the squark-gluino plane (right)

slepton co-NLSP scenario

Leptonic RPV : $\lambda_{123} = \lambda_{e\mu\tau}$


Search for SUSY in Z + jets + MET events

Two complementary searches: MET and JetZBalance

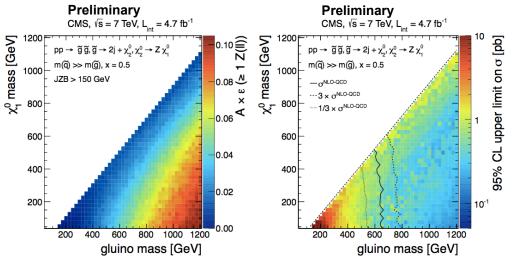
4.7 fb⁻¹

Backgrounds: dominantly top (predicted from $e\mu$ events)

and Z+jets (use MET templates or JZB symmetry)

Update on Searches for New Physics in CMS

E. Halkiadakis

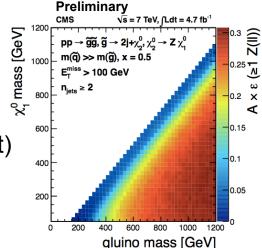

Interpretation of Results

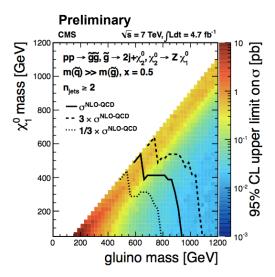
 4.7 fb^{-1}

- Good agreement with SM → set upper limits on SMS scenarios
- Scenario inspired by mSUGRA where the LSP is the lightest neutralino
 - Results are parameterized as a function of the gluino and the LSP masses
 - Mass of the intermediate neutralino is
 M(chi2) = M(LSP) + x (M(glu) M(LSP))
 x = 0.5 and x = 0.75
- Also consider scenario inspired by GMSB where the LSP is the gravitino
 - Results are parametrized as a function of the gluino and neutralino masses
- We also provide additional information for model testing
 - Generator level efficiencies as a function of JZB and MET

Limits on Neutralino LSP Scenario

4.7 fb⁻¹



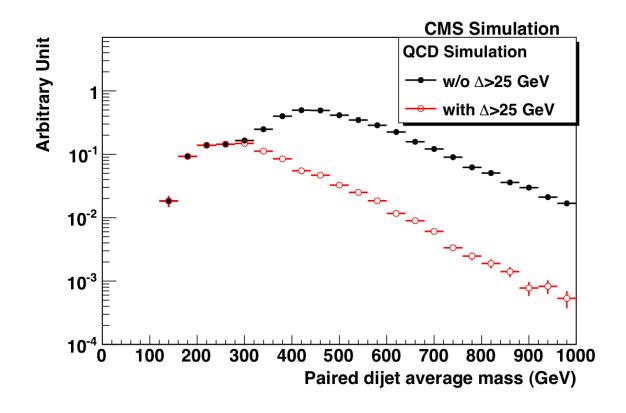


Signal efficiency, including acceptance, for JZB>150GeV (left) Cross section limit (right)

MET Search

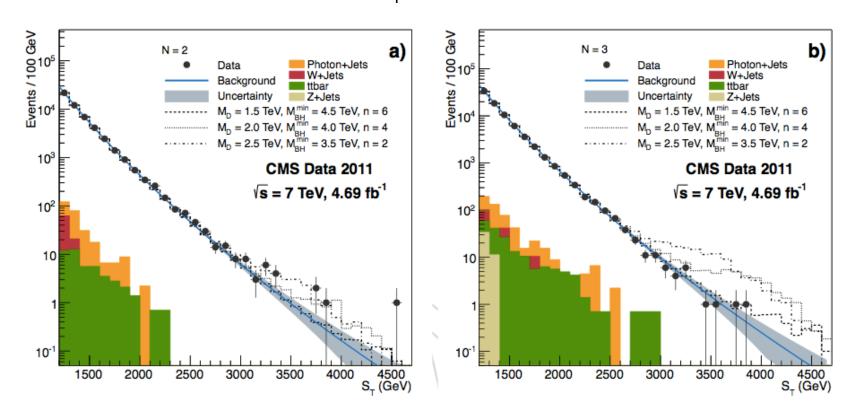
Signal efficiency, including acceptance, for MET>100GeV (left) Cross section limit (right)

Conclusions

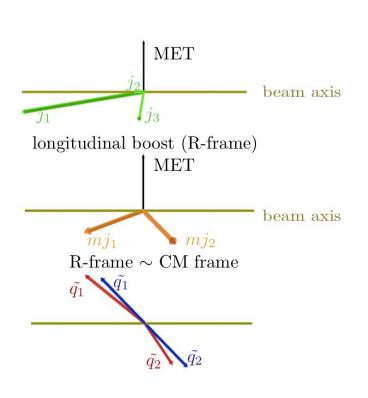

- Rich program of searches for physics beyond the SM
- Many analyses performed with ~1 4.7 fb⁻¹
 - Lots more analyses with full dataset coming for Moriond
 - Preparing for 2012 run
- Advanced analysis techniques
- Stringent limits on many benchmark models
- No evidence of new physics yet
 - Keep looking until either we find something
 - The exploration of Terascale physics has only just started!

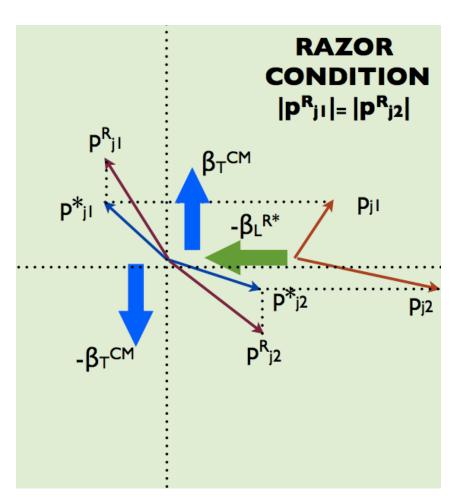
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Backup


Paired Dijet Resonances

QCD with and without Δ cut




Black Holes

N = 2 and N = 3. Fit S_T between 1200 and 2800 GeV

Razor frame

Multileptons

Selection		N(τ)=0		$N(\tau)=1$	N(τ)=2		
	obs	expected SM	obs	expected SM	obs	expected SM	
≥FOUR Lepton Results							
$MET>50, \hat{H}_T>200, noZ$	0	0.003 ± 0.002	0	0.01 ± 0.05	0	0.30 ± 0.22	
MET>50, H_T >200, Z	0	0.06 ± 0.04	0	0.13 ± 0.10	0	0.15 ± 0.23	
MET>50, H_T <200,noZ	1	0.014 ± 0.005	0	0.22 ± 0.10	0	0.59 ± 0.25	
MET>50, H_T <200, Z	0	0.43 ± 0.15	2	0.91 ± 0.28	0	0.34 ± 0.15	
MET $<$ 50, $H_T >$ 200,noZ	0	0.0013 ± 0.0008	0	0.01 ± 0.05	0	0.18 ± 0.07	
MET $<$ 50, $H_T >$ 200, Z	1	0.28 ± 0.11	0	0.13 ± 0.10	0	0.52 ± 0.19	
$MET < 50, H_T < 200, noZ$	0	0.08 ± 0.03	4	0.73 ± 0.20	6	6.9 ± 3.8	
MET $<$ 50, H_T $<$ 200, Z	11	9.5 ± 3.8	14	5.7 ± 1.4	39	21 ± 11	
THREE Lepton Results							
MET>50,H _T >200,no-OSSF	2	0.87 ± 0.33	21	14.3 ± 4.8	12	10.4 ± 2.2	
MET>50, H_T <200,no-OSSF	4	3.7 ± 1.2	88	68 ± 17	76	100 ± 17	
MET $<$ 50, H_T $>$ 200,no-OSSF	1	0.50 ± 0.33	12	7.7 ± 2.3	22	24.7 ± 4.0	
MET $<$ 50, H_T $<$ 200,no-OSSF	7	5.0 ± 1.7	245	208 ± 39	976	1157 ± 323	
MET>50, H_T >200,noZ	5	1.9 ± 0.5	7	10.8 ± 3.3	-	-	
MET>50, H_T >200, Z	8	8.1 ± 2.7	10	11.2 ± 2.5	-	_	
MET>50, H_T <200,noZ	19	11.6 ± 3.2	64	52 ± 13	-	_	
MET<50, H_T >200,noZ	5	2.0 ± 0.7	24	26.6 ± 3.3	-	-	
MET>50, H_T <200, Z	58	57 ± 21	47	44.1 ± 7.0	-	_	
MET $<$ 50, $H_T >$ 200, Z	6	8.2 ± 2.0	90	119 ± 14	-	_	
MET $<$ 50, H_T $<$ 200,noZ	86	82 ± 21	2566	1965 ± 438	-	-	
MET $<$ 50, H_T $<$ 200, Z	335	359 ± 89	9720	7740 ± 1698	-	-	
Totals 4L	13.0	10.4 ± 3.8	20.0	7.8 ± 1.5	45	30 ± 12	
Totals 3L	536	539 ± 94	12894	10267 ± 1754	1086	1291 ± 324	

Table 3: Results from 2.1 fb⁻¹ of 2011 data summed over electron and muon flavors. The labels going down the side refer to whether or not there are OSSF pairs, whether or not $Z \to \ell^+\ell^-$ was excluded (noZ), and the H_T and MET requirements. Labels along the top of the table give the number of τ candidates, 0, 1, or 2. All channels are exclusive. The τ channels serve as "signal" channels for SUSY signals assuming high $\tan(\beta)$ values, for example.

Multileptons

Table 2: Number of events observed in 2.1 fb⁻¹ data (obs), the SM expectation, and expected event counts from typical signals: The rows indicate the *total* number of isolated leptons in the event. The columns indicate the number of τ 's among the isolated objects. The number of Drell-Yan pairs is specified by DYn; the S_T ranges in GeV are Low (< 300 GeV), Mid (300 < S_T < 600 GeV), and High (> 600 GeV); and ZV stands for Z-Veto, indicating there are no OSSF lepton pairs with invariant mass in the Z window. For example, the entry in row marked "3 (DY1) S_T (Mid)" and column marked " τ =1" would be the number of three lepton events which have one opposite-sign electron or muon (same flavor) pair in it, one tau candidate and the total event S_T in the 300 to 600 GeV range. The channel right above it requires a Z-veto in addition, and thus suffers from significantly less background. The channels are exclusive, i.e., non-overlapping. The column labeled sigA is for the L-RPV signal with λ_{122} coupling for squark and gluino masses of 1100 GeV/ c^2 and 1000 GeV/ c^2 , while the column labled sigB is for λ_{123} , 1000 GeV/ c^2 and 1100 GeV/ c^2 , respectively. Note the shift in signal between τ =0 and τ =1 channels because λ_{123} is tau rich. The totals at the bottom are for informational purposes.

# Bodies (Selection)		τ=0				τ=1				τ=2			
2011100 (001101101)	obs	SM	sigA	sigB	obs	SM	sigA	sigB	obs	SM	sigA	sigB	
≥ FOUR Lepton Results													
4 (DY0) S _T (High)	0	0.0000 ± 0.0007	2.9	0.3	0	0.00 ± 0.09	2.0	2.5	0	0.09 ± 0.07	0.5	7.0	
$4 \text{ (DY0) } S_T \text{(Mid)}$	0	0.001 ± 0.002	0.0	0.0	0	0.11 ± 0.10	0.0	0.0	0	0.68 ± 0.30	0.0	0.0	
4 (DY0) S _T (Low)	0	0.02 ± 0.02	0.0	0.0	0	1.69 ± 0.27	0.0	0.0	4	1.34 ± 0.41	0.0	0.0	
$4 \text{ (DY1,ZV) } S_T \text{(High)}$	1	0.002 ± 0.001	12.6	1.1	0	0.02 ± 0.07	6.1	5.5	0	0.10 ± 0.07	0.7	2.4	
4 (DY1) S _T (High)	1	0.010 ± 0.004	2.9	0.4	0	0.22 ± 0.10	1.6	1.8	0	0.15 ± 0.07	0.0	0.3	
4 (DY1,ZV) S _T (Mid)	0	0.008 ± 0.003	0.0	0.0	0	0.20 ± 0.09	0.0	0.0	0	0.45 ± 0.19	0.0	0.0	
4 (DY1) S _T (Mid)	0	0.27 ± 0.11	0.0	0.0	2	1.38 ± 0.38	0.0	0.0	2	1.52 ± 0.44	0.0	0.0	
4 (DY1,ZV) S _T (Low)	0	0.03 ± 0.01	0.0	0.0	4	2.2 ± 1.4	0.0	0.0	10	10.0 ± 7.8	0.0	0.0	
4 (DY1) S _T (Low)	0	0.37 ± 0.13	0.0	0.0	14	6.6 ± 1.5	0.0	0.0	56	30 ± 22	0.0	0.0	
$4 \text{ (DY2,ZV) } S_T \text{(High)}$	0	0.005 ± 0.002	7.7	0.8	_	-	_	-	-	_	-	-	
4 (DY2) S _T (High)	0	0.33 ± 0.13	3.9	0.5	_	_	_	_	_	_	_	_	
4 (DY2,ZV) S _T (Mid)	0	0.022 ± 0.009	0.0	0.0	_	-	_	_	_	-	_	_	
4 (DY2) S _T (Mid)	1	2.2 ± 0.9	0.0	0.0	_	-	_	_	_	_	_	-	
4 (DY2,ZV) S _T (Low)	0	0.04 ± 0.02	0.0	0.0	_	-	_	_	_	_	-	-	
4 (DY2) S _T (Low)	10	7.2 ± 2.9	0.0	0.0	-	-	-	-	_	_	-	-	
THREE Lepton Results													
3 (DY0) S _T (High)	2	0.53 ± 0.25	6.3	3.2	10	5.5 ± 1.9	4.0	18.6	10	15.5 ± 3.6	0.5	6.6	
3 (DY0) S _T (Mid)	3	3.8 ± 1.5	0.0	0.0	63	45 ± 15	0.0	0.0	106	114 ± 16	0.0	0.0	
3 (DY0) S _T (Low)	9	6.4 ± 2.0	0.0	0.0	291	236 ± 42	0.0	0.0	1590	2054 ± 404	0.0	0.0	
$3 (DY1,ZV) S_T(High)$	4	1.34 ± 0.40	19.9	8.4	5	8.8 ± 1.6	2.7	8.0	-	_	-	-	
3 (DY1) S _T (High)	8	7.9 ± 2.6	3.2	2.4	21	18.5 ± 2.7	0.3	0.7	-	_	-	-	
3 (DY1,ZV) S _T (Mid)	20	10.2 ± 2.8	0.0	0.0	71	64 ± 12	0.0	0.0	-	_	-	-	
3 (DY1) S _T (Mid)	31	43 ± 13	0.0	0.0	216	222 ± 23	0.0	0.0	-	_	-	-	
3 (DY1,ZV) S _T (Low)	88	85 ± 21	0.0	0.0	2579	2004 ± 441	0.0	0.0	-	_	-	-	
3 (DY1) S _T (Low)	368	381 ± 92	0.0	0.0	9611	7839 ± 1725	0.0	0.0	-	_	-	-	
Totals	546	549 ± 95	59.0	17.0	12887	10456 ± 1781	17.0	37.0	1778	2228 ± 405	2.0	16.0	
Totals 4L	13	10.4 ± 3.1	29.9	3.1	20	12.4 ± 2.1	9.7	9.8	72	44 ± 23	1.0	10.0	
Totals 3L	533	539 ± 95	29.0	14.0	12867	10443 ± 1781	7.0	27.0	1706	2184 ± 404	0.0	7.0	