Evidence for single top quark production at DØ

Yann Coadou

 $\begin{array}{c} {\sf CERN} \\ {\sf (formerly\ at\ Simon\ Fraser\ University)} \end{array}$

EP Seminar, CERN 30 July 2007

Outline

- Tevatron accelerator and DØ detector
- Single top quark production Should you care?
- Preparing for the measurement
 - Event selection
 - Signal and background samples
 - b tagging
- Multivariate analysis techniques
- 5 Expected sensitivity
- 6 Cross sections and significance
- 7 First direct measurement of $|V_{tb}|$
- New combination of analyses
- Conclusion

The Tevatron at Fermilab

- Located outside Chicago, Illinois
- The world's highest-energy accelerator
- pp̄ collider, centre-of-mass energy 1.96 TeV
- Run I: 1992-1996 at 1.8 TeV
- Started operating for Run II in March 2001
- Upgraded for Run II
 - 396 ns bunch spacing
 - new Main Injector and Recycler
 - ⇒ increased antiproton intensity

Peak luminosity $> 2.5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

The DØ detector upgrade

- 2 T superconducting solenoid
- silicon detector
- fiber tracker
- preshower detector

- upgraded muon system
- new calorimeter electronics
- upgraded trigger and DAQ

The collaboration

• 600+ physicists, 89 institutes, 18 countries

Top quark physics

- top quark discovered in 1995 by CDF and DØ at the Tevatron
- Heaviest of all fermions

- Couples strongly to Higgs boson
- So far only observed in pairs, only at the Tevatron

Single top quark production

Never observed before: electroweak production

s-channel (tb)

- \bullet $\sigma_{NLO} = 0.88 \pm 0.11 \text{ pb (*)}$
- previous limits (95% C.L.):

Run II DØ: $< 5.0 \text{ pb } (370 \text{ pb}^{-1})$ Run II CDF: $< 3.1 \text{ pb } (700 \text{ pb}^{-1})$

t-channel (tqb)

- $\sigma_{NLO} = 1.98 \pm 0.25 \text{ pb(*)}$
- previous limits (95% C.L.):

Run II DØ: $< 4.4 \text{ pb } (370 \text{ pb}^{-1})$ Run II CDF: $< 3.2 \text{ pb } (700 \text{ pb}^{-1})$

(*) $m_t = 175 \text{ GeV}$, Phys.Rev. D70 (2004) 114012

Why do we care? - $|V_{tb}|$

- Has never been observed before!
- Should happen in SM
- The value of the cross section is a SM test and the first measurement of $|V_{tb}|$

Direct access to $|V_{tb}|$

$$V_{\mathcal{CKM}} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & egin{array}{ccc} V_{tb} \end{array}
ight)$$

 In SM: top must decay to a W and d, s or b quark

$$V_{td}^2 + V_{ts}^2 + V_{tb}^2 = 1$$

• constraints on V_{td} and V_{ts} : $|V_{tb}| = 0.9991^{+0.000034}_{-0.000004}$

• New physics:

•
$$V_{td}^2 + V_{ts}^2 + V_{tb}^2 < 1$$

ullet no constraint on V_{tb}

• e.g. 4th generation: $0.07 < |V_{th}| < 0.9993$

Why do we care? — New physics

• s and t cross sections differently sensitive to new physics

s-channel: charged resonances

- heavy W' boson in topflavour model (separate interaction for 3rd family)
- charged Higgs boson H^{\pm} in models with extra Higgs doublets (e.g. MSSM)
- charged top pion in topcolor-assisted technicolor
- 4th generation (reduced cross section from $|V_{tb}| < 1$
- Kaluza-Klein excited W_{KK} , etc...

t-channel: new interactions

- flavour-changing neutral currents $(t-Z/\gamma/g-c)$ and/or $t-Z/\gamma/g-u$ couplings)
- 4th generation (potentially strong enhancement) from large V_{ts})

Why do we care? — Spin, Higgs, analysis techniques

Top quark spin

- Large mass ⇒ top quark decays before it can hadronize (no top jets)
- First chance to study a bare quark!

- Top polarization reflected in angular distributions of decay products
- SM predicts high degree of left-handed tops ⇒ possible sign of new physics, or help pin down what new physics

Higgs searches

- Important background to WH associated Higgs production
- As soon as we discover it, somebody will try to get rid of it....

Advanced analysis techniques

- Test of techniques to extract small signal out of large background
- If tools don't work for single top, forget about the Higgs and other small signals
- If tools don't work at Tevatron, not much hope for LHC

It has been challenging for years...

- Several publications since Run I by DØ and CDF
- 7 DØ and 6 CDF PhDs (Dec '06)
- $\sigma_{t\bar{t}}$ only $\sim 2 \times \sigma_{singletop}$, but has striking signature

Event selection

Signature

- isolated lepton
- ₱
- jets
- at least 1 b-jet

Event selection

- Only one tight (no loose) lepton
 - electron: $p_T > 15$ GeV, $|\eta_{det}| < 1.1$
 - muon: $p_T > 18 \text{ GeV}$, $|\eta_{det}| < 2$
- 15 < ₱_T < 200 GeV
- 2-4 jets: $p_T > 15$ GeV, $|\eta| < 3.4$
 - Leading jet: $p_T > 25$ GeV, $|\eta_{det}| < 2.5$
 - Second leading jet: $p_T > 20 \text{ GeV}$

- Mis-reconstructed events: require **£**⊤ direction not aligned or anti-aligned in azimuth with lepton or jet
- One or two b-tagged jets

Signal and backgrounds

Single top signal ($m_t = 175 \text{ GeV}$)

CompHEP-SingleTop + Pythia

W+jets

- Most difficult background
- Alpgen+Pythia (MLM matching between matrix elements and parton shower)
- Heavy flavour fraction and normalization from data

$t\bar{t}~(m_t=175~\text{GeV})$

- Alpgen+Pythia (MLM)
- Normalized to $\sigma_{NNLO} = 6.8 \text{ pb}$

Multijet events

• misidentified lepton, from data

Event selection — Agreement before b tagging

- Normalize W+jets and multijet to data before b tagging
- Checked 90 variables, 4 jet multiplicities, electron + muon
- Good description of data

b-jet tagger

- NN trained on 7 input variables from existing taggers.
 - secondary vertices
 - impact parameter
- Much improved performance:
 - fake rate reduced by 1/3 for same b efficiency relative to previous tagger
 - smaller systematic uncertainties
- Tag Rate Functions (TRFs) in η , p_T , z-PV applied to MC
- Operating point:
 - *b*-jet efficiency $\sim 50\%$
 - *c*-jet efficiency $\sim 10\%$
 - light jet efficiency $\sim 0.5\%$

Event selection — Splitting by S:B

Percentage of single top tb+tqb selected events and S:B ratio (white squares = no plans to analyze)

(Willia addition to distribute analyza)					
Electron + Muon	1 jet	2 jets	3 jets	4 jets	≥ 5 jets
0 tags	10%	25% 1 : 390	12%	3% 1 : 270	1%
1 tag	6% 1 : 100	21% 1:20	11%	3% 1 : 40	1%
2 tags		3% 1 : 11	2% 1 : 15	1% 	0% □ 1 : 43

Systematic uncertainties

- Assigned per background, jet multiplicity, lepton flavour and number of tags
- Uncertainties that affect both normalisation and shapes: jet energy scale and tag rate functions (b-tagging parameterisation)
- All uncertainties sampled during limit-setting phase

Relative systematic	ve systematic uncertainties		
$tar{t}$ cross section	18%	Primary vertex	3%
Luminosity	6%	e reco * ID	2%
Electron trigger	3%	e trackmatch & likelihood	5%
Muon trigger	6%	μ reco * ID	7%
Jet energy scale	wide range	μ trackmatch & isolation	2%
Jet efficiency	2%	$arepsilon_{\mathrm{real}-m{e}}$	2%
Jet fragmentation	5–7%	$arepsilon_{\mathrm{real}-\mu}$	2%
Heavy flavor ratio	30%	$\varepsilon_{\mathrm{fake}-e}$	3–40%
Tag-rate functions	2–16%	$\varepsilon_{\mathrm{fake}-\mu}$	2–15%

Agreement after tagging

Sample	# of Events
s&t-channel Signal	62
Wjj	174
tt→l+jets	266
Wbb & Wcc	675
Mis-ID's leptons	201
Diboson, $tt \rightarrow dileptons$	82

Totals	2 Jets	3 Jets	4 Jets
Data	697	455	246
Total Background	685	460	253
Signal	36	20	6

Multivariate analysis techniques

- Boosted decision trees
- Matrix element
- Bayesian neural networks

Decision trees

- Machine-learning technique, widely used in social sciences
- Idea: recover events that fail criteria in cut-based analysis
- Start with all events = first node
 - sort all events by each variable
 - for each variable, find splitting value with best separation between two children (mostly signal in one, mostly background in the other)
 - select variable and splitting value with best separation, produce two branches with corresponding events ((F)ailed and (P)assed cut)
- Repeat recursively on each node
- Splitting stops: terminal node = leaf
- DT output = leaf purity, close to 1 (0) for signal (bkg)

Splitting a node

Impurity i(t)

- maximum for equal mix of signal and background
- symmetric in p_{signal} and p_{background}
- Decrease of impurity for split s of node t into children t_L and t_R
 (goodness of split):

$$\Delta i(s,t) = i(t) - p_L \cdot i(t_L) - p_R \cdot i(t_R)$$

Aim: find split s* such that:

$$\Delta i(s^*, t) = \max_{s \in \{\text{splits}\}} \Delta i(s, t)$$

• Maximizing $\Delta i(s,t) \equiv$ minimizing overall tree impurity

- minimal for node with either signal only or background only
- strictly concave ⇒ reward purer nodes

Examples

Gini =
$$1 - \sum_{i=s,b} p_i^2 = \frac{2sb}{(s+b)^2}$$

entropy = $-\sum_{i=s,b} p_i \log p_i$

Decision trees — 49 input variables

Object Kinematics

```
p<sub>T</sub>(jet1)
p<sub>T</sub>(jet2)
p<sub>T</sub>(jet3)
p<sub>T</sub>(jet4)
p<sub>T</sub>(best1)
p<sub>T</sub>(notbest1)
p<sub>T</sub>(notbest2)
p<sub>T</sub>(ug1)
p<sub>T</sub>(untag1)
```

 $p_{\tau}(untag2)$

Angular Correlations

```
\Delta R(\text{jet1,jet2})
cos(best1, lepton)_{besttop}
cos(best1,notbest1)besttop
cos(tag1,alljets)alljets
cos(tag1, lepton)_{btaggedtop}
cos(jet1,alljets)alljets
cos(jet1,lepton)btaggedtop
cos(jet2,alljets)alljets
cos(jet2,lepton)_{\mathrm{btaggedtop}}
\cos(\operatorname{lepton}, Q(\operatorname{lepton}) \times z)_{\operatorname{besttop}}
cos(lepton_{besttop}, besttop_{CMframe})
cos(lepton<sub>btaggedtop</sub>,btaggedtop<sub>CMframe</sub>)
cos(notbest, alljets) alliets
cos(notbest,lepton)besttop
cos(untag1,alljets)alljets
cos(untag1, lepton)_{btaggedtop}
```

Event Kinematics

```
Aplanarity(alliets.W)
M(W.best1) ("best" top mass)
M(W, tag1) ("b-tagged" top mass)
H<sub>T</sub>(alljets)
H<sub>T</sub>(alljets-best1)
H<sub>T</sub>(alljets-tag1)
H_{\tau}(alljets, W)
H_{\tau}(\text{iet1.iet2})
H_T(\text{jet1,jet2}, W)
M(alljets)
M(alliets-best1)
M(alliets-tag1)
M(jet1,jet2)
M(jet1, jet2, W)
M_{\tau}(\text{jet1,jet2})
M_T(W)
Missing E_{\tau}
pT(alljets-best1)
p<sub>T</sub>(alljets-tag1)
p_T(jet1,jet2)
Q(lepton) \times \eta(untag1)
\sqrt{\hat{s}}
Sphericity(alliets.W)
```

- Adding variables does not degrade performance
- Tested shorter lists, lost some sensitivity
- Same list used for all channels

Decision tree output

Measure and apply

- Take trained tree and run on independent pseudo-data sample, determine purities
- Apply to data
- Should see enhanced separation (signal right, background left)
- Could cut on output and measure, or use whole distribution to measure

Limitations

- Instability of tree structure
- Piecewise nature of output

Advantages

- DT has human readable structure (no black box)
- Training is fast
- Deals with discrete variables
- No need to transform inputs
- Resistant to irrelevant variables

Boosting a decision tree

Boosting

- Recent technique to improve performance of a weak classifier
- Recently used on decision trees by GLAST and MiniBooNE
- Basic principle on DT:
 - train a tree T_k
 - $T_{k+1} = modify(T_k)$

AdaBoost algorithm

- Adaptive boosting
- Check which events are misclassified by T_k
- Derive tree weight α_k
- Increase weight of misclassified events by e^{α_k}
- Train again to build T_{k+1}
- Boosted result of event *i*: $T(i) = \sum_{k=1}^{N_{\text{tree}}} \alpha_k T_k(i)$
- ullet Averaging \Rightarrow dilutes piecewise nature of DT
- Usually improves performance

Ref: Freund and Schapire, "Experiments with a new boosting algorithm", in Machine Learning: Proceedings of the Thirteenth International Conference, pp 148-156 (1996)

Decision tree parameters

DT choices

- 1/3 of MC for training
- AdaBoost parameter $\beta = 0.2$
- 20 boosting cycles
- Signal leaf if purity > 0.5

- Minimum leaf size = 100 events
- Same total weight to signal and background to start
- Goodness of split Gini factor

Analysis strategy

- Train 36 separate trees:
 - 3 signals (s,t,s+t)
 - 2 leptons (e,μ)
 - 3 jet multiplicities (2,3,4 jets)
 - 2 b-tag multiplicities (1,2 tags)
- For each signal train against the sum of backgrounds

Matrix element method

- Pioneered by DØ top mass analysis. Now used in search
- Use the 4-vectors of all reconstructed leptons and jets
- Use matrix elements of main signal and bkgd diagrams to compute event probability density for signal and bkgd hypotheses
- Goal: calculate a discriminant:

$$D_s(\vec{x}) = P(S|\vec{x}) = \frac{P_{signal}(\vec{x})}{P_{signal}(\vec{x}) + P_{bkg}(\vec{x})}$$

Encoded in normalized differential cross section for process S:

$$P_S(\vec{x}) = \frac{1}{\sigma_S} d\sigma_S(\vec{x}), \quad \sigma_S = \int d\sigma_S(\vec{x})$$

Used only limited number of Feynman diagrams

• Sensitivity would increase (but so does computation time) if more diagrams were included. In particular, no $t\bar{t}$ diagrams are computed (serious limitation for >2 jets)

Bayesian neural networks

A different sort of neural network

- Instead of choosing one set of weights, find posterior probability density over all possible weights
- Averaging over many networks weighted by the probability of each network given the training data
- Used 25 variables (subset of DT variables)
- Same strategy as DT: 36 different BNN

Advantages

- Less prone to overtraining
- Details of each network not important

Limitation

- Darker black box
- Computationally demanding

Implementation: Flexible Bayesian Modeling (FBM) package

http://www.cs.toronto.edu/~radford/fbm.software.html

Analysis validation

Ensemble testing

- Test the whole machinery with many sets of pseudo-data
- Like running DØ experiment 1000s of times
- Generated ensembles with different signal contents (no signal, SM, other cross sections, higher luminosity)

Ensemble generation

- Pool of weighted signal + background events
- Fluctuate relative and total yields in proportion to systematic errors, reproducing correlations
- Randomly sample from a Poisson distribution about the total yield to simulate statistical fluctuations
- Generate pseudo-data set, pass through full analysis chain (including systematic uncertainties)

All analyses achieved linear response to varying input cross sections and negligible bias

Cross-check samples

- Validate methods on data in no-signal region
- "W+jets": =2jets,
 H_T(lepton, ∉_T, alljets) < 175 GeV
- "ttbar": =4jets,
 H_T(lepton, ∉_T, alljets) > 300 GeV
- Good agreement

Sensitivity determination

Use the 0-signal ensemble

Expected p-value

Fraction of 0-signal pseudo-datasets in which we measure at least 2.9 pb (SM single top cross section)

Observed p-value

Fraction of 0-signal pseudo-datasets in which we measure at least the observed cross section.

 Also use the SM ensemble to check compatibility of observed result with SM prediction

Expected sensitivity s+t

Decision trees

p-value **1.9%** (2.1 σ)

Matrix elements

p-value **3.7%** (1.8 σ)

Bayesian NN p-value **9.7%** (1.3σ)

ME and BNN s+t observed results

Matrix element

$\sigma = 4.6^{+1.8}_{-1.5} \text{ pb}$ p-value = 0.21% (2.9 σ) SM compatibility 21%

New preliminary ME result

• Included $t\bar{t} \rightarrow \ell + \text{jets ME in}$ 3-jet discriminant

$$\begin{array}{c} \sigma = 4.8^{+1.6}_{-1.4} \text{ pb} \\ \text{exp. p-value} = 3.1\% \ (1.9\sigma) \\ \text{obs. p-value} = 0.082\% \ (3.2\sigma) \end{array}$$

 ME discriminant output, with and without signal content (all channels combined)

DØ Run II

Bayesian NN

$$\sigma = 5.0 \pm 1.9 \text{ pb}$$

p-value = 0.89% (2.4 σ)
SM compatibility 18%

New preliminary BNN result

 Better treatment of noisy training data

$$\sigma = 4.4^{+1.6}_{-1.4} \text{ pb}$$
 exp. p-value = 1.6% (2.2 σ) obs. p-value = 0.083% (3.1 σ)

Boosted decision tree observed results

 $\sigma_{\rm s+t} = 4.9 \pm 1.4 \text{ pb}$ p-value = 0.035% (3.4 σ) SM compatibility: 11% (1.3 σ)

Evidence for single top production!

$$\sigma_s = 1.0 \pm 0.9 \; \mathrm{pb}$$
 $\sigma_t = 4.2^{+1.8}_{-1.4} \; \mathrm{pb}$

Boosted decision tree event characteristics

Measuring $|V_{tb}|$

- Now that we have a cross section measurement, we can make the first direct measurement of $|V_{th}|$
- Use the same infrastructure as for cross section measurement but make a posterior in $|V_{th}|^2$

Additional theoretical errors (hep-ph/0408049)

	s	t
top mass	13%	8.5%
scale	5.4%	4.0%
PDF	4.3%	10.0%
$lpha_{ extsf{s}}$	1.4%	0.01%

• Most general Wtb coupling $(P_{L,R} = (1 \mp \gamma_5)/2)$:

$$\Gamma^{\mu}_{tbW} = -\frac{g}{\sqrt{2}} V_{tb} \bar{u}(p_b) \left[\gamma^{\mu} (f_1^L P_L + f_1^R P_R) - \frac{i\sigma^{\mu\nu}}{M_W} (f_2^L P_L + f_2^R P_R) \right] u(p_t)$$

- SM: $f_1^L = 1$, $f_1^R = 0$ (pure V A), $f_2^L = f_2^R = 0$ (CP conservation)
- Effectively measuring strength of V-A coupling $|V_{th}f_1^L|$, can be > 1

First direct measurement of |V_{th}|

• Assuming $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$ and pure V-A and CP-conserving Wtb interaction

$$|V_{tb}f_1^L| = 1.3 \pm 0.2$$

$$0.68 < |V_{tb}| \le 1$$
 @ 95% CL (assuming $f_1^L = 1$, flat prior in [0,1])

No assumption about number of quark families or CKM matrix unitarity

New: combination of s+t analyses

Correlations

- 3 analyses with similar performance on same dataset
- Combined using BLUE method

	DT	ME	BNN
DT	100%	64%	66%
ME		100%	59%
BNN			100%

Conclusion

First evidence for single top quark production (DØ decision trees)

$$\sigma(p\bar{p} \rightarrow tb + X, tqb + X) = 4.9 \pm 1.4 \text{ pb}$$

3.4 σ significance

First direct measurement of $|V_{tb}|$ (DØ decision trees)

$$|V_{tb}f_1^L| = 1.3 \pm 0.2$$
 assuming $f_1^L = 1$: $0.68 < |V_{tb}| < 1$ @ 95% CL

(Always assuming $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$ and pure $V\!-\!A$ and CP-conserving Wtb interaction)

Published in Phys. Rev. Lett. 98, 181802 (2007) (hep-ex/0612052)

New preliminary combination of DT, ME and BNN

$$\sigma(p\bar{p} \rightarrow tb + X, tqb + X) = 4.7 \pm 1.3 \text{ pb}$$

3.6 σ significance

• A lot more data already at hand

Single top prospects — Tevatron and LHC

Tevatron

- By 2009 we should have observed single top production and measured its cross section to 15-20%
- $|V_{tb}|$ is then known to $\sim 10\%$

LHC

Much larger production rates:

$$\sigma_s^{t/\bar{t}} = 6.6/4.1 \text{ pb } (\pm 10\%)$$

 $\sigma_t^{t/\bar{t}} = 156/91 \text{ pb } (\pm 5\%)$

$$\sigma_{tW}^{t/\bar{t}} = 34/34 \text{ pb } (\pm 10\%)$$

- Try to observe all three channels (s-channel challenging)
- \bullet $|V_{th}|$ measured to percent level
- Large samples ⇒ study properties

Backup slides

 More information: http://www-d0.fnal.gov/Run2Physics/top/public/fall06/singletop

