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Outline

¢ “Executive Summary”
¢ The whole story in a nutshell

¢ Some more detalils
¢ Introduction
¥ Asimple example : Z decays
¢ A more complicated example : Jets

¢ How is it done in practice?

¥ Track and |
Calorimeter energy reconstruction

¥ High-level algorithms : Jets
¢ The computing part

@ Summary

¢ Disclaimer : Several slides based on past CSS lectures by B. Jacobsen
¢ thanks also to J. Weng, T. Punz, A. Valassi
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The whole lecture In
a hutshell

‘But you should not leave immediately after this....”
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¢ Have to collect data from many channels on
many sub-detectors (millions)
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¢ Have to collect data from many channels on
many sub-detectors (millions)
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¢ do the same with a simulation s aEew

¢ Have to collect data from many channels on
many sub-detectors (millions)

¢ Decide to read out everything or throw event

away (Trigger)

¢ Build the event (put info together)
¢ Store the data

¢ Analyze them
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¢ reconstruction, user analysis algorithms,
data volume reduction
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¢ correct data for detector effects
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' Have to collect data from many channels on
many sub-detectors (millions)

Decide to read out everything or throw event
away (Trigger)

Build the event (put info together)
Store the data

Analyze them

\J

¢ reconstruction, user analysis algorithms,
data volume reduction

do the same with a simulation T e
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®m Data are stored sequentially in files...

Nch (charged tracks)
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Pcha

(Momentum of each track):
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PX Py pz
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(Charge of each track):
{_111}
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®m Data are stored sequentially in files...

Nch (charged tracks)
2
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Simulation P s

process and

detector
simulation

> Simulation of many
- g - —'g”/ = (millions) of events

Exactly
the same

steps as
understand detector response

f h and analysis parameters
O I" t e (lost particles, resolution,
efficiencies, backgrounds )

¢ simulate physics process
e.g. e*e  — hadrons
or pp — jets

€

plus the detector response
to the produced particles

*€c

data

*€c

and compare to real data

¢ Note : simulations present
from beginning to end of
experiment, needed to make
design choices
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And now let’s go a
little bit more into the
detalils ...

CSS08 G. Dissertori : From raw data to physics results



Our Task P s

Reality We use experiments
to inquire about what

“reality” (nature) does
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Our Task (P s

We use experiments
to inquire about what
“reality” (nature) does

The goal is to understand
in the most general; that's
usually also the simplest.

- A. Eddington
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Our Task (P s

We use experiments
to inquire about what
“reality” (nature) does

We intend to fill this gap

The goal is to understand
in the most general; that's
usually also the simplest.

- A. Eddington
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Theory... (P s

W=, Z, ~ kinetic
energies and eg )

self-interactions the Standard Model

L=-1W,, Ww_1p, Bw
3! / /

and their
interactions with

W=, 7,7

W=, 7, ~ and
Higgs masses

lepton and quark
F LA (z’ﬁ'}# _ g'lT _ WF* B {;’%Bﬁ) I Kinetic energies
{ and couplings

masses and
coupling to Higgs

B o lepton and quark
—(G1LéR + GoLéR + h.c.)

L. ... left-=handed fermion (! or ¢) doublet
R ... right-handed fermion singlet

L from QCD: 1
C=q(iv'0,—m)q—g(@'1.q9)G, — 1{}‘;1;{;’{:”
“_u-'—"' x..__v_.f
Ekin(fl} Interaction Ekin(fi';)
q, g includes

self-interaction
between gluons
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between gluons

( ETH Institute for
. Particle Physics

eg.
the Standard Model

has parameters

T=coupling constants

MasSSeS

predicts:

cross sections,
branching ratios,
lifetimes,

G. Dissertori : From raw data to physics results 13



@ Experiment...

CSS08

KOX016840102

0x01e84c20:
0x01e84c30:
0x01e84c40:
0x01e84c50:
0x01e84c60:
0x01e84c70:
0x01e84c80:
0x01e84c90:
0x01e84ca0:
0x01e84cbO:
0x01e84ccO:
0x01e84cdO:
0x01e84ceO:

0x01e84cf0:

0x01e84d00:
0x01e84d10:
0x01e84d20:
0x01e84d30:
0x01e84d40:
0x01e84d50:
0x01e84d60:
0x01e84d70:
0x01e84d80:

0x01e84d90:
\_

~

0x01e8 0x8848 0x01e8 0x83d8 0x6¢73 0x6172 0x7400 0x0000

0x0000 0x0019 0x0000 0x0000 0x01e8 0x4d08 0x01e8 0x5b7c
0x01e8 0x87e8 0x01e8 0x8458 0x7061 0x636b 0x6167 0x6500
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8788 0x01e8 0x8498 0x7072 0x6f63 0x0000 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8824 0x01e8 0x84d8 0x7265 0x6765 0x7870 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8838 0x01e8 0x8518 0x7265 0x6773 0x7562 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8818 0x01e8 0x8558 0x7265 0x6e61 0x6d65 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8798 0x01e8 0x8598 0x7265 0x7475 0x726e 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x87ec 0x01e8 0x85d8 0x7363 0x616e 0x0000 0x0000

0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x87e8 0x01e8 0x8618 0x7365 0x7400 0x0000 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x87a8 0x01e8 0x8658 0x7370 0x6¢69 0x7400 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8854 0x01e8 0x8698 0x7374 0x7269 0x6e67 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x875¢c 0x01e8 0x86d8 0x7375 0x6273 0x7400 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c

0x01e8 0x87¢c0 0x01e8 0x8718 0x7377 0x6974 0x6368 OXOOOOJ

G. Dissertori : From raw data to physics results
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4 ETH Institute for
Particle Physics

eg.
1/30t of an event in
the BaBar detector

¢ get about 100 evts/sec

14



@ Experiment...

s

0x01e84cf0:

0x01e8

0x01e84c10:
0x01e84c20:
0x01e84c30:
0x01e84c40:
0x01e84c50:
0x01e84c60:
0x01e84c70:
0x01e84c80:
0x01e84c90:
0x01e84ca0:
0x01e84cbO:
0x01e84ccO:
0x01e84cdO:
0x01e84ceO:

0x01e84d00:
0x01e84d10:
0x01e84d20:
0x01e84d30:
0x01e84d40:

0x01e8 0x8848 0x01e8 0x83d8 0x6¢73 0x6172 0x7400 0x0000
0x0000 0x0019 0x0000 0x0000 0x01e8 0x4d08 0x01e8 0x5b7c
0x01e8 0x87e8 0x01e8 0x8458 0x7061 0x636b 0x6167 0x6500
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8788 0x01e8 0x8498 0x7072 0x6f63 0x0000 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8824 0x01e8 0x84d8 0x7265 0x6765 0x7870 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8838 0x01e8 0x8518 0x7265 0x6773 0x7562 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8818 0x01e8 0x8558 0x7265 0x6e61 0x6d65 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8798 0x01e8 0x8598 0x7265 0x7475 0x726e 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x87ec 0x01e8 0x85d8 0x7363 0x616e 0x0000 0x00

0x0000 0x0019 0x0000 0x0000 0x0000 0x0000
0x01e8 0x87e8 0x01e8 0x8618 0x73 00 0x0000 0x0000
0x0000 0x0019 0x0000 0 x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x87a e8 0x8658 0x7370 0x6¢69 0x7400 0x0000
0 x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c
0x01e8 0x8854 0x01e8 0x8698 0x7374 0x7269 0x6e67 0x0000

0x01e84d60:

0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c

0x01e84d70:
0x01e84d80:

0x01e84d90:
\_

0x01e8 0x875¢c 0x01e8 0x86d8 0x7375 0x6273 0x7400 0x0000
0x0000 0x0019 0x0000 0x0000 0x0000 0x0000 0x01e8 0x5b7c

0x01e8 0x87¢c0 0x01e8 0x8718 0x7377 0x6974 0x6368 OXOOOOJ

CSS08

4 ETH Institute for
Particle Physics

. €g.

1/30t of an event in
the BaBar detector

¢ get about 100 evts/sec

“Address” :

¢ which detector element
took the reading

/“Value(s)” ;
¢ what the electronics
wrote out

G. Dissertori : From raw data to physics results 14



Making the connection P st

The imperfect measurement of a
(set of) interactions in the detector

A small number of general equations, with
some parameters (poorly or not known at all)

. Dissertori : From raw data to physics results 15

CSS08



Making the connection D e

The imperfect measurement of a
(set of) interactions in the detector

A unique happening:
eg. Run 23458, event 1345
which containsa Z — u*u~- decay

A small number of general equations, with
some parameters (poorly or not known at all)

. Dissertori : From raw data to physics results 15

CSS08



Making the connection D e

The imperfect measurement of a
(set of) interactions in the detector

A unique happening:
eg. Run 23458, event 1345
which containsa Z — u*u~- decay

cross sections (probabilities for interactions),
branching ratios (BR), ratios of BRs, specific
lifetimes, ...

A small number of general equations, with
some parameters (poorly or not known at all)

. Dissertori : From raw data to physics results 15
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Making the connection D s

The imperfect measurement of a
(set of) interactions in the detector

A unique happening:
eg. Run 23458, event 1345
which containsa Z — u*u~- decay

Analysis . We “confront theory with experiment” by comparing
the measured quantity (observable) with the prediction.

cross sections (probabilities for interactions),
branching ratios (BR), ratios of BRs, specific
lifetimes, ...

A small number of general equations, with
some parameters (poorly or not known at all)

. Dissertori : From raw data to physics results 15
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A “simple” example

16
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A simple example D e

¢ Measurement of e*e- annihilation into hadrons and muons:

sum over all quark flavours, which can be produced at a
certain e*e- centre-of-mass e\nergy Ecwm, ,9.d, u, s, c, b, t

ogleTe™ — qrqr |
R -— ( q7qs) _ Nc Zf ZJQc

olete” — ptp~)

electric charges of quarks,

Number of colours o
in units of electron charge

CSS08 G. Dissertori : From raw data to physics results 17



e

A simple example P et

¢ Measurement of e*e” annihilation into hadrons and muons:

Hadronic final state
¢ many charged tracks ( >~ 10 )

sum of energy deposits in calorimeters
not too far from centre-of-mass energy

*€c

sum over all quark flavours, which can be produced at a
certain e*e- centre-of-mass e\nergy Ecwm, ,9.d, u, s, c, b, t

l

electric charges of quarks,
in units of electron charge

Number of colours

CSS08 G. Dissertori : From raw data to physics results 17



r

A simple example P S

Hadronic final state
¢ many charged tracks ( >~ 10 )

sum of energy deposits in calorimeters
not too far from centre-of-mass energy

*€c

sum over all quark flavours, which can be produced at a
certain e*e- centre-of-mass e\nergy Ecwm, ,9.d, u, s, c, b, t

X

electric charges of quarks,

Number of colours o
in units of electron charge

Muonic final state

¢ two charged tracks, approx. back-to-back,
with expected momentum ( ~ 1/2 Ecm )

¢ right number of muon hits in outer layers
(muons very penetrating, traverse whole detector)

¢ expected energy in calorimeter
(electrons deposit all their energy, muons leave little)

CSS08 G. Dissertori : From raw data to physics results 17



A “simple” counting experiment ( s

Run=15%%5 Evt=210

Hadron
final
states

Muon
final
states

CSS08 "



@ 4 ETH Institute for
= Particle Physics

“ ALEPH DALI Run=15768 Evt=5906

Not muonic
rather hadronic
final state

19
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4 ETH Institute for
Particle Physics

No muons,
rather electron-positron
final state

)/
al

20
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@ 4 ETH Institute for
Particle Physics
= —0rw

“ ALEPH DALI Run=15995 Evt=835

21
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ETH Institute for
Particle Physics

BRun=15%9%5 E-~-£=55

e -»>q q —> hadrons

Not muonic
rather hadronic
final state

G. Dissertori : From raw data to physics results






7

rather Zdecay to ¢t "7, fD ETH Institute for
one tau decayed to electron + 2 neutrinos
the other tau decayed to muon + 2 neutrinos

Particle Physics

G. Dissertori : From raw data to physics results



ETH Institute for
Particle Physics

Not muonic, rather hadronic final state

— Fun=15995  Evt=349
—> g g —>hadrons

And soon.... =

G. Dissertori : From raw data to physics results
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e S u _ Particle Physics

For Ecm below the Z peak and above the T resonance we expect:

R=N:Y ,23=Nc-[(3)?+(-3)2+ 32+ 3+ (-3I=N- &
u d ,

CSSo08 G. Dissertori : From raw data to physics results 26



( ETH Institute for
e S u . Particle Physics

For Ecm below the Z peak and above the T resonance we expect:

(5P +H (=37 + (-

d

)
oy
BURALL
S .
<
< .
©
\fif_} ]
<
N ]
SRR
||

[ | IIl|I||

T IIIII||
| | |JI|J||

6 quarks,

o 0 -
0 | “/ \'\‘ ~ 3 3 colours (45/9)
' |

_____ Y — - NUETTY oS- | S quarks,
-+ = 3 colours (33/9)

—————————— - 3 5 quarks,
1 colour ( 11/9)

|Il:m

10
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Result (P it

For Ecm below the Z peak and above the T resonance we expect:

R=NcY , 22=Ne-[(3+ (12 + (-2 + )2+ (=D =N ¥

n T ! I R lllll’i‘ 7 AtZpeak:
B _—
109 JIy T Z *1 | have to include also
= y(2S) ;1 5 couplings to Z
10% = \ —=
- / . 6 quarks,
S \'\‘ |~ > 3colours (45/9)
10 — e |
- - — - N . NPT LS =1 5 quarks,
= - - - - i L A i il Tl -+ =2 3 colours (33/9)
, O _ - ——------—-1 3 5quarks,
- E 1 colour ( 11/9)
-1 B -
10
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Result P s

For Ecm below the Z peak and above the T resonance we expect:

At Z peak :

| _—>

have to include also
couplings to Z

S,

S

oy

[T |||||||

<

A

DO

W

oS
T emy_ea
B S

,_
| | IIIIII|

6 quarks,
— 3 3 colours (45/9)
I
- - - "y T NETTY o i S quarks,
-+ = 3 colours (33/9)

__________ - 3 5 quarks,
1 colour ( 11/9)

14

|Ilﬂ

-
IIIIIII|III

10

¢ Confirmation of : Number of colours = 3!
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Result P s

For Ecm below the Z peak and above the T resonance we expect:

|
I:-é_::
o
.
—
V][]
o —
bJ
_‘_
7
W=
R
b2
_f_‘
o
|
L=
S
bJ
_‘_
~
W
f —
ot
_‘_
0
] =
I~
|
>
-~
ns|’:

R = N. Zf ;;‘f:

At Z peak :

| _—>

have to include also
couplings to Z

S,

S

oy

[T |||||||

<

A

DO

W

oS
T emy_ea
B S

6 quarks,
— 3 3 colours (45/9)
I
- - - "y hoofe o — - = o - — - - i S quarks,
i - ------- -+ = 3 colours (33/9)

__________ - 3 5 quarks,
1 colour ( 11/9)

|Il:m

-
IIIIIII|III

10

¢ Confirmation of : Number of colours = 3!

Note : small remaining difference : because of QCD correction (gluon radiation) =1+ as/x

CSS08 G. Dissertori : From raw data to physics results 26



Uncertainties P e

¢ Just having a “counting result” is not all,
there’'s lot more to do!

CSS08 G. Dissertori : From raw data to physics results 27



Uncertainties P e

4 X

%

-4

Just having a “counting result” is not all,
there’s lot more to do!

@ Statistical error

We saw 2 muon events, could easily have been 1 or 3

€c

*€cC

Those fluctuations go like the square-root of the number of events
4

BR(Z' — u'u) =

€c

see also lecture by G. Cowan

To reduce this uncertainty, you need to record lots (millions) of events in the detector, and
process them

CSS08 G. Dissertori : From raw data to physics results 27



Uncertainties D sz

¢ Just having a “counting result” is not all,
there’'s lot more to do!

@ Statistical error

We saw 2 muon events, could easily have been 1 or 3

“€c

*€c

Those fluctuations go like the square-root of the number of events
4

BR(Z' — u'u) =

“€c

see also lecture by G. Cowan

To reduce this uncertainty, you need to record lots (millions) of events in the detector, and
process them

“efficiency”

¢ Systematic error .
¢ What if you only see 50% of the u*u-events? [N““seen B ENW]

* because of event selection (cut), detector imperfections, poor understanding, etc.
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Uncertainties NEC

¢ Just having a “counting result” is not all,
there’'s lot more to do!

@ Statistical error

We saw 2 muon events, could easily have been 1 or 3

“€c

*€c

Those fluctuations go like the square-root of the number of events
4

BR(Z' — u'u) =

“€c

see also lecture by G. Cowan

To reduce this uncertainty, you need to record lots (millions) of events in the detector, and
process them

“efficiency”

¢ Systematic error .
¢ What if you only see 50% of the u*u-events? [N““seen B ENW]

* because of event selection (cut), detector imperfections, poor understanding, etc.

e=0.50+0.05
_—

¢ from statistical error of detector simulation
¢ imperfect modeling of geometry in simulation

¢ model of muon interactions in simulation, etc
CSS08 G. Dissertori : From raw data to physics results 27




Event selection and all that jazz @ s

¢ Event per event have to decide how to categorize it
¢ eg. do we call it a muon event, or a hadronic event?
¢ how do we estimate the efficiency?
¢ Define an event selection, eg. “cut-based”
¢ see statistics lectures, hypothesis testing etc...

CSS08 G. Dissertori : From raw data to physics results 28



Event selection and all that jazz @ s

¢ Event per event have to decide how to categorize it

¢ eg. do we call it a muon event, or a hadronic event?
¢ how do we estimate the efficiency?

¢ Define an event selection, eg. “cut-based”

¢ see statistics lectures, hypothesis testing etc...

N evt

shapes of hypotheses : from Monte Carlo simulation

hypothesis 2 : hadrons

hypothesis 1 : muons

Ntracks

CSS08 G. Dissertori : From raw data to physics results 28



Event selection and all that jazz @ s

¢ Event per event have to decide how to categorize it

.
s
.
\J
'~
)
N\
>

O
b

CSS08

eg. do we call it a muon event, or a hadronic event?
how do we estimate the efficiency?

Define an event selection, eg. “cut-based”

see statistics lectures, hypothesis testing etc...

N evt

shapes of hypotheses : from Monte Carlo simulation '

hypothesis 2 : hadrons

hypothesis 1 : muons

Ntracks
“Cut”

Nevt (muonS) W|th Ntracks < Ncut
efficiency for muon selection =

all Nevt (muons)

G. Dissertori : From raw data to physics results 28



Event selection and all that jazz P s

¢ Event per event have to decide how to categorize it

¢ eg. do we call it a muon event, or a hadronic event?

¢ how do we estimate the efficiency?
¢ Define an event selection, eg. “cut-based”

€

see statistics lectures, hypothesis testing etc...

N evt

shapes of hypotheses : from Monte Carlo simulation '

hypothesis 2 : hadrons

hypothesis 1 : muons

see also lecture by G. Cowan

Ntracks

background

Nevt (muonS) W|th Ntracks < Ncut
to be subtracted efficiency for muon selection =

all Nevt (muons)

CSS08 G. Dissertori : From raw data to physics results 28
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A “more complicated”
example

“The greater the obstacle, the more glory in overcoming it.” (Moliere)

29
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JET production at hadron colliders ( s

¢ at the Tevatron, or in the future at the LHC

@/

b

hi, h2:p,p Ecm=1.96 TeV o

see also lecture by B. Heinemann

hi,h2:p,p Ecm=14TeV
” C

d,c : quarks/gluons

CSS08 G. Dissertori : From raw data to physics results 30



JET production at hadron colliders (D se

s @ at the Tevatron, or in the future at the LHC
P AR
I ;.,‘
Gi ®/ %‘CH_
o ¢ - o
2 b ; $™H T,
2 hiho:p, D Ecw=1.96TeV - “mi
g 1, N2 . P, P . > ,gh#. ...... | k ............
" hih2:p,p Ecwm=14TeV 3
‘a 5 |~ %
2 S

d,c : quarks/gluons
\
h;

J
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JET production at hadron colliders ( s

s @ at the Tevatron, or in the future at the LHC
A
; h2\ %m_
E b q gm: . -I'_'*
2 Ny heip, D Eom=1.96 TeV - ==
g 1, N2 . P, P CM . > _:g:f ....... k ............
" hih2:p,p Ecwm=14TeV X

‘a S | %‘3

2, S

d,c : quarks/gluons
\
h;

J

Goal

O

¢ measure probability that quarks/gluons are produced
with a certain energy, at a certain angle

(©)

¢ Problem : do not observe quarks and gluons directly,
only hadrons, which appear collimated into jets

¢ Reconstruct tracks and/or energy clusters in the calorimeter
CSS08 G. Dissertori : From raw data to physics results 30



What do we have to measure? P siss:s

107

Goal

¢ measure cross section (probability)
that jets are produced with a
certain transverse energy Er,
within a certain rapidity range

T TTvrvd

10 O D@ Data Ml < 0.5

W

10 =~ JETRAD

i llHlll

CTEQ3M, p=0.5 E7™ ¢ Test of perturbative QCD,

104 over many orders of magnitude!

LI lllllll

(©)

L/(ANAE )@’ o/(dE.dn)IE d (fb/GeV)

103 . ¢ Look at very high energy tail, |
: new physics could show up there in
- form of excess
102 (eg. sub-structure of quarks?)
10 ¢
1 :_l 1 1 1 l 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 L1 1 l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 N’l lfl
50 100 150 200 250 300 350 400 450 500

E. (GeV)

CSS08 G. Dissertori : From raw data to physics results 31



What do we have to measure? P siss:s

10 ! e o
1\ Goal
Y o . it
6 : ¢ measure cross section (probability)
10 " Q D® Dataln. . |<0.5 . ;
: \-‘\ O Data My that jets are produced with a
= N \ certain transverse energy Er,
o i N within a certain rapidity range
S 107 % ¢ JETRAD pidity rang
2 : N
b R \ nax
g N CTEQ3M, p=0.5 Eg § Test of perturbative QCD,
o 10 % 3 RN over many orders of magnitude!
e o B
9, \.,.‘
{f]: 103k \.,\ ¢ Look at very high energy tail,
:ﬁ : N new physics could show up there in
?‘ - AN form of excess
4 102k \ (eg. sub-structure of quarks?)
= S
NS - ANS
— : \“
10 ¢
1 :_l 1 1 1 l 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 L1 1 l 1 1 1 1 1 1 1 1 I 1 1 1 1 l 1 1
50 100 150 200 250 300 350~—400 450 500

E. (GeV)
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What do we have to measure? P siss:s

10

10

L/(ANAE )@’ o/(dE.dn)IE d (fb/GeV)

10

CSS08

7 —
6 i \
= © D@ Data I, < 0.5
: %
- \-.
= N - JETRAD
: N
N \
i N CTEQ3M, [L= 0.5 &~
4 "\.
: N
N N
e "\
3 »
3 AN
: \..L
2| AN /
= \T
— L 1 1 l 1 1 1 L I 1 1 1 1 l 1 1 1 1 I 1 L 1 L l 1 1 1 1 L 1 L 1 I 1 1 1 1 l 1 1 1
50 100 150 200 250 300 350~—d00 450 500

E. (GeV)

G. Dissertori : From raw data to physics results

Goal

¢ measure cross section (probability)
that jets are produced with a
certain transverse energy Er,
within a certain rapidity range

¢ Test of perturbative QCD,
over many orders of magnitude!

(©)

¢ Look at very high energy tail,

new physics could show up there in
form of excess

(eg. sub-structure of quarks?)

can be calculated
in pert. QCD

d?o B N
. dETd‘?] / AET A?} el

31



What do we have to measure? P siss:s

107 ¢
F Goal
N\ o . i
6| X ¢ measure cross section (probability)

10 \-\ © DO Dara Myl < 0.5 that jets are produced with a
= N \ certain transverse energy Er,
o i N within a certain rapidity range
S 107 % %~ JETRAD PICISAICEE
= : %
b R \ max
:,? LT LN CTEQ3M, u=0.5E7 § Test of perturbative QCD,

107 | Y . over many orders of magnitude!
= : % bin AFE
g, f e 2

3 - R

g 103k \, ; ¢ Look at very high energy tail,
oo : N new physics could show up there in
? - form of excess
4 102k (eg. sub-structure of quarks?)
g
- [ can be calculated

10 in pert. QCD

i , d?o
L N S B N ‘
50 100 150 200 250 AFET AT? el

CSS08

E. (GeV)

¢ count number of events, N, in this bin
¥ for a certain range in rapidity (angle) An
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What do we have to measure? P siss:s

10 ! e o
F\ Goal
N\ o . i
6| X ¢ measure cross section (probability)

10 \-\ © DO Dara Myl < 0.5 that jets are produced with a
= N \ certain transverse energy Er,
o i N within a certain rapidity range
S 107 % %~ JETRAD PICISAICEE
= : %
e R \ max
:,? LT LN CTEQ3M, u=0.5E7 § Test of perturbative QCD,

107 R : over many orders of magnitude!
O %, bin AE7p g °
3 N N . e

T - R

%" 103k \, ¢ Look at very high energy tail,
o : S new physics could show up there in
? - form of excess
4 102k (eg. sub-structure of quarks?)
< =
3 -
- [ can be calculated

10 in pert. QCD

i , d?o
L N S B N ‘
50 100 150 200 250 AFET AT? el
E. (GeV)

¢ count number of events, N, in this bin
efficiency to reconstruct jets
¥ for a certain range in rapidity (angle) An
integrated accelerator luminosity
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What is a jet? ([) T et o

Run=15768& Evt=5506

“cluster/spray of particles (tracks, calorimeter deposits) or flow
of energy in a restricted angular region”
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ALEPH ™ simulation of a jet in CMS

“cluster/spray of particles (tracks, calorimeter deposits) or flow
of energy in a restricted angular region”
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What is a jet? (P it

ALEPH ™ simulation of a jet in CMS

“cluster/spray of particles (tracks, calorimeter deposits) or flow
of energy in a restricted angular region”

¢ clear : need some algorithmic definition. See later..
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Problem 1 : Energy scale D iz

¢ Question : how well do we know the energy calibration?

¢ Critical because of very steeply falling spectrum!

10 E =
10°F © D@ Data In | <0.5

10° | AN > JETRAD

CTEQ3M, pL=0.5 Ef™®

/(ANAE )| d6/(dE dn)E dn (fb/GeV)

107

10°

L ?....1....l....l....|....1....1....1....1“?..?
50 100 150 200 250 300 350 400 450 500

E. (GeV)
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Problem 1 : Energy scale (D e

¢ Question : how well do we know the energy calibration?

¢ Critical because of very steeply falling spectrum!

1075 .

V(ANAE [ o/(dE dn)E dn (Fb/GeV)

10 F

O D@ Data Myl < 0.5

=~ JETRAD

CTEQ3M, pL=0.5 Ef™®

d?o _
~ const - Ep °

CSS08

50

250 300 350 400 450 500

E; (GeV)

dET d?]

4

relative uncertainties
ON OET

N Er
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Problem 1 : Energy scale D iz

¢ Question : how well do we know the energy calibration?

¢ Critical because of very steeply falling spectrum!

10?5 .

/(ANAE )| d6/(dE dn)E dn (fb/GeV)

O D@ Data Myl < 0.5

== JETRAD

CTEQ3M, pL=0.5 Ef™®

10
1 :—l 1 L 1 l 1 i1 L l 1 L 1.1 I i1 L 1 I L 11 1 @l L 1 l 1 11 1 l 1 1 11 I“l) 1 L fl
50 100 150 200 250 300 350 400 450 500
E; (GeV)

CSS08

d%o

~ const - Ep Y

4

relative uncertainties
ON OET

N Er

dET d?]

so beware:

eg. an uncertainty of 5% on absolute
energy scale (calibration)

- an uncertainty of 30% (!) on the
measured cross section
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Problem 2 : Energy resolution @ s

¢ The energy resolution can distorts the spectrum

¢ Again : Critical because of very steeply falling spectrum!

]‘O?E .

N (E7°*) :/0 N (Erf,fue) - Resol (Ezr?eas,E%'ue) dEve

0 7\ O D Data < 0.5

10° L AN - JETRAD

CTEQ3M, p=0.5 ET"™"

(ANAE][o/(dEdn)Edn (Fb/GeV)

10 ¢

lllll

50 100 150 200 250 300 350 400 450 500
E. (GeV)
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Problem 2 : Energy resolution @ s

¢ The energy resolution can distorts the spectrum

¢ Again : Critical because of very steeply falling spectrum!

]‘0?5 .

N (E7°*) :/0 N (Erf,fue) - Resol (Ezr?eas,E%'ue) dEve

Q D@ Data 1< 0.5

eg. Gaussian resolution function
=~ JETRAD

CTEQ3M, p=0.5 ET"™"

Resol (EF*, EF") o« exp |—

(ANAE][o/(dEdn)Edn (Fb/GeV)

10 ¢

1 X >
1 - 1 \T
= Lo o U o e e Leowv o b v by ay

lllll

50 100 150 200 250 300 350 400 450 500
E. (GeV)
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Problem 2 : Energy resolution @ s

©

' The energy resolution can distorts the spectrum

¢ Again : Critical because of very steeply falling spectrum!

N (E7%%) = /o N (EF"°) - Resol (EF°*, EF"¢) dEF"

Q D@ Data Ml <0.5

eg. Gaussian resolution function
>~ JETRAD

CTEQ3M, p=0.5 ET"™"

Resol (EF*, EF") o exp

S

so beware:

A bad energy resolution can distort the true
spectrum

1H(ANAE [ o/(dEdn)Edn (Fo/GeV)

10 ¢

- have to determine the energy resolution

lllll

0 100 150 00 250 300 350 400 450 500 = have to “unfold” the measured spectrum
E; (GeV)

- problem is minimized if bin width ~ g p,
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Where do we stand now?? P s

¢ After data flow from DAQ: data reduction and abstraction
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Where do we stand now? D sz

¢ After data flow from DAQ: data reduction and abstraction
¢ reconstruct tracks, energy deposits (clusters) in calorimeters
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Where do we stand now? D

¢ After data flow from DAQ: data reduction and abstraction
¥ reconstruct tracks, energy deposits (clusters) in calorimeters

4

¥ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles

€

CSS08 G. Dissertori : From raw data to physics results
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Where do we stand now? D s

¢ After data flow from DAQ: data reduction and abstraction

¢ reconstruct tracks, energy deposits (clusters) in calorimeters
¢ calculate “high-level” physics quantities

* eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding

~€c
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store all these quantities/objects event per event
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* eg. momentum of charged particles, energy of neutral particles
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¢ The data analysis
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¢ After data flow from DAQ: data reduction and abstraction
¢ reconstruct tracks, energy deposits (clusters) in calorimeters
¢ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles
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¢ The data analysis
¢ define the theoretically computed observable(s) to be measured
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¢ After data flow from DAQ: data reduction and abstraction
¢ reconstruct tracks, energy deposits (clusters) in calorimeters
¢ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding
store all these quantities/objects event per event

¢ The data analysis
¢ define the theoretically computed observable(s) to be measured

¢ apply event selection (cuts)
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Where do we stand now? D iz

¢ After data flow from DAQ: data reduction and abstraction
¢ reconstruct tracks, energy deposits (clusters) in calorimeters
¢ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding
store all these quantities/objects event per event

¢ The data analysis
¢ define the theoretically computed observable(s) to be measured

€«

~€c

¢ apply event selection (cuts)
¢ estimate efficiencies and backgrounds, eg. from MC simulation
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Where do we stand now? D i

¢ After data flow from DAQ: data reduction and abstraction

¢ reconstruct tracks, energy deposits (clusters) in calorimeters
¢ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding
store all these quantities/objects event per event

¢ The data analysis
¢ define the theoretically computed observable(s) to be measured
¢ apply event selection (cuts)
¢ estimate efficiencies and backgrounds, eg. from MC simulation

¢ |f distributions are measured : take care of absolute calibrations and effects
because of detector resolution/smearing

« correct for these effects

€«
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@l Where do we stand now? P s

¢ After data flow from DAQ: data reduction and abstraction
¢ reconstruct tracks, energy deposits (clusters) in calorimeters

s
J

¢ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles

€«

apply even higher-level algorithms, eg. jet finding

€

store all these quantities/objects event per event

¢ The data analysis
¢ define the theoretically computed observable(s) to be measured

,\..
&/

¢ apply event selection (cuts)
¢ estimate efficiencies and backgrounds, eg. from MC simulation

¢ |f distributions are measured : take care of absolute calibrations and effects
because of detector resolution/smearing

« correct for these effects

€

determine statistical and systematic uncertainties
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Where do we stand now? D i

After data flow from DAQ: data reduction and abstraction

¢ reconstruct tracks, energy deposits (clusters) in calorimeters
¢ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding
store all these quantities/objects event per event

¢ The data analysis

¢ define the theoretically computed observable(s) to be measured
¢ apply event selection (cuts)

¢ estimate efficiencies and backgrounds, eg. from MC simulation

¢ |f distributions are measured : take care of absolute calibrations and effects
because of detector resolution/smearing

 correct for these effects
determine statistical and systematic uncertainties
compare with theory, found a deviation, something new?
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Where do we stand now? D i

After data flow from DAQ: data reduction and abstraction

¢ reconstruct tracks, energy deposits (clusters) in calorimeters
¢ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding
store all these quantities/objects event per event

¢ The data analysis

¢ define the theoretically computed observable(s) to be measured
¢ apply event selection (cuts)

¢ estimate efficiencies and backgrounds, eg. from MC simulation

¢ |f distributions are measured : take care of absolute calibrations and effects
because of detector resolution/smearing

 correct for these effects
determine statistical and systematic uncertainties
compare with theory, found a deviation, something new?
* if yes, book the ticket to Stockholm
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@) \Where do we stand now? D i

@ After data flow from DAQ: data reduction and abstraction

¢ reconstruct tracks, energy deposits (clusters) in calorimeters
¢ calculate “high-level” physics quantities
* eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding
store all these quantities/objects event per event

¢ The data analysis

¢ define the theoretically computed observable(s) to be measured
¢ apply event selection (cuts)

¢ estimate efficiencies and backgrounds, eg. from MC simulation

¢ |f distributions are measured : take care of absolute calibrations and effects
because of detector resolution/smearing

 correct for these effects
determine statistical and systematic uncertainties
compare with theory, found a deviation, something new?
* if yes, book the ticket to Stockholm
determine parameters, eg. by fitting the prediction to the data

CSS08 G. Dissertori : From raw data to physics results 35
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") ETH Institute for
) Particle Physics

How is all this done In
practice?

“The only place you'll find SUCCESS before WORK is in the dictionary” (May B. Smith)

36
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The process In practice

¢ The reconstruction step is usually
done in common

7 13 7 13

“Tracks”, “particle ID”, “calorimeter towers” etc
are general concepts, not analysis-specific.
Common algorithms make it easier to
understand how well they work

N

€

“very coordinated” data access
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The process in practice

The reconstruction step is usually
done in common

7 13

N

7 13

“Tracks”, “particle ID”, “calorimeter towers” etc
are general concepts, not analysis-specific.
Common algorithms make it easier to
understand how well they work

¥ “very coordinated” data access

¢ Analysis is a very individual thing
¢ Many different measurements being done at
once

Small groups working on topics they are
Interested Iin

Many different time scales for these efforts
“chaotic” data access

~€c

€«

~€c
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The process in practice

¢ The reconstruction step is usually
done in common

o 1 ” L EINT
¥

Tracks”, “particle ID”, “calorimeter towers™ etc
are general concepts not analysis-specific.
Common algorithms make it easier to
understand how well they work

¥ “very coordinated” data access

¢ Analysis is a very individual thing

¢ Many different measurements being done at
once

Small groups working on topics they are
Interested Iin

Many different time scales for these efforts
“chaotic” data access

~€c

€0 €

¢ Collaborations build
offline computing systems
to handle all this
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Track finding

38
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Why does tracking need to be done well? (D Sz

¢ Determine how many charged particles were created in an event

¢ Measure their momentum

¢ direction, magnitude
¢ combine these to look for decays of particles with known masses

only final stable particles are visible
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- Why does tracking need to be done well? () S

CSS08

=

Determine how many charged particles were created in an event

Measure their momentum
¢ direction, magnitude
¢ combine these to look for decays of particles with known masses
¢ only final stable particles are visible

Measure
spatial
trajectories

¢ combine to look
for separated
vertices,
indicating
particles
with long
lifetimes

G. Dissertori : From raw data to physics results 39



[€]] Track Fitting D s

¢ 1D straight line fit as simple case
¢ Two perfect measurements

¢ away from interaction point

¥  no measurement uncertainty . __‘_)

¥ just draw a straight line through them and extrapolate

Imperfect measurements give less precise results
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Tl'a C k F | ttl i g : D (T nstitute for

1D straight line fit as simple case
¢ Two perfect measurements

¢ away from interaction point

¥  no measurement uncertainty . __‘_)

¥ just draw a straight line through them and extrapolate

,.
o/

,.
5/

¢ Imperfect measurements give less precise results

[ —

¢  the farther you extrapolate, the less you know
- ?ﬁ )!
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Tl'a C k F | tt' i g : D (T nstitute for

1D straight line fit as simple case
¢ Two perfect measurements

¢ away from interaction point | . .

¢ no measurement uncertainty
¥ just draw a straight line through them and extrapolate

'\_/

=
-4

-4

¢ Imperfect measurements give less precise results
%

¢ the farther you extrapolate, the less you know —
- ?ﬁ )!

Smaller errors and more points help to constrain the possibilities.
But how to find the best point from a large set of points?

$ 40T 444 s
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Tl'a C k F | tt' i g : D (T nstitute for

1D straight line fit as simple case
¢ Two perfect measurements

¢ away from interaction point

¥  no measurement uncertainty . __‘_)

¥ just draw a straight line through them and extrapolate

'\_/

¢ Imperfect measurements give less precise results
- —

¢  the farther you extrapolate, the less you know
- ?ﬁ )!

Smaller errors and more points help to constrain the possibilities.
But how to find the best point from a large set of points?
¢ Quantitatively

$ 40T 444 s

¢ In case of straight line (y(gj) — 0O — d)or, eg., helix in case of magnetic field present
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Tl'a C k F | tt' i g : D (T nstitute for

1D straight line fit as simple case
¢ Two perfect measurements

¢ away from interaction point

¥  no measurement uncertainty . __‘_)

¥ just draw a straight line through them and extrapolate

'\_/

¢ Imperfect measurements give less precise results

¢ the farther you extrapolate, the less you know —
- ?ﬁ )!

Smaller errors and more points help to constrain the possibilities.
But how to find the best point from a large set of points?

$ 40T 444 s

¢ Quantitatively

C
% ¢ parameterize a track:
O ¢ In case of straight line (y(gj) = 0 x + d)i)r, eg., helix in case of magnetic field present
O . predicted track position
2 osition of i" it | ati® hit
p
= ¢ Find track ters by Least-S Minimization Phits (3 7 N2
A ¢ FInad track parameters east-oquares-Minimization - . :
E ; J | o o Wi —y()
3 X = 2
%, O “
3 L i=1 L

t Y.
. . . uncertainty of if" measurement I
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Tl'a C k F | tt' i g : D (T nstitute for

1D straight line fit as simple case
¢ Two perfect measurements

¢ away from interaction point

¥  no measurement uncertainty . __‘_)

¥ just draw a straight line through them and extrapolate

'\_/

¢ Imperfect measurements give less precise results

¢ the farther you extrapolate, the less you know —
?ﬁz )!

¢ Smaller errors and more points help to constrain the possibilities.
But how to find the best point from a large set of points?

$ 40T 444 s

¢ Quantitatively

€c
(\)
|

Obtain also uncertainties on track parameters o2
1

06 od \ =L - y

uncertainty of i'" measurement I 40

C

% ¢ parameterize a track:

O ¢ In case of straight line Cy(gj) =0x+d !or, eg., helix in case of magnetic field present

O . predicted track position

= o h.tl at ith hit
position of it" hi

= Find track ters by Least-S Minimization Phits (3 7 N2

= ¢ Find track parameters east-Squares-Minimization . :

3 p y q (yi — y(x:))

@)

@

@©

()

)

(7))
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“Typical” size of errors P e

—

10 cm + | <
5 10 cm
\ +10 microns +10 microns

¢ Error 6d on position is about £10 microns

¢ Error 66 on angle is about +0.1 milliradians (+0.002 degrees)
¢ Satisfyingly small errors

¢ allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

¢ However
¢ we “see” particles by interaction with a detector (=material)
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“Typical” size of errors P e
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10 cm + | <
5 10 cm
\ +10 microns +10 microns

¢ Error 6d on position is about £10 microns

¢ Error 66 on angle is about +0.1 milliradians (+0.002 degrees)
¢ Satisfyingly small errors

¢ allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

¢ However

¢ we “see” particles by interaction with a detector (=material) 7
MS
¢ interaction leads to : energy loss, change in direction >
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“Typical” size of errors P e

—

10 cm + | <
5 10 cm
\ +10 microns +10 microns

¢ Error 6d on position is about £10 microns
¢ Error 66 on angle is about +0.1 milliradians (+0.002 degrees)

¢ Satisfyingly small errors

¢ allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

¢ However
¢ we “see” particles by interaction with a detector (=material)

Oms
¢ interaction leads to : energy loss, change in direction >
¢ This is Multiple Scattering J
« Charged particles passing through matter “scatter” by a random angle
~ examples:
0 15MeV /c [thickness 300 micron Si : RMS = 0.9 mrad /8p
< MS> — 627 Xrad 1 mm Be : RMS =0.8 mrad /Bp
> - l|eads to additional position errors
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Kalman filter D s

2
B ~#~ O1 2 —+~ G‘f’)
O, 3
1 n

¢ So07? Could extend track parameterization to take this into account
¢ nadditional parameters  y(x) =d+0x+ O (x — x1)01(x —x1) + O(x — x2)01(x —x2) + - - -

&
&/

(o
-4

¢ and include the multiple scattering information into the Least-Squares
(n equations, n unknowns)
¢ For large n, computing time grows like O(n?), quickly un-practicable
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CSS08

Kalman filter D s

2
—4— e
O- 3
1 n

So? Could extend track parameterization to take this into account
¢ nadditional parameters y(z) =d+0x+O(x —x1)01(x —x1) + O(x — x2)01(x — x2) + - - -

and include the multiple scattering information into the Least-Squares

(n equations, n unknowns) 2.2 Z 07
¢ For large n, computing time grows like O(n3), quickly un-practicable & Xold y 01%/{8
¢ anyway, not interested in all these angles, only in parameters at the origin
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Kalman filter D s

2
—4— e
O- 3
1 n

¢ So? Could extend track parameterization to take this into account

|

¢ nadditional parameters y(z) =d+0x+0O(x —x1)01(x —x1) + O(x — 22)01(x —22) + - - -

¢ and include the multiple scattering information into the Least-Squares
(n equations, n unknowns)

92
2 2 7
= Xo1a T
¢ For large n, computing time grows like O(n3), quickly un-practicable & Xold ; 01%/{8

¢ anyway, not interested in all these angles, only in parameters at the origin

¢ Instead, approximate, work inward N times

SR $
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Kalman filter D s

2
—4— e
O- 3
1 n

¢ So? Could extend track parameterization to take this into account

|

¢ nadditional parameters y(z) =d+0x+0O(x —x1)01(x —x1) + O(x — 22)01(x —22) + - - -

¢ and include the multiple scattering information into the Least-Squares
(n equations, n unknowns)

92
2 2 7
= Xo1a T
¢ For large n, computing time grows like O(n3), quickly un-practicable & Xold ; 01%/{8

¢ anyway, not interested in all these angles, only in parameters at the origin

¢ Instead, approximate, work inward N times

AP S/
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Kalman filter D s

2
—4— e
O- 3
1 n

¢ So? Could extend track parameterization to take this into account

|

¢ nadditional parameters y(z) =d+0x+0O(x —x1)01(x —x1) + O(x — 22)01(x —22) + - - -

¢ and include the multiple scattering information into the Least-Squares
(n equations, n unknowns)

92
2 2 7
= Xo1a T
¢ For large n, computing time grows like O(n3), quickly un-practicable & Xold ; 01%/{8

¢ anyway, not interested in all these angles, only in parameters at the origin

¢ Instead, approximate, work inward N times

S

CSS08 G. Dissertori : From raw data to physics results 42



Kalman filter D s

2
—4— e
O- 3
1 n

¢ So? Could extend track parameterization to take this into account

|

¢ nadditional parameters y(z) =d+0x+0O(x —x1)01(x —x1) + O(x — 22)01(x —22) + - - -

¢ and include the multiple scattering information into the Least-Squares
(n equations, n unknowns)

92
2 2 7
= Xo1a T
¢ For large n, computing time grows like O(n3), quickly un-practicable & Xold ; 01%/{8

¢ anyway, not interested in all these angles, only in parameters at the origin

¢ Instead, approximate, work inward N times

S
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Kalman filter D s

2
—4— e
O- 3
1 n

¢ So? Could extend track parameterization to take this into account

|

¢ nadditional parameters y(z) =d+0x+0O(x —x1)01(x —x1) + O(x — 22)01(x —22) + - - -

¢ and include the multiple scattering information into the Least-Squares
(n equations, n unknowns)

92
2 2 7
= Xo1a T
¢ For large n, computing time grows like O(n3), quickly un-practicable & Xold ; 01%/{8

¢ anyway, not interested in all these angles, only in parameters at the origin

¢ Instead, approximate, work inward N times

¢ %
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Kalman filter D s

2
B ~#~ O1 2 —+~ G‘f’)
O, 3
1 n

¢ So07? Could extend track parameterization to take this into account
¢ nadditional parameters  y(x) =d+0x+ O (x — x1)01(x —x1) + O(x — x2)01(x —x2) + - - -

%/

&/

¢ and include the multiple scattering information into the Least-Squares
(n equations, n unknowns) 2.2 Z
¢ For large n, computing time grows like O(n3), quickly un-practicable A Xold -

2
0;
D)
OMS

¢ anyway, not interested in all these angles, only in parameters at the origin

b/

¢ Instead, approximate, work inward N times

<« — #
1
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Kalman filter D s

2
B ‘# O1 2 —+~ 9‘3
O, 3
1 n

¢ So07? Could extend track parameterization to take this into account
¢ n additional parameters  y(x) =d+0x 4+ O(x —x1)01(x —x1) + O(x — x2)01(x —x2) + - - -

¢ and include the multiple scattering information into the Least-Squares
(n equations, n unknowns) 2.2 Z
For large n, computing time grows like O(n?3), quickly un-practicable A Xold -

2
0;
D)
OMS

€

e

anyway, not interested in all these angles, only in parameters at the origin

¢ Instead, approximate, work inward N times

<« — #
1

n

€

leads to O(n) computations!

€

in each step, make extrapolation to next layer, using information from current track
parameters, expected scattering error, and measurement at next layer

€

Needs a starting estimate (seed) and may need some iterations, smoothing

€

This method is based on theory of the Kalman Filter
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Calorimeter energy
reconstruction
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¢ Reconstruct energy deposited by charged and neutral particles
¢ Determine position of deposit, direction of incident particles
¢ Be insensitive to noise and “un-wanted” (un-correlated) energy

¢ and obtain the best possible
resolution!
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. Clusters of energy P e

¢ Calorimeters are segmented in cells

¢ Typically a shower extends over several cells

¢ Useful to reconstruct precisely the impact point from the “center-of-gravity” of the deposits
in the various cells
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Clusters of energy (P s

¢ Calorimeters are segmented in cells

¢ Typically a shower extends over several cells

¢ Useful to reconstruct precisely the impact point from the “center-of-gravity” of the deposits
in the various cells

¢ Example CMS Crystal Calorimeter:

¢ electron energy in central crystal ~ 80 %, in 5x5 matrix around it ~ 96 %

front view

>

side view
view in (¢,n) cells
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Clusters of ene rgy ( D T sttt o
¢

Calorimeters are segmented in cells

¢ Typically a shower extends over several cells

¢ Useful to reconstruct precisely the impact point from the “center-of-gravity” of the deposits
in the various cells

¢ Example CMS Crystal Calorimeter:

¢ electron energy in central crystal ~ 80 %, in 5x5 matrix around it ~ 96 %

¢ So task is : identify these clusters and reconstruct the energy they contain

front view

> 1

side view
view in (¢,n) cells
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C I U Ste I F | A d | N g ¢ D CTH nsttute for

¢ Clusters of energy in a calorimeter are due to the original particles

¢ Clustering algorithm groups individual channel energies

(©)

¢ Don’t want to miss any; don’'t want to pick up fakes

[ 111 |_|.

> 1
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Cluster Finding OE

¢ Clusters of energy in a calorimeter are due to the original particles
¢ Clustering algorithm groups individual channel energies
¢ Don’t want to miss any; don’'t want to pick up fakes

60 1

(P EEEEE "EEEN 50 1
| : Projection LI: 0

30 1

Emengy

20 1

10 1

> 1 0 =1 ] -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Channel
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Cluster Finding

¢ Clustering algorithm groups individual channel energies

¢ Don’t want to miss any; don’'t want to pick up fakes

Bl

Projection IL:

CSS08

> 1

Emengy

60 1

é ETH Institute for
Particle Physics

¢ Clusters of energy in a calorimeter are due to the original particles

50 1

40 1

high threshold,
for seed finding

low threshold,
10:' M i '—'ll
O _l_ T | i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Channel

Simple example of an algorithm

€0 €0 €

Scan for seed crystals = local energy maximum above a defined seed threshold
Starting from the seed position, adjacent crystals are examined, scanning first in ¢ and then in n
Along each scan line, crystals are added to the cluster if

1. The crystal’s energy is above the noise level (lower threshold)
2. The crystal has not been assigned to another cluster already

3. The previous crystal added (in the same direction) has higher energy

G. Dissertori : From raw data to physics results
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PN Difficulties

Careful tuning of thresholds needed

‘.‘«_/

-y
4

€

€

€

,4.

ETH Institute for
Particle Physics

D
needs usually learning phase

adapt to noise conditions

too low : pick up too much unwanted energy

too high : loose too much of “real” energy. Corrections/Calibrations will be larger

¢ Sometimes several clustering stages, in order separate or

combine nearby clusters

CSS08

example : one lump or two?

60

50

40 1

high threshold,
30 —forseedfinding——

/T - m-m-—m——rrrrm————

low threshold,
against noise
10 A ' ' 2 ]

T T T T T T e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Channel

Emegy

20
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Jet Algorithms

48
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CAL4TKS R-Z VIEW 25-MAR-1997 12:22 I Run

Jets In

87288 Event 22409‘25—DEC—1994 02:2C

Max ET= 345.4 GeV
CAEH ET SUM= 968.0 GeV

VIX in Z= -5.4 (cm) B i<E< 2
[l 2.<E< 3.
/// /// l\ki< 4.
[ 4Be 5.
I 5<E
)
7740 SN
L/ e -

| MUOD
_ELEC

TAUS

VEES
OTHE

N Jets in Hadron Collider Detectors (P =z

CDF

Run 32030 Evt 215685 493 3230 360.o0ad 1910v92 231:26:21 30-Jan—-99

D2IS E transverse Eta-Phi LEGO Plot

METS: Etota
Et (mi

- 747.1 GeV, Et (ccalar)= &641.2 Ge
)= J9.1 at Phi= 1280.28 Deqg.

\
Py
/ -
x
=
Cluster Et_min 0.0 Ggev , / §
clusters:ETHAT CLUSTERING 2~ N 2 oy
SCLP: Cone-gsize=7, Min Tower Et=7 > ,__‘:Q = QA\V
BM H2 1r Et Phi Eta DEta #Tow EM/Et Trks WMass ~_/ "
. @ 1 3277 2.5 0.21 0.22 0 0.606 G 23.38 ‘-?ogcsb
. @ 2 172.8 192.9 -0.57 -0.66 0 0.521 9 20.2
9 8 3 123.0 170.9 0.223 0.23 0 0.757 15 27.8
. @ 4 8.1 2325.3 1.28 1.23 0 0.281 3 3.1 PHI : =
ETX: 0.25

¢ Introducing a cone prescription seems “natural”...
¢ But how to make it more quantitative?

¢ don’'t want people “guessing” at whether there are 2,3, ...
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-, H B N -

= f(AN)? + (AD)?

-
il - -
= hadrons

I,J'
. y,f\liragmenta:-:-n PIOCess
A L

Outgoing parton

Hard scatter

The natural (?) definition of a jet in a hadron collider environment

from J. Huston, CTEQ summer school 2004
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Jets in Hadron Collider Detectors D ==

(simulated) Jets in CMS

no cut on track momenta

CSS08 G. Dissertori : From raw data to physics results 51



ETH Institute for

Jets in Hadron Collider Detectors (D s

(simulated) Jets in CMS

8/
-Il"'\i
o/ o
|ll "III lll -
II' illr" 8
|
| \ |||
\ L \ f
Illll I"._ _|'
i’\l / ‘l'll
\ s

minimum track pr = 10 GeV/c
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Requirements

@ Applicable at all levels

§

CSS08

partons, stable particles

+ for theoretical calculations

measured objects (calorimeter objects, tracks, etc)
and always find the same jet

G. Dissertori : From raw data to physics results

( ETH Institute for
. Particle Physics

i

culorimeter jet
i
| |

2

lllllllllllllllll
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52



Req uirements P s

@ Applicable at all levels g
¢ partons, stable particles i
+ for theoretical calculations j_%'m ‘ .
¥ measured objects (calorimeter objects, tracks, etc) EE:M '
+ and always find the same et Ef ....... e
8 .
¢ Independent of the very details of the § R
detector

(3

* example : granularity of the
calorimeter, energy response,...
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Req uirements P s

@ Applicable at all levels %
¢ partons, stable particles %CH_
+ for theoretical calculations Em ‘ .
¥ measured objects (calorimeter objects, tracks, etc) EE:M !

¢ and always find the same jet

Independent of the very details of the

detector

* example : granularity of the
calorimeter, energy response,...

(3

¢ Easy to implement !
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Requirements D mimsee

@ Applicable at all levels %,
¢ partons, stable particles %CH_
+ for theoretical calculations 'E_'m .
¥ measured objects (calorimeter objects, tracks, etc) :

e

~€c

and always find the same jet

Independent of the very details of the

detector

* example : granularity of the
calorimeter, energy response,...

(3

¢ Easy to implement !

¢ Close correspondence between - i N
nergy

“ ] Momentum

I:Dparton Pjet | ange
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Start with
list of
seeds

The CONE algorithm (D sz

Send list of
protojets to
split/merge algo

Is list
exhausted?

Compute centroid
using R

Is new axis
same as old

one?

Cone already

found? Remove

Add to list
of protojets
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Start with
list of
seeds

Is list

exhausted?

The CONE algorithm s

Compute centroid
using R

Is new axis
same as old

one?

Cone already
found?

Add to list

of protojets

Send list of
protojets to
split/merge algo

Seeds: for example, energy deposits with
transverse energy (E+ = E sinf) > 2 GeV

in a tower of the calorimeter

Remove

CSS08
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Start with
list of
seeds

Is list
exhausted?

Compute centroid
using R

Is new axis
same as old

one?

Cone already
found?

Add to list
of protojets

Send list of
protojets to
split/merge algo

g = %ZE%??Z' ;

The CONE algorithm (st

Seeds: for example, energy deposits with
transverse energy (E+ = E sinf) > 2 GeV

in a tower of the calorimeter

Centroid (one possible def) :

i€ C \/(77z —1C)° 4+ (&' — ®C)° < R cone radius

1 o |
@C:E—%jZE;@@ ., E¢ =) Ej

T ;ec iceC ieC

Remove

CSS08
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Start with
list of
seeds

Is list
exhausted?

Compute centroid
using R

Is new axis
same as old

one?

Cone already
found?

Add to list
of protojets

Send list of
protojets to
split/merge algo

g = %ZE%??Z' ;

The CONE algorithm (D sz

Seeds: for example, energy deposits with
transverse energy (E+ = E sinf) > 2 GeV

in a tower of the calorimeter

Centroid (one possible def) :

i€ C \/(77z —1C)° 4+ (&' — ®C)° < R cone radius

1 o |
@C:E—%jZE;@Z ., E¢ =) Ej

T ;ec iceC ieC

Remove

CSS08

=)
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Further difficulties D s

¢ Pile Up : many additional
soft proton-proton interactions
¢ up to 20 at highest LHC luminosity
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Further difficulties P e
¢ Pile Up : many additional

soft proton-proton interactions
¢ up to 20 at highest LHC luminosity

Dutgoing Parton

PT(hard)

Initial-State Radiation

Proton 7 /}Mj """"" AntiProton
[‘@ U n d e rI I n eve nt Underlying Event :):/‘ﬁ; \—‘w{ 7 derlying Event
“zﬂ\

¢ beam-beam remnants, initial state radiation,
multiple parton interactions

Final-State

Outgoing Parton Radiation

¢ gives additional energy in the event
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E Further difficulties (D e

Pile Up : many additional

soft proton-proton interactions
¢ up to 20 at highest LHC luminosity

Outgoing Parton

PT(hard)
Initial-State Radiation
Proton —— AdbRroton

¢ Underlying event

N

¢ beam-beam remnants, initial state radiation,
multiple parton interactions

derlying Event

Final-State

Outgoing Parton Radiation

N

¢ gives additional energy in the event

¢ All this additional energy has nothing to do with jet energies
* have to subtract it

)
8/
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Further difficulties P e

¢ Pile Up : many additional
soft proton-proton interactions
¢ up to 20 at highest LHC luminosity

Dutgoing Parton

PT(hard)

Initial-State Radiation

Proton

¢ Underlying event

¢ beam-beam remnants, initial state radiation,
multiple parton interactions

AntiProton

Underlying Event

Final-State

Outgoing Parton Radiation

¢ gives additional energy in the event

¢ All this additional energy has nothing to do with jet energies
¥ have to subtract it

no cut on track momenta
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Further difficulties P e

¢ Pile Up : many additional
soft proton-proton interactions
¢ up to 20 at highest LHC luminosity

Dutgoing Parton

PT(hard)

Initial-State Radiation

Proton
¢ Underlying event

¢ beam-beam remnants, initial state radiation,
multiple parton interactions

AntiProton

Underlying Event

Final-State

Outgoing Parton Radiation

¢ gives additional energy in the event

¢ All this additional energy has nothing to do with jet energies
¥ have to subtract it

no cut on track momenta minimum track pr = 10 GeV/c
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The computing
behind all this

Somewhere, something went terribly wrong
55
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Some numbers P e

¢ Examples from CMS, estimates
¢ Rate of events streaming out from High-Level Trigger farm ~150 Hz

¢ each event has a size of the order of 1 MByte
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ﬁ Some numbers (D e

9

CSS08

Examples from CMS, estimates
¢ Rate of events streaming out from High-Level Trigger farm ~150 Hz
¢ each event has a size of the order of 1 MByte

CMS will record ~100k top-quark events per day

¢ among about 107 events in total per day

¢ will have roughly 150 “physics” days per year
¢ thus about 10° evts/year, a few Pbyte
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E Some numbers (D e

¢ Examples from CMS, estimates

O

¢ Rate of events streaming out from High-Level Trigger farm ~150 Hz

(@)

¢ each event has a size of the order of 1 MByte

¢ CMS will record ~100k top-quark events per day

O

¢ among about 107 events in total per day

O

¢ will have roughly 150 “physics” days per year
¢ thus about 10° evts/year, a few Pbyte

D

¢ “prompt” processing

¢ Expect to do first reprocessing step within one day
¢ Reco time per event on std. CPU: < 5 sec (on Ixplus)
Note : will have to reprocess several times

* new/better algorithms, updated calibrations, etc.

€

~€c
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E Some numbers (P e

¢ Examples from CMS, estimates
¢ Rate of events streaming out from High-Level Trigger farm ~150 Hz
¢ each event has a size of the order of 1 MByte

¢ CMS will record ~100k top-quark events per day
¢ among about 107 events in total per day
¢ will have roughly 150 “physics” days per year
¢ thus about 10° evts/year, a few Pbyte

&/

“prompt” processing
¢ Expect to do first reprocessing step within one day
¢ Reco time per event on std. CPU: < 5 sec (on Ixplus)
¢ Note : will have to reprocess several times
* new/better algorithms, updated calibrations, etc.

Expect to simulate several 100s to 1000s of millions of events

¢ will be mostly done at computing centres outside CERN
¢ Simulation time per event now ~ 100 secs (eg. for QCD or top evts)

©
&/
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E Some numbers P e

¢ Examples from CMS, estimates

N

¢ Rate of events streaming out from High-Level Trigger farm ~150 Hz

\J

el

¢ each event has a size of the order of 1 MByte

T~
8/

¢ CMS will record ~100k top-quark events per day

¢ among about 107 events in total per day

(©)

¢ will have roughly 150 “physics” days per year
¢ thus about 10° evts/year, a few Pbyte

¢  “prompt” processing
¢ Expect to do first reprocessing step within one day

¢ Reco time per event on std. CPU: < 5 sec (on Ixplus)
¢ Note : will have to reprocess several times
* new/better algorithms, updated calibrations, etc.

Expect to simulate several 100s to 1000s of millions of events

Nl

¢ will be mostly done at computing centres outside CERN

N/

¢ Simulation time per event now ~ 100 secs (eg. for QCD or top evts)

Now : ~2 million lines of code (reconstruction and simulation)
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@)l RECO flow (P it

DAQ
system

Recorded
signals
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V RECO flow D sisemss

DAQ
system

Recorded
signals

L

Reconstruction

Prompt
Reconstruction

Observed
tracks, etc

Interpreted
events

Physics Tools
eg. jet algos
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RECO flow P s

CSS08

DAQ
system

Recorded
signals

V4 Prompt

: Observed Reconstruction
Reconstruction tracks, etc
Physics Tools Interpreted
eg. jet algos events

Individual
Analyses Data storage
Various formats:

Full Event info,
only RECO info,
reduced/selected RECO

info
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@) Flow of simulated data P sz

Specific
reaction

Generators

Particle
paths

Geometry
Simulation

Response
Simulation
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@) Flow of simulated data P sz

Specific
reaction

Generators

Geometry
Simulation

Particle
paths

Response
Simulation

Recorded
signals

| Reconstruction I-—
Separate components:
¢ often made by different experts
¢ makes it more manageable ‘ PthijStiJf’f's I_,

¢ Product is realistic “data” for analysis
Individual
Analyses
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Generators

Specific
reaction

@) Flow of simulated data

Geometry
Simulation

Background
reaction

Particle
paths

Response
Simulation

-
") ETH Institute for
) Particle Physics

Background
generator

Measured
backgrounds

| —

Merge
Processing

Recorded
signals

Separate components:
¢ often made by different experts

¢ makes it more manageable

¢ Product is realistic “data” for analysis

Building a better model:

¢ improved details (eg. better detector
geometry)

¢ real backgrounds

‘ Reconstruction I-—

Observed
tracks, etc
Physics Tools Interpreted
eg. jet algos events

Individual
Analyses
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Partitioning production systems (P st

SIM step
Specific
Generators : €g.
PYTHIA +
CMSSWwW

(simulation part,
based on GEANT)

Particle
paths

Geometry
Simulation

’ DIGI step
Response CMSSWwW
Simulation Recorded

signals

-

RECO step
CMSSW

i Observed
‘ Reconstruction I-—
Physics Tools Interpreted
eg. jet algos events

4

ROOT Individual
PAW (in good old times) Analyses
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Partitioning production systems ) s
4 eSgI.M step

CMSSW
(simulation part,
based on GEANT)

Particle
paths

ra

Geometry
Simulation

DIGI step
CMSSW

Response
Simulation

Recorded
signals

RECO step
CMSSW

Why this structure :
§ flexibility Physics Tools Interpreted
/ eg. jet algos events
don’t have to start all over again if
some improvement in later stage 5

Partitioning -
¢ there can be event stores between - Observed
‘ R nstruction I-—
individual components eco
have different versions of pieces
¢ efficient for repeated studies
» ROOT Individual
¢ Manageability . .
PAW (in good old times
large programs, hard to build, (ing ) Analyses
understand, debug, maintain, ...
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Partitioning production systems @ =z

Specific SI M Ste p Grid fw Al Cﬂs N ( CMS Data
Generators : ed. Workload orkflow Management Management
— PYTHIA + M || ()| (e
C M SSW ( Grid \ and Monitoring Bookeeping
(simulation part, Management 7 || ][5 Daa
based on GEANT) P— F | |22 | |52
Grid Job g w 5 Data Transfer
Logging and © and Placement
Bookkeeping o S P —
Local File
Geometry Particle — | Catalogs
= = paths Grid Parameter Ot!ler m\
SI m u Iat I O n Monitoring Da?:l:ase gﬁﬁzn and Storage
\ VL - _J
£ DIGI step
Response = ded CMSSWwW
Simulation ecorae
signals
Partitioning
R RECO step
¢ there can be event stores between CMSSW

Reconstruction

Observed
tracks, etc
Interpreted

events

individual components

Why this structure
¢ flexibility,

have different versions of pieces
¢ efficient for repeated studies

don’t have to start all over again if
some improvement in later stage

¢ Manageability
large programs, hard to build,
understand, debug, maintain, ...
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CMS
Online
(HLT)
|

@l GRID distribution : example

=10 online

“streams (RAW)

{__'__; =10 online
== sireams

First pass
reconstruction

see also lecture by P. Mendez Lorenzo

- I 7 (RAW)
=10 online
streams (RAW) ~50 Datasets
' (RAW+RECO)

5, =
/ Primary =
| 1

tape |

I archwe Tl er 0

e
;x k'\ _! —

( ETH Institute for
L Particle Physics

% CMS Computing Model: Data Flow'

~6 Tier-1
Centres (off-site) ~25 Tier-2
Centres

—— =k

Tier 2 Tier 2 Tier 2

{(RAW+RE CD)
hared amongs

CMS-CAF
(CERN Analysis Facility)

[

S—
Average of |

I

Tier 2 Tier 2

~8 Datasets Analysis, Tier 2
per Tier 1 Calibration, ,
(RAW+RECO) | Re-reconstruction, _
" skim making... L

iy -.-\M‘\
/ Second-
| ary tape

""\ff‘:“""’f/: Tier 1

Tier 2 Tier 2

CSS08
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Summary

“Doing something ordinary is a waste of time” (Madonna)

61
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. What wasn't covered (P e

¢ Details on track fitting, Kalman filters

¢ Secondary Vertex finding

¢ Alignment

¢ Particle ldentification

@ Calibration techniques, “in-situ” methods
¢ Particle/Energy flow

Trigger menus, their studies

more details on parameter fitting,
eg. lifetime and mass measurements

how to estimate systematic errors
¢ Databases, persistent data storage
¢ Programming languages in use (F77, C, C++, JAVA, ..))

&/

(?;—-\ \
&/
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Conclusions D e

¢ Reconstruction and Analysis
IS how we get from raw data to physics papers
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¢ Reconstruction and Analysis
IS how we get from raw data to physics papers

¢ On your way
¢ first you have too much information — reduce

¢ sometimes too little information or little prior knowledge
* make hypotheses

¢ What makes it hard, but also exciting

¥ many many cross checks

¥ more cross checks

¢ sometimes some “art” involved

¢ tuning, evolutionary improvement

Even to me it is often a miracle that we can generate
wonderful results from these complicated instruments!
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