Physics at Hadron Colliders

Lecture IV

Beate Heinemann

University of California, Berkeley Lawrence Berkeley National Laboratory

Outline

Lecture I: Introduction

- Outstanding problems in particle physics
 - and the role of hadron colliders
- Current and near future colliders: Tevatron and LHC
- Hadron-hadron collisions

Lecture II: Standard Model Measurements

- Tests of QCD
- Precision measurements in electroweak sector.

Lecture III: Searches for the Higgs Boson

- Standard Model Higgs Boson
- Higgs Bosons beyond the Standard Model

Lecture IV: Searches for New Physics

- Supersymmetry
- High Mass Resonances (Extra Dimensions etc.)

The Unknown beyond the Standard Model

- Many good reasons to believe there is as yet unknown physics beyond the SM:
 - Dark matter + energy, matter/anti-matter asymmetry, neutrino masses/mixing +many more (see 1st lecture)
- Many possible new particles/theories:
 - Supersymmetry:
 - Many flavours
 - Extra dimensions (G)
 - New gauge groups (Z', W',...)
 - New fermions (e*, t', b', ...)
 - Leptoquarks
- Can show up!
 - As subtle deviations in precision measurements
 - In direct searches for new particles

Supersymmetry (SUSY)

- SM particles have supersymmetric partners:
 - Differ by 1/2 unit in spin
 - Sfermions (squark, selectron, smuon, ...): spin 0
 - gauginos (chargino, neutralino, gluino,...): spin 1/2
- No SUSY particles found as yet:
 - SUSY must be broken: breaking mechanism determines phenomenology
 - More than 100 parameters even in "minimal" models!

What's Nice about SUSY?

- Introduces symmetry between bosons and fermions
- Unifications of forces possible
 - SUSY changes running of couplings
- Dark matter candidate exists:
 - The lightest neutral gaugino
 - Consistent with cosmology data
- No fine-tuning required
 - Radiative corrections to Higgs acquire SUSY corrections
 - Cancellation of fermion and sfermion loops
- Also consistent with precision measurements of M_W and M_{top}
 - But may change relationship between M_W, M_{top} and M_H

SUSY Comes in Many Flavors

- Breaking mechanism determines phenomenology and search strategy at colliders
 - GMSB:
 - Gravitino is the LSP
 - Photon final states likely
 - mSUGRA
 - Neutralino is the LSP
 - Many different final states
 - Common scalar and gaugino masses
 - AMSB
 - Split-SUSY: sfermions very heavy

- Conserved: Sparticles produced in pairs
 - Yields natural dark matter candidate
- Not conserved: Sparticles can be produced singly
 - constrained by proton decay if violation in quark sector
 - Could explain neutrino oscillations if violation in lepton sector

Mass Unification in mSUGRA

- Common masses at GUT scale: m₀ and m_{1/2}
 - Evolved via renormalization group equations to lower scales
 - Weakly coupling particles (sleptons, charginos, neutralions) are lightest

A Typical Sparticle Mass Spectrum

Sparticle Cross Sections

SUSY compared to Background

- Cross sections rather low
 - Else would have seen it already!
- Need to suppress background efficiently

Strategy for SUSY Searches

- Minimal Supersymmetric Standard Model (MSSM) has more than 100 parameters
 - Impossible to scan full parameter space
 - Many constraints already from
 - Precision electroweak data
 - Lepton flavour violation
 - Baryon number violation
 - **...**
- Makes no sense to choose random set
 - Use simplified well motivated "benchmark" models
 - Ease comparison between experiments
- Try to make interpretation model independent
 - E.g. not as function of GUT scale SUSY particle masses but versus EWK scale SUSY particle masses
 - Limits can be useful for other models

Generic Squarks and Gluinos

- Squark and Gluino production:
 - Signature: jets and
 *
 _t

Strong interaction => large production cross section

```
for M(g) \approx 300 GeV/c<sup>2</sup>:

1000 event produced/ fb<sup>-1</sup>

for M(g) \approx 500 GeV/c<sup>2</sup>:

1 event produced/ fb<sup>-1</sup>
```

Signature depends on q and g Masses

- Consider 3 cases:
 - 1. $m(\tilde{g}) < m(\tilde{q})$

2. m(g̃)≈m(q̃)

3. $m(\tilde{g}) > m(\tilde{q})$

Optimize for different signatures in different scenarios

Selection and Procedure

- Selection:
 - Large missing E_T
 - Due to neutralinos
 - Large H_⊤
 - $H_T = \sum E_T^{jet}$
 - Large Δφ
 - Between missing E_T and jets and between jets
 - Suppress QCD dijet background due to jet mismeasurements
 - Veto leptons:
 - Reject W/Z+jets, top

Procedure:

- Define signal cuts based on background and signal MC studies
- 2. Select control regions that are sensitive to individual backgrounds
- 3. Keep data "blind" in signal region until data in control regions are understood
- 4. Open the blind box!

Missing Energy can be caused by Problems

- Data spectrum contaminated by
 - Noise
 - Cosmic muons showering
 - Beam halo muons showering
- Needs "cleaning up"!
 - track matched to jet
 - electromagnetic energy fraction
 - Removal of hot cells
 - Topological cuts against beam-halo

QCD Dijet Rejection Cut

- Cut on Δφ(jet, E_T^{miss})
- Used to suppress and to understand QCD multi-jet background
 - Extreme test of MC simulation

W+jets, Z+jets and Top background

- Background sources:
 - W/Z+jets, top
 - Suppressed by vetoes:
 - Events with jet with EM fraction>90%
 - Rejects electrons
 - Events with isolated track
 - Rejects muons, taus and electrons
- Define control regions:
 - W/Z+jets, top
 - Make all selection cuts but invert lepton vetoes
 - Gives confidence in those background estimates

A Nice Candidate Event!

But there is no clear signal...

Cross Section Limits

- No excess in data
 - Evaluate upper limit on cross section
 - Find out where it crosses with theory
- Theory has large uncertainty: ~30%
 - Crossing point with theory lower bound ~ represents limit on squark/gluino mass

Squark and Gluino Mass Limits

- No evidence for excess of events:
 - Constraints on masses
 - M(g)>308 GeV
 - M(q̃)>379 GeV
- Represented in this plane:
 - Rather small model dependence as long as there is R-parity violation

Exclusion of GUT scale parameters

- Nice interplay of hadron colliders and e⁺e⁻ colliders:
 - Similar sensitivity to same high level theory parameters via very different analyses
 - Tevatron is starting to probe beyond LEP in mSUGRA type models

SUSY at the LHC

- Cross section much higher, e.g.
 - for m(g̃)=400 GeV: σ_{LHC}(g̃g)/ σ_{Tevatron}(g̃g̃)≈20,000
 - for m(q̃)=400 GeV: σ_{LHC}(g̃g)/ σ_{Tevatron}(g̃g)≈1,000
 - Since there are a lot more gluons at the LHC (lower x)

- At higher masses more phase space to decay in cascades
 - Results in additional leptons or jets

SUSY at the LHC

- Example: m(q)~600 GeV, m(g)~700 GeV
- Require 4 jets, large missing E_T and 0 or 1 lepton

- "Effective Mass" = sum of p_T of all objects
- Similar and great (!) sensitivity in both modes

SUSY Discovery Reach

- With 1 fb⁻¹:
 - Sensitive to m(g)≤1000 GeV/c²
- With 10 fb⁻¹:
 - Sensitive to m(g)≤1800 GeV/c²
- Amazing potential!
 - If data can be understood
 - If current MC predictions are ≈ok

What kind of SUSY is it?

- We will need to do SUSY spectroscopy!
 - Rate of 0 vs 1 vs 2 vs n leptons
 - Sensitive to neutralino masses
 - Rate of tau-leptons:
 - Sensitive to tanβ
 - Kinematic edges
 - obtain mass values
 - Detailed examination of inclusive spectra
 -

That would be my dream scenario! It's where the real fun starts!!

If SUSY gets discovered at the LHC...

- Measure dark matter particle mass with ~5 GeV precision?
 - Rather model-dependent... need to understand the model we are in!
- May need the ILC to really understand SUSY!

High Mass Resonances

Resonances or Tails

- New resonant structure:
 - New gauge boson:
 - Z' \rightarrow ee, $\mu\mu$, $\tau\tau$, tt
 - W' \rightarrow ev, $\mu\nu$, $\tau\nu$, tb
 - Randall-Sundrum Graviton:
 - G→ee, μμ, ττ, γγ, WW, ZZ,...
- Tail:
 - Large extra dimensions [Arkani-Hamed, Dvali, Dimopoulos (ADD)]
 - Many many many resonances close to each other:
 - "Kaluza-Klein-Tower": ee, μμ, ττ, γγ, WW, ZZ,…
 - Contact interaction
 - Effective 4-point vertex
 - E.g. via t-channel exchange of very heavy particle
 - Like Fermi's β-decay

Dilepton Selection

- Two high momentum leptons
 - irreducible background is Drell-Yan production
 - Other backgrounds:
 - Jets faking leptons: reject by making optimal lepton ID cuts
 - WW, diphoton, etc. very small
- Can search for
 - Dielectrons
 - Dimuons
 - Ditaus
 - Electron+muon
 - flavor changing
 - Dijets
 -

Neutral Spin-1 Bosons: Z'

- 2 high P_T leptons: ee, μμ or eμ
- Data look like they agree well with background
 - Let's evaluate this more closely!

How consistent are the data with the SM?

- Calculate probability of data vs SM prediction at each mass:
 - Mass window size adapted to mass resolution (~3%)
- At 330 GeV the probability is only 1%!
 - But this happens very often when scanning over a large mass range
 - 10⁻⁵ would correspond to 3σ evidence

Interpreting the Mass plots

- No evidence for any deviation from Standard Model => Set limits on new physics
 - Set limits on cross section x branching ratio
 - This is model independent, i.e. really what we measure
 - Any theorist can overlay their favorite curve
 - It remains valid independent of changes in theory
 - Can also set limits on Z' mass within certain models
 - This is model dependent
 - Nice though for comparing experiments, e.g. LEP vs Tevatron vs LHC

For SM couplings:

	Z′→ee	Z'→μμ
limit	>923 GeV	>735 GeV

Z' type particles should be easy at LHC!

- Signal creates clear peak
- Main background is well understood theoretically
- Applies to any narrow resonances decaying to
 - electrons, muons, photons
- Muons suffer from worsening resolution at high momentum

Z' → ee. SSM

F. Gianotti, M. Mangano

Mass	Expected events for 10 fb ⁻¹ (after all cuts)	IL dt needed for discovery (corresponds to 10 observed evts)
1 TeV	~ 1600	~ 70 pb ⁻¹
1.5 TeV	~ 300	~ 300 pb ⁻¹
2 TeV	~ 70	~ 1.5 fb ⁻¹

Probe ~1 TeV range already with 100 pb⁻¹

Conclusions: Lecture IV

- Searches for Physics Beyond the Standard Model are extremely important
 - This can revolutionize our subject and solve many (or at least a few) questions
- I showed you two classic/important examples:
 - SUSY
 - Squarks and Gluinos
 - If it exists we will have lots of fun understanding what we've found
 - High mass resonances
- Not found any new physics (yet)
 - Tevatron ever improving and LHC coming soon!

If Supersymmetry solves indeed current problems in our theory it will be found at the LHC

Overall Conclusions

- Hadron colliders are powerful tools to understand Nature:
 - Probing the electroweak and the strong sector of the Standard Model
 - Looking for the unknown
- Tevatron
 - has further established the Standard Model
- We are entering a truly new regime with the LHC
 - Probing distances of 10⁻¹⁹ m aka the *Tera*-scale
 - amazing discovery potential for
 - the Higgs boson (if it exists) or something new
 - Supersymmetry or other new physics at ~TeV masses

Stay tuned ... in a few years we may have to rewrite the text books!

Finally... enjoy your stay here at CERN and all the best for your next steps!

Email me any time: Beate.Heinemann@cern.ch