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Motivation: Perturbation theory is all around us, but...

Perturbative series expansions often asymptotic ⇒ Zero radius of
convergence. Why does this happen?

Free–theory limit usually non–analytic...
Singularities in the complex Borel plane: instantons, renormalons...

Perturbative series around z ∼∞,

F (z) ≃
+∞
∑
g=0

Fg

zg+1
.

Asymptotic ⇒ Coefficients grow as Fg ∼ g !.

How does one make sense out of perturbation theory?
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Motivation: Borel resummation sometimes helpful, but...

Borel transform “removes” factorial growth

B [ 1

zα+1
] (s) = sα

Γ(α + 1)
.

Analytically continue B[F ](s) throughout s ∈ C.

Borel resummation given by inverse Borel transform

SθF (z) = ∫
eiθ∞

0
ds B[F ](s) e−zs .

Only defined if B[F ](s) has no singularities along direction θ!

How does one make sense out of perturbation theory?
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Motivation: The nature of the nonperturbative ambiguity...

Θ = 0

S+

≠
Θ = 0

S-

Consider lateral Borel resummations and a simple pole singularity,

B[F ](s) = 1

s −A
.

Find a nonperturbative ambiguity

S+F − S−F = −2πi e−Az .

Perturbation theory non–Borel resummable along any Stokes line.

How does one make sense out of perturbation theory?
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Motivation: The ambiguity in Quantum Mechanics...

Ground–state energy of the quartic anharmonic oscillator [Bender–Wu]

Fg ∼ g !

Ag
, F

(n)
g ∼ n

g !

Ag
.

Also multi–instanton series suffer from nonperturbative ambiguities!

Is the problem with perturbation theory even worse?... No: instanton
ambiguities are actually the solution to defining perturbation theory!

Ground–state energy in the double–well quartic potential [Zinn-Justin...]

2–instantons ambiguity cancels perturbative ambiguity;
3–instantons ambiguity cancels 1–instanton ambiguity;
⋯

⇒ Ground–state energy is not only given by perturbative expansion,
but rather is a sum over all multi–instanton sectors:
⇒ Free of any nonperturbative ambiguities!
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Motivation: The ambiguity in Quantum Field Theory...

Renormalons dominant as compared to instantons in Borel plane...

No semiclassical description? [’t Hooft] Recent: Yes! [Ünsal–Dunne–Argyres...]

Use both (multi) renormalons and (multi) instantons to cancel all
ambiguities within perturbative expansion of gauge theories...

Define quantum field theory starting out with perturbative data and
augmenting it into transseries: perturbative expansion +
multi–instanton expansion + multi–renormalon expansion + ⋯ !

Quantum mechanical solution works generically as long as all
singularities in complex Borel plane have a semiclassical description...
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Motivation: The ambiguity in String Theory...

Two–dimensional superstring theory described by the Painlevé II
equation: canceling the nonperturbative ambiguity leads to median
resummation of transseries! [Mariño]

Look out: there may be more singularities in the complex Borel plane
than just instantons or renormalons! Need to identify and incorporate
them all in order to cancel all ambiguities (everywhere in the complex
plane) and construct fully nonperturbative solutions!

Use resurgent analysis to probe deep in the large–order behavior of
perturbative expansions (around any sector) to recover all other
semiclassical data ⇒ May find new (very suppressed) singularities
which must also be taken into account! [Garoufalidis–Its–Kapaev–Mariño]
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Transseries Basics

Analyticity versus Non–Analyticity

Analytic functions described by power series. But how to describe
general non–analytic functions?

Transseries augment power series with non–analytic terms, in order to
describe non–analytic functions! [Écalle]

For example with exponentials (around x ∼ 0),

exp(−1

x
), exp(− exp(1

x
)), exp(− exp(exp(1

x
))), ⋯

or with logarithms,

log (x), log (log (x)), log (log (log (x))), ⋯

Here, mainly address familiar non–analytic dependence e−
1
x .
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Transseries Basics

Perturbative versus Nonperturbative

One–parameter transseries (generically multi–parameters...):

F (z , σ) =
+∞
∑
n=0

σnF (n)(z), F (n)(z) ≃ e−nAz
+∞
∑
g=1

F
(n)
g

zg+nβ
.

Double “perturbative” expansion, both in 1/z and σ e−Az :

σ: transseries parameter... instanton–counting parameter... choice of
boundary conditions... choice of integration contours... fugacity...

Transseries: yield most general solutions to non–linear systems:

Feasible to solve for all unknowns F
(n)
g of corresponding hierarchy of

(non–linear but recursive) equations...

Resurgence: coefficients F
(n)
g , F

(n′)
g ′ relate to each other!
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Resurgent Analysis I: Stokes Automorphism
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Resurgent Analysis I: Stokes Automorphism

Stokes Automorphism and Ambiguities

Singular direction θ: along which there are singularities in Borel plane.

In original complex z–plane such direction is known as Stokes line.

Lateral Borel resummations are related, accomplished via the Stokes
automorphism, Sθ,

Sθ+ = Sθ− ○Sθ.

Sθ codifies ambiguity!

With Sθ ≡ 1 −Disc θ− , there is an ambiguity whenever Sθ ≠ 1.

Disc θ− = sum over Hankel contours encircling each singular point:

Θ

SΘ
+

=

Θ

SΘ
-
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Resurgent Analysis I: Stokes Automorphism

Stokes Automorphism and Perturbative Expansions

One–parameter transseries, with single instanton action A has,
nonetheless, two singular directions: θ = 0 and θ = π.

With F (n) ≡ e−nAz Φn, Stokes automorphism along θ = 0 is

S0Φn =
+∞
∑
`=0

(n + `
n

)S`1 e−`Az Φn+`.

Stokes automorphism along θ = π is (sum over partitions)

SπΦ0 = Φ0,

SπΦ1 = Φ1,

SπΦ2 = Φ2 + S−1 eAz Φ1,

SπΦ3 = Φ3 + 2S−1 eAz Φ2 + (S−2 + S2
−1) e2Az Φ1, ⋯

Yields full information in terms of (possibly) infinite sequence of
Stokes constants S` ∈ C, ` ∈ {1,−1,−2,−3,−4,⋯}.
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Resurgent Analysis I: Stokes Automorphism

Stokes Automorphism and Transseries

On transseries, Stokes automorphism translates to Stokes transition

S0F (z , σ) = F (z ,S0(σ)) and SπF (z , σ) = F (z ,Sπ(σ)),

with

S0(σ) = σ + S1,

Sπ(σ) = σ + σ2S−1 + σ3 (S−2 + S2
−1) + σ4 (S−3 +

5

2
S−1S−2 + S3

−1) +⋯.

Transseries parameters “jump” upon Stokes transitions ⇒ Find
S+F (z , σ) = S−F (z , σ + S1) clear illustration of Stokes phenomena!

Stokes constants control all this behavior ⇒ Can they control the
cancelation of the nonperturbative ambiguity?
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Median Resummation and Nonperturbative Ambiguities

Outline

1 Transseries Basics

2 Resurgent Analysis I: Stokes Automorphism

3 Median Resummation and Nonperturbative Ambiguities

4 Resurgent Analysis II: Asymptotics

5 Beyond the Perturbative Large N Expansion

6 Stokes and Anti–Stokes Phases

7 Closed String Analysis and the Holomorphic Anomaly

8 Outlook

Ricardo Schiappa (Lisbon, IST) Resurgent Transseries and Large N CERN, October 2013 16 / 69



Median Resummation and Nonperturbative Ambiguities

Median Resummation: Geometrical Idea

Θ

SΘ
+

SΘ
-

Lateral Borel resummations

Sθ± =
1

2
(Sθ+ + Sθ−) ±

1

2
(Sθ+ − Sθ−).

θ singular direction ⇔ Sθ ≠ 1 ⇒ ambiguity Sθ+ ≠ Sθ− ...

Canceling ambiguity entails Sθ+ −Sθ− ∼ 0 at the level of the transseries
(also need projections Reθ, Imθ acting on transseries parameters).
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Median Resummation and Nonperturbative Ambiguities

Median Resummation: Real and Imaginary Contributions

Generically Smed
θ = Sθ+ ○S

−1/2
θ = Sθ− ○S

1/2
θ ... Here will focus on

simpler case θ = 0, real coupling, with F
(n)
g and A real (and β = 0):

All Stokes constants purely imaginary S` ∈ iR;

Ambiguity purely imaginary ImF (z , σ) ?= 0.

All sectors are ambiguous for θ = 0 Stokes line:

(S0+ − S0−)F (n)(z) = −S0− ○ (1 −S0)F (n)(z).

With ReF (n) ∶= 1
2 (S0+ + S0−)F (n) and ImF (n) ∶= 1

2i (S0+ − S0−)F (n)

write, for instance,

S0−F
(n) = ReF (n) − i ImF (n),

Can cancel all imaginary contributions, recursively?
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Median Resummation and Nonperturbative Ambiguities

Explicit Cancelation of the Ambiguity: Step 1

Start with the perturbative sector and, for instance,

S0−F
(0) = ReF (0) − i ImF (0).

Via Stokes automorphism S0 can explicitly compute (S0+ − S0−)F (0)

as a function of S0−F
(n) ⇒ Recursively: S0− = Re − 1

2 (S0+ − S0−).

Can explicitly compute the perturbative ambiguity as:

2i ImF (0) = S1 ReF (1) − 1

2
S3

1 ReF (3) + S5
1 ReF (5) +⋯.

Need one–instanton contributions (and more) to try to cancel!
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Median Resummation and Nonperturbative Ambiguities

Explicit Cancelation of the Ambiguity: Step 2

The perturbative sector now looks like:

S0−F
(0) = ReF (0) − 1

2
S1 ReF (1) + 1

4
S3

1 ReF (3) − 1

2
S5

1 ReF (5) +⋯.

Cancel first component of ambiguity with one–instanton contribution:

S0−F
(1) = ReF (1) − i ImF (1).

Still need to cancel:

Remaining perturbative ambiguity...
Full one–instanton ambiguity...

2i ImF (1) = 2S1 ReF (2) − 2S3
1 ReF (4) + 6S5

1 ReF (6) +⋯.

Ricardo Schiappa (Lisbon, IST) Resurgent Transseries and Large N CERN, October 2013 20 / 69



Median Resummation and Nonperturbative Ambiguities

Explicit Cancelation of the Ambiguity: Step 2

The perturbative sector now looks like:

S0−F
(0) = ReF (0) − 1

2
S1 ReF (1) + 1

4
S3

1 ReF (3) − 1

2
S5

1 ReF (5) +⋯.

Cancel first component of ambiguity with one–instanton contribution:

1

2
S1 S0−F

(1) = 1

2
S1 ReF (1) − i

2
S1 ImF (1).

Still need to cancel:

Remaining perturbative ambiguity...
Full one–instanton ambiguity...

2i ImF (1) = 2S1 ReF (2) − 2S3
1 ReF (4) + 6S5

1 ReF (6) +⋯.
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Median Resummation and Nonperturbative Ambiguities

Explicit Cancelation of the Ambiguity: Step 2

The perturbative sector now looks like:�� ��S0−F
(0) = ReF (0)

�



�
	−1

2
S1 ReF (1) +1

4
S3

1 ReF (3) − 1

2
S5

1 ReF (5) +⋯.

Cancel first component of ambiguity with one–instanton contribution:�



�
	1

2
S1 S0−F

(1) =
�



�
	1

2
S1 ReF (1) − i

2
S1 ImF (1).

Still need to cancel:

Remaining perturbative ambiguity...
Full one–instanton ambiguity...

2i ImF (1) = 2S1 ReF (2) − 2S3
1 ReF (4) + 6S5

1 ReF (6) +⋯.
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Median Resummation and Nonperturbative Ambiguities

Explicit Cancelation of the Ambiguity: Step 3

The perturbative and one–instanton sectors now look like:

S0− (F (0) + 1

2
S1 F (1)) = ReF (0)

�



�
	+1

4
S3

1 ReF (3) −1

2
S5

1 ReF (5) +⋯

−1

2
S2

1 ReF (2) + 1

2
S4

1 ReF (4) − 3

2
S6

1 ReF (6) +⋯.

Contribution from the two–instantons sector:

1

4
S2

1 × i ImF (2) =
�



�
	3

2
S1 ReF (3) −5

2
S3

1 ReF (5) + 21

2
S5

1 ReF (7) +⋯.

Contribution from the three–instantons sector:

1

8
S3

1 × S0−F
(3) =

�� ��ReF (3) −i ImF (3).
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Median Resummation and Nonperturbative Ambiguities

Explicit Cancelation of the Ambiguity: Step ∞

Iterating, cancel all ambiguities and construct answer:

S0− (
+∞
∑
n=0

1

2n
Sn

1 F (n)) ≡ S0−F (z ,
1

2
S1).

⇒ This process constructed transseries solution!

Starting with left Borel resummation instead, obtain S0+F (z ,−1
2S1)

as expected from Stokes automorphism... But when explicitly written
in terms of real contributions, would have obtained exactly the same!

Canceled all ambiguities and obtained explicitly real answer:

FR = ReF (0) − 1

4
S2

1 ReF (2) + 5

16
S4

1 ReF (4) +⋯.

General solution within perturbation theory!
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Median Resummation and Nonperturbative Ambiguities

Some Exact Results...

Generically, for one–parameter transseries F (z , σ) along θ = 0 can
compute (split σ = σR + iσI)

ImF (z , σ) = ( 1

2i
S1 + σI)ReF (1)+

+ 1

2i

+∞
∑
n=2

⎛
⎝

Ω(n)Sn
1 + 2i

[(n−1)/2]
∑
r=0

( n

2r + 1
) (−1)rσ

n−(2r+1)
R σ2r+1

I +

+
n−1

∑
k=1

(n

k
)Ω(n − k)Sn−k

1

[k/2]
∑
r=0

( k

2r
)(−1)rσk−2r

R σ2r
I

⎞
⎠

ReF (n),

with Ω(k) = ∑k
r=1∑r

s=1 (r
s
)(−1)s+1 sk

2r−1 .

Can show that
ImF (z , σ) = 0

is satisfied to all orders by σI = i
2 S1 and any σR.
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Median Resummation and Nonperturbative Ambiguities

Some More Exact Results...

Under previous conditions and further setting σR = 0, obtain all orders
median resummation

ReF (z , σ) = ReF (0)+

+
+∞
∑
n=1

( 1

22n
−

n−1

∑
k=0

( 2n

2k + 1
) 1

22(k+1) Ω (2(n − k) − 1))S2n
1 ReF (2n).

Can play the same game along θ = π and even set up equations to
cancel ambiguities along the full real axis, θ = 0, π... Now all Stokes
constants are required, S`, ` ∈ {1,−1,−2,−3,−4,⋯}.

Multi–parameter transseries: all Stokes constants S
(k)
` , S̃

(k)
`

generically appear... There are now no simple closed–form
expressions... But still recursively solvable... [Aniceto–RS]
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Median Resummation and Nonperturbative Ambiguities

Global Picture in the Complex Borel Plane

Θ1

Θ=0

Θ2

Θ2+Π

Θ3

Θ4

Global definition requires cancelation of all ambiguities...

Cancelation only possible via explicit knowledge of the Stokes
automorphism ⇒ Need to know all singularities in the complex Borel
plane ⇒ Need to know all Stokes constants...

The theory of resurgent functions allows for resummation along any
direction in Borel plane ⇒ Family of sectorial analytic functions
{SθF (z)} ⇒ “Connect” sectorial solutions together...
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Median Resummation and Nonperturbative Ambiguities

What remains to be done?

Quantum–theoretical physical observables not only given by
perturbative resummation but adequate resummations of transseries
encoding full nonperturbative semiclassical data.

Ambiguity–free via median resummation: general nonperturbative
answer ... at least mathematically!

But to implement median resummation in different physical settings:

Identify full set of singularities in the complex Borel plane;
Find physical semiclassical interpretation for each singularity.

Question remains: How to make sure we identified all possible
singularities in Borel plane? ⇒ Resurgence and large–order!
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Resurgent Analysis II: Asymptotics
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Resurgent Analysis II: Asymptotics

Large–Order Dispersion Relation

Resurgence allows to understand full asymptotic (large–order)
behavior of all multi–instanton sectors.

Large–order dispersion relation from Cauchy’s theorem

F (z) = 1

2πi ∫
eiθ ⋅∞

0
dw

Disc θ F (w)
w − z

− ∮(∞)
dw

2πi
F (w)
w − z

.

Function F (z) has branch-cut along some direction (a Stokes
direction), θ in C, and analytic elsewhere.

Most situations show by scaling arguments that integral around
infinity does not contribute [Bender–Wu] ⇒ Cauchy’s theorem provides
connection between perturbative and nonperturbative expansions.
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Resurgent Analysis II: Asymptotics

Asymptotics of (One–Parameter) Perturbative Series

Via Stokes automorphism Sθ ≡ 1−Disc θ− , F (0)(z) has discontinuities

Disc 0 Φ0 = −
+∞
∑
`=1

S`1 e−`Az Φ`, Disc π Φ0 = 0.

From perturbative expansion and dispersion relation above

F
(0)
g ≃

+∞
∑
k=1

Sk
1

2πi
Γ (g − kβ)
(kA)g−kβ

+∞
∑
h=1

Γ (g − kβ − h + 1)
Γ (g − kβ)

F
(k)
h (kA)h−1,

here used asymptotic expansions for multi–instanton contributions.

Instructive to explicitly write down first terms in double–series,

F
(0)
g ≃ S1

2πi
Γ (g − β)

Ag−β (F
(1)
1 + A

g − β − 1
F

(1)
2 +⋯)+

+
S2

1

2πi
Γ (g − 2β)
(2A)g−2β

(F
(2)
1 + 2A

g − 2β − 1
F

(2)
2 +⋯) +⋯.
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Resurgent Analysis II: Asymptotics

Asymptotics of (One–Parameter) Perturbative Series

A 2A 3A 4A 5A 6A ...Fg
H0L

...
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Resurgent Analysis II: Asymptotics

Asymptotics of (One–Parameter) Multi–Instanton Series

Stokes automorphism yields discontinuities Disc 0 Φn and Disc π Φn.

From perturbative expansion and dispersion relation

F
(n)
g ≃

+∞
∑
k=1

(n + k

n
)

Sk
1

2πi
Γ (g − kβ)
(kA)g−kβ

+∞
∑
h=1

Γ (g − kβ − h)
Γ (g − kβ)

F
(n+k)
h (kA)h +

+S−1

2πi
(n − 1) Γ (g + β)

(−A)g+β
+∞
∑
h=1

Γ (g + β − h)
Γ (g + β)

F
(n−1)
h (−A)h +⋯

Relates coefficients of perturbative expansion @ n–instanton sector
with sums over coefficients of perturbative expansions @ all other
multi–instanton sectors.

All Stokes factors now needed ⇒ Analysis essentially boiled down
asymptotic problem to computing these Stokes factors!

Ricardo Schiappa (Lisbon, IST) Resurgent Transseries and Large N CERN, October 2013 33 / 69



Resurgent Analysis II: Asymptotics

Asymptotics of (One–Parameter) Multi–Instanton Series

A 2A 3A 4A 5A 6A ...

Fg
H3L

...
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Resurgent Analysis II: Asymptotics

Asymptotics of (Two–Parameter) Perturbative Series

Two–parameters transseries with instanton actions A and −A...

Already at perturbative level Stokes automorphism yields
discontinuities Disc 0 Φ(0∣0) and Disc π Φ(0∣0).

From perturbative expansion and dispersion relation

F
(0∣0)
g ≃

+∞
∑
k=1

(S(0)
1 )

k

2πi
Γ(g − βk0)
(kA)g−βk0

+∞
∑
h=1

Γ(g − βk0 − h + 1)
Γ(g − βk0)

F
(k ∣0)
h (kA)h−1 +

+
+∞
∑
k=1

(S̃(0)
−1 )

k

2πi
Γ(g − β0k)
(−kA)g−β0k

+∞
∑
h=1

Γ(g − β0k − h + 1)
Γ(g − β0k)

F
(0∣k)
h (−kA)h−1.

Leading asymptotics now clearly distinct! Schematically:

F
(0∣0)
g ≃

S
(0)
1

2πi
Γ(g − β)

Ag−β F
(1∣0)
1 +

S̃
(0)
−1

2πi
Γ(g − β)
(−A)g−β F

(0∣1)
1 +⋯.

Ricardo Schiappa (Lisbon, IST) Resurgent Transseries and Large N CERN, October 2013 35 / 69



Resurgent Analysis II: Asymptotics

Asymptotics of (Two–Parameter) Perturbative Series

A 2A 3A-A-2A-3A Fg
H0L
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Resurgent Analysis II: Asymptotics

Asymptotics of (Two–Parameter) Multi–Instanton Series

A 2A 3A 4A 5A-A-2A

Fg
H2L
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Resurgent Analysis II: Asymptotics

Asymptotics of (Two–Parameter) Multi–Instanton Series

New, distinct, visible, features in the multi–instantonic asymptotics:

Intricate asymptotics depending on many Stokes constants S
(k)
` , S̃

(k)
` .

In addition to familiar g ! growth of large–order coefficients find new
large–order growth of type g ! log g : dominant!

Precisely these asymptotics found in many examples!

Painlevé I equation (2d gravity) [Garoufalidis–Its–Kapaev–Mariño]

Painlevé I equation (2d gravity) [Aniceto–RS–Vonk]

One–cut quartic matrix model [Aniceto–RS–Vonk]

Painlevé II equation (2d supergravity) [RS–Vaz]

Two–cuts quartic matrix model [RS–Vaz]

Quantum mechanics with elliptic–type potential [Başar–Dunne–Ünsal]
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Resurgent Analysis II: Asymptotics

Asymptotics of Multi–Parameter Multi–Instanton Series

Θ1

Θ=0

Θ2

Θ2+Π

Θ3

Θ4
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Beyond the Perturbative Large N Expansion

Random Matrices and ’t Hooft Large N Limit

Large N limit without renormalons?... Matrix models!

Hermitian one–matrix model with polynomial potential V (z),

Z = 1

vol(U(N)) ∫
dM exp(− 1

gs
TrV (M)).

Consider limit N → +∞ while t = gsN fixed [’t Hooft]. In this case free
energy F = log Z has perturbative genus expansion,

F ≃
+∞
∑
g=0

Fg(t)g2g−2
s .

Large–order behavior Fg ∼ (2g)! renders topological genus expansion
as asymptotic approximation [Shenker].
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Beyond the Perturbative Large N Expansion

Motivation from Gaussian Example: V (z) = 1
2z

2

Saddle–point of Z described by spectral curve y2 = x2 − 4t,
asymptotic expansion as N → +∞ yields:

Fg(t) =
B2g

2g (2g − 2)
t2−2g , g ≥ 2.

Gaussian example simple enough to obtain closed form solution,

F (gs ,N) = 1

2
N (N log gs − log 2π) + log G2(N + 1).

How can one recover exact solution from asymptotic expansion?
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Beyond the Perturbative Large N Expansion

All Multi–Instanton Sectors from A–Cycles

Considering all multi–instanton sectors

F (n) = i
gs

( t

n
+ gs

2πn2
) × exp(−n

A(t)
gs

),

where instanton action is A(t) = 2πit ⇒ One–parameter transseries!

A
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Beyond the Perturbative Large N Expansion

Interacting Theory: Quartic Matrix Model

A1 A2 A3

N3N2

N1

Potential V (z) = 1
2z2 − λ

24z4 generically three–cuts solution.

One–cut solution y2 = (1 − λ
6
(z2 + 2α2))2 (z2 − 4α2).

Two–cuts Z2–symmetric solution y2 = 1
36λ

2z2 (z2 − a2) (z2 − b2).
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Beyond the Perturbative Large N Expansion

Resurgent Solution around One–Cut Background

Transseries solution to (quartic) string equation:

R(x){1 − λ
6
(R(x − gs) +R(x) +R(x + gs))} = x .

Requires both “instanton” actions +A and −A, leading to transseries:

R(x , σ1, σ2) =
+∞
∑
n=0

+∞
∑
m=0

σn
1σ

m
2 e−(n−m)A(x)/gs

+∞
∑

g=βnm

gg
s R

(n∣m)
g (x).

Fully nonperturbative solution ⇒ Via Stokes transitions can move
anywhere in (multi–cut) phase diagram.

Extensive resurgent checks of large–order asymptotics on both
perturbative and multi–instantonic sectors!
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Beyond the Perturbative Large N Expansion

Double–Scaling Limit and the Painlevé I Equation

DSL yields Painlevé I equation for u(z) = −F ′′
ds(z)

u2(z) − 1

6
u′′(z) = z .

Perturbative solution

u(z) ≃
√

z
+∞
∑
g=0

ug

z
5
2
g
,

yields recursion equation; obtain asymptotic expansion

u(z) ≃
√

z (1 − 1

48
z−

5
2 − 49

4608
z−5 +⋯).

A second order differential equation ⇒ Yields two instanton actions

A = ±8
√

3

5
.
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Beyond the Perturbative Large N Expansion

Two–Parameters Transseries Solution

General two–parameters transseries solution is (gs = z−5/4):

u(gs , σ1, σ2) =
+∞
∑
n=0

+∞
∑
m=0

σn
1σ

m
2 e−(n−m) A

gs
⎛
⎝

min(n,m)
∑
k=0

logk(gs) ⋅Φ[k]
(n∣m)(gs)

⎞
⎠
.

Checked nonperturbative sectors via resurgent large–order analysis.

Resurgence allows extremely accurate tests: at genus g = 30, including
six instantons corrections, results correct up to 60 decimal places!

5 10 15 20 25 30
0

10

20

30

40

50

60
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Beyond the Perturbative Large N Expansion

Description of Nonperturbative Sectors

Properties of Φ(n∣m) nonperturbative sectors

Φ(n∣m)(gs) =
min(n,m)
∑
k=0

logk(gs) ⋅Φ[k]
(n∣m)(gs).

Φ(n∣m), n /= m ⇒ generically has expansion in gs .
Φ(n∣n) ⇒ has expansion in g2

s and no logarithms.
Φ(n∣0) and Φ(0∣n) ⇒ no logarithms.

Logarithm sectors not independent: Φ
[k]
(n∣m)

= 1
k!

( 4(m−n)
√

3
)
k

Φ
[0]
(n−k ∣m−k)

.

Physical instanton series Φ(n∣0) as disk amplitudes of ZZ–branes.
Full interpretation of “generalized” instanton series open...
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Beyond the Perturbative Large N Expansion

Stokes Constants for the Quartic Matrix Model

Stokes constant S
(0)
1 computed from first principles (one–loop around

one–instanton) in matrix model and DSL, S
(0)
1 = −i 31/4

2
√
π

[David].

All other Stokes constants S
(k)
` , S̃

(k)
` so far only computed

numerically ⇒ Require extra physical input!

Precision From Order

S
(0)
1

−0.371257624642845568... i ∞ Φ
[0]

(0∣0)
1−g

S
(0)
2

0.500000000000000000... i 20 Φ
[0]

(1∣0)
2−g

S
(0)
3

−0.897849124725732240... i 13 Φ
[0]

(2∣0)
3−g

S
(1)
1

−4.879253817220057751... i 81 Φ
[0]

(1∣1)
1−g

S
(1)
2

9.856875980487862735... i 19 Φ
[0]

(2∣1)
2−g

S
(2)
1

−22.825711248125715287... i 36 Φ
[0]

(2∣2)
1−g

S̃
(2)
1

2.439626908610028875... i 112 Φ
[0]

(2∣0)
1−g

S̃
(3)
1

15.217140832083810191... i 108 Φ
[0]

(3∣1)
1−g

S̃
(4)
1

45.334204678679729580... i 108 Φ
[0]

(4∣2)
1−g

Many relations (reality constraints) between these constants!
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Beyond the Perturbative Large N Expansion

Transseries Framework: General Picture

Transseries ansatz for resurgent function,

F (σ,gs) = ∑
n∈Nk

σn e−
n⋅A
gs Φ(n)(gs).

For matrix models, minimal/topological strings:

“Generalized” instanton sectors labeled by n = (n1, . . . ,nk) ∈ Nk .
n = (0, . . . ,0) sector usual perturbative sector.
n = (n,0, . . . ,0) sector usual multi–instanton sector.
Expansions Φ(n) include asymptotic series and logarithms.
Generically Ai ∈ C ⇒ Many new sectors!
Sectors ni /= nj , ∀i,j ⇒ Generically Φ(n) has expansion in gs .
Sectors with n ⋅A = 0 ⇒ Generically Φ(n) has expansion in g2

s .
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Stokes and Anti–Stokes Phases

Holomorphic Effective Potential

What exactly controls saddle–points/asymptotics of matrix integral?

In diagonal gauge, M = diag (λ1, . . . , λN), holomorphic effective
potential

Vh;eff(λ) = ∫
λ

a
dz y(z)

appears at leading order in large N expansion of the matrix integral

Z ∼ ∫
N

∏
i=1

dλi exp(− 1

gs

N

∑
i=1

Vh;eff(λi) +⋯).

Multi–dimensional ordinary integral... but hard to evaluate explicitly!

Zero–locus V0 = {z ∈ C ∣ReVh;eff(z) = 0} constructs “spectral
network” suitable for (non–linear) steepest–descent analysis.
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Stokes and Anti–Stokes Phases

Multi–Instanton Sectors from B–Cycles

B

B

Instantons from B–cycles [David, Seiberg–Shih, Mariño–RS–Weiss, RS–Vaz].

Stokes lines (“jumps” in Borel plane): Im (A(t)
gs

) = 0.

Anti–Stokes lines (phase boundaries): Re (A(t)
gs

) = 0.
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Stokes and Anti–Stokes Phases

Quartic Phase Diagram for Complex ’t Hooft Coupling

P1P2 III

-2 -1 0 1

-2

-1

0

1

2

Three–cuts anti–Stokes phase [Eynard–Mariño, Mariño–Putrov–Pasquetti, Aniceto–RS–Vonk].

Trivalent–tree phase [David, Bertola, RS–Vaz].
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Stokes and Anti–Stokes Phases

Partition Function: Grand–Canonical & Transseries

Anti–Stokes phase with 3 cuts, characterized by fillings N1,N2,N3.

Grand–canonical partition function as sum over all possible
arrangements of eigenvalues across cuts [Bonnet–David–Eynard]

Z(ζ1, ζ2, ζ3) = ∑
N1+N2+N3=N

ζN1
1 ζN2

2 ζN3
3 Z(N1,N2,N3).

In Stokes and anti–Stokes regions: dominant canonical configuration
Z2 symmetric ⇒ Reference configuration N⋆

1 = N⋆
3 and N⋆

2 = N − 2N⋆
1 ,

Z(σ1, σ2) =
N⋆

2

∑
n=−2N⋆

1

N⋆
1 +n

∑
m=−N⋆

1

σn
1σ

m
2 Z(N⋆

1 +m,N⋆
2 − n,N⋆

1 + n −m)

= Z(N⋆
1 ,N

⋆
2 ,N

⋆
1 )

N⋆
2

∑
n=−2N⋆

1

N⋆
1 +n

∑
m=−N⋆

1

σn
1σ

m
2 Z (n,m).
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Stokes and Anti–Stokes Phases

Characterization of Multi–Instanton Sectors

Change variables t = t1 + t2 + t3, s = −t1 − t3, u = t1 − t3

Z (n,m) = q
n2

2 q̃
(n+2m)2

2 exp(−nA

gs
) {1 +O(gs)},

A = ∂sF0, q = exp(∂2
s F0), q̃ = exp(∂2

uF0).

At large N⋆
1 , N⋆

2 extend sum from −∞ to +∞, exchange sum over n,
m with gs expansion, and write Z in terms of Jacobi theta functions:

ϑ2 (z ∣q) = ∑
n∈Z

q(n+ 1
2
)2

zn+ 1
2 , ϑ3 (z ∣q) = ∑

n∈Z
qn2

zn.
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Stokes and Anti–Stokes Phases

Multi–Cuts, Multi–Instantons and Theta Functions

Partition function at order g0
s (with z = σ2

1
σ2

e−
2A
gs and z̃ = σ2)

Z0 = Z⋆
0 (ϑ2 (z ∣q2)ϑ2 (z̃ ∣ q̃2) + ϑ3 (z ∣q2)ϑ3 (z̃ ∣ q̃2) ).

Free energy from Jacobi triple product

logϑ3 (z ∣q) = − 1

12
log q + log η(q) +

+∞
∑
k=1

(−1)k

k

zk + z−k

qk − q−k
,

with η(q) Dedekin’s eta function.

Distinct reference backgrounds (described by distinct instanton
sectors) will be either exponentially suppressed or exponentially
enhanced, with respect to reference configuration...
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Stokes and Anti–Stokes Phases

Trivalent Phase Numerics N = 25, t = 5

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Transseries construction? Borel singularities and instantons? Asymptotics
more stringy–like rather than theta–like? Strong ’t Hooft coupling?
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Closed String Analysis and the Holomorphic Anomaly

Matrix Models as Strings on Calabi–Yau Geometries

Topological string B–model on local Calabi–Yau geometries has large
N duality to matrix models [Dijkgraaf–Vafa]. Also true for generic mirrors of
toric geometries [Mariño, Bouchard–Klemm–Mariño–Pasquetti].

Non–trivial information about this six–dimensional CY geometry:
encoded in Riemann surface ⇔ spectral curve of matrix model.

In Stokes regions large N duality yields B–model closed strings ⇒
Will closed string theory preserve the overall picture?

Start by considering simpler examples: B–model on mirrors of
KP2 = O(−3)→ P2 and KP1×P1 = O(−2,−2)→ P1 × P1 (fibrations over
curves) ⇒ Fully solved perturbatively [Haghighat–Klemm–Rauch].
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Closed String Analysis and the Holomorphic Anomaly

Perturbative Holomorphic Anomaly Equations

Holomorphic anomaly equations [Bershadsky–Cecotti–Ooguri–Vafa]

∂F
(0)
g

∂S ij
= 1

2

⎛
⎝
DiDjF

(0)
g−1 +

g−1

∑
h=1

∂iF
(0)
g−h ∂jF

(0)
h

⎞
⎠
, g ≥ 2.

Here Di covariant derivative in complex structure moduli space
(holomorphic dependence); S ij propagators or “potentials” for
Yukawa couplings (also anti–holomorphic dependence).

Perturbative solution is polynomial in propagators [Yamaguchi–Yau,

Alim–Lange–Mayr]. For local CY only need S ij ,

F
(0)
g = Pol (S ij ; 3g − 3), g ≥ 2.

F
(0)
g (zi , z̄i) depends on holomorphic and anti–holomorphic complex

structure moduli ⇒ What is large–order behavior?
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Closed String Analysis and the Holomorphic Anomaly

Nonperturbative Holomorphic Anomaly Equations?

F
(0)
g (zi , z̄i) F

(0)
g (zi)

A(zi , z̄i) A(zi)

versus

F
(0)
g (zi , z̄i) F

(0)
g (zi)

A(zi)

Rewrite holomorphic anomaly equations for partition function Z ⇒
Naturally solved with transseries ansatz :

Z = exp(∑
n

σn F (n)).
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Closed String Analysis and the Holomorphic Anomaly

Nonperturbative Holomorphic Anomaly Equations

Complex structure moduli space of dimension one (single holomorphic
coordinate z and single propagator S); one–parameter transseries:

Instanton action is holomorphic: ∂SA = 0.
Nonperturbative version of holomorphic anomaly equations (A(n) ≡ nA):

(∂S −
1

2
(∂zA

(n))
2
)F

(n)
g = −

g

∑
h=1

D(n)
h F

(n)
g−h+

+1

2

n−1

∑
m=1

g−1

∑
h=0

(∂zF
(m)
h−1 − ∂zA

(m)F (m)
h ) (∂zF

(n−m)
g−2−h − ∂zA

(n−m)F (n−m)
g−1−h ).

...Fully generalizable to multi–parameter transseries and
multi–dimensional complex moduli spaces... [Couso–Edelstein–RS–Vonk]
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Closed String Analysis and the Holomorphic Anomaly

Transseries Solution of Holomorphic Anomaly Equations

Multi–instanton free energies have the form

F
(n)
g = ∑

{γn}
e

1
2
a(n;γn)(∂zA)2S Pol (S ; 3 (g + 1 − λ (n;γn))).

Depend on purely combinatorial data {a, λ, γ} encoded in generating
function

Φ =
+∞
∏
m=1

1

1 − ϕEm2 ρm
=
+∞
∑
n=0

ρn ∑
{γn}

E a(n;γn)ϕλ(n;γn) (1 +O(ϕ)).

One and two instanton examples:

F
(1)
g = e

1
2
(∂zA)2S Pol (S ; 3g),

F
(2)
g = e

1
2

2(∂zA)2S Pol (S ; 3(g + 1 − 2))+

+e
1
2

4(∂zA)2S Pol (S ; 3(g + 1 − 1)).
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Closed String Analysis and the Holomorphic Anomaly

Resurgent Properites of Closed String Transseries

Instanton action holomorphic ⇒ Can still compute A as appropriate
combinations of periods in the geometry [Drukker–Mariño–Putrov].

Calculate multi–instanton sectors F
(n)
g (z ,S) whose large–order

behavior matches resurgent predictions ⇒ In particular
“anti–holomorphic large–order growth” is mild (sub–leading).

Holomorphic ambiguities may be fixed at conifold points (or else from
resurgence!) ⇒ Full construction shows nonperturbative integrability
of the holomorphic anomaly equations!
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Closed String Analysis and the Holomorphic Anomaly

Local P2: Checks of Instanton Action(s)

1 7.714613 6 9 12 Ψ

" 4 Π
2

3

4 Π2

Im!A"

Conifold

Large Radius
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Outlook

Summary and Future Directions

Wrap–up:

Observables described by resurgent functions/transseries: median
resummation cancels all ambiguities ⇒ Define observables
nonperturbatively starting out from perturbation theory.
Constructed and rigorously tested resurgent solutions in many models,
going beyond perturbative large N expansion ⇒ Rich phase diagram ⇒
Holographically dual description within (stringy) Stokes phase.

Upcoming:

Fully describe generalized instanton sectors: Stokes constants?
Deal with trivalent–tree phase: what are its asymptotics?
What is (grand–canonical) transseries partition function?
Interesting to extend to multi–matrix models and QFT and gauge
theories... Need fully general results on resurgent transseries?
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Appendix

Based on work in collaboration with:

Inês Aniceto, Ricardo Couso, José Edelstein, Marcos Mariño,
Sara Pasquetti, Ricardo Vaz, Marcel Vonk, Marlene Weiss,
0711.1954, 0809.2619, 0907.4082, 1106.5922,
1302.5138, 1308.1115, 1308.1695.

I. Aniceto, R. Couso, J. Edelstein, R. Vaz, M. Vonk,
arXiv: Upcoming...
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