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1. Present climate change
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Climate forcings (IPCC 2007)

• 0.7oC rise since 1900 (not uniform) 

• IPCC findings:

‣ Total anthropogenic 1.6 W/m2

(≅ 1 candle per 25 m2) 

‣ Negligible natural (solar) contribution: 0.12 W/m2

‣ Clouds poorly understood
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Why clouds are important for climate change

• Clouds cover ~65% 
of globe, annual 
average

• Net cooling of 
30 W/m2

• c.f. 1.6 W/m2 total 
anthropogenic

John Constable, Cloud study, 1821



NASA CERES satellite

• Data from CERES satellite (Clouds and Earth’s Radiant Energy System)

• Clouds (and oceans) are poorly simulated in climate models
(finest grid sizes ~100 km x 100 km)
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II. Evidence for pre-industrial solar-climate 
variability

• Numerous palaeoclimatic reconstructions suggest that 
solar/GCR variability has an important influence on climate

• However, there is no established physical mechanism, and 
so solar-climate variability is:
‣ Controversial subject
‣ Not included in current climate models
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Little Ice Age and the sunspot record
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• Inactive sun (low sunspot peak, long cycle length) ⇒ cold climate

• Active sun (high sunspot peak, short cycle length) ⇒ warm climate

The frozen Thames, 1677
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Global climate - last 2000yr

• Little Ice Age and 
Medieval Warm Period

• Global observations
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Austrian speleothem:



Siberian climate - last 700 yr

• Correlation recently reported between solar/GCR 
variability and temperature in Siberia from glacial ice core

• 30 yr lag (ie. ocean currents may be part of response)
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N. Atlantic ice rafted debris - last 10 kyr (Holocene)
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Bond et al, Science 294, 2001
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displacement
during LIA

high GCR flux southerly ITCZ shift
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Indian Ocean monsoon - 6.5-9.5 kyr ago

• Solar/GCR forcing of Indian 
Ocean monsoons (ITCZ 
migration) on centennial—even 
decadel—timescales
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Solar-climate mechanisms

• Candidates for
solar-climate variability:
‣ direct effect:

✦ total solar irradiance
✦ solar UV

‣ indirect effect:
✦ galactic cosmic rays (GCRs) /ionising particles

• Can be resolved in principle since GCRs are, in addition to 
11-year solar cycle, modulated by:
‣ solar magnetic disturbances (esp. high latitude effects)
‣ geomagnetic field (low latitude effects)
‣ galactic environment

13

G
lo

b
a
l 
m

e
a
n
 t
e
m

p
e
ra

tu
re

 (
0
C

) 

0

-0.05

-0.10

0.05

0.10

0.15

Lean et al. (1995)

Lean et al. (2002)

solar irradiance

estimated forcing

(MAGICC GCM)

1600 1650 1700 1750 1800

Year

1850 1900 1950 2000



 

 

 

 

 

 

 
360

380

400

420

440

1
8

O
 (
‰

, 
V

P
D

B
)

–7

–8

–9

–10

–11

–12

M
o

n
s
o

o
n

in
te

n
s
it
y

East Asian monsoon instensity; Wang et al., Nature 451, 2008
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• Asian monsoon controlled by orbital insolation - with strong millennial-scale variability

• Possible influence of geomagnetic field on Asian monsoon?

• Opposite sign of effect: lower B field → increased GCR → increased monsoon intensity, 
which could result from latitudinal differences of solar- and geomagnetic modulations 
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• Orbital period of Sun/Earth around Milky Way ~550Myr

• High GCR flux in spiral arms => 140 Myr period

• Same period and phase found in benthic sea temperature (4oC amplitude) and ice 
age epochs (icehouse/greenhouse)

Galactic modulation of climate? - 500 Myr

Shaviv & Veizer,
GSA Today, 2003

GCRCO2

icehouse
greenhouse



III. Solar variability in the 20th century
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Sun (photosphere) seen in visible (677nm) at solar max (2001)

17

NASA/ESA
SOHO



Sun (corona) seen with extreme UV eyes (20nm)
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NASA/ESA
SOHO
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• Solar open magnetic flux 
increased by x2.3 in 20th century

• GCR net decrease by ~20% 
(mostly in 1st half of century)

• Largely only solar cycle variations 
of GCR flux in 2nd half

Lebedev balloon GCR data:

weaker solar
modulation at low latitudes,
due to geomagnetic shielding
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Sea-level change in 20th century

• Steady rise of sea-level; mean rate = 1.7 mm/yr
• No increase in rate during recent decades
• Thermal expansion of oceans (mainly) + land ice melting
• Rate of sea-level rise is strongly modulated
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Sea-level positive feedback

21



Recent global temperatures - last 30 yr

• Most of ~2 yr fluctuations due to
El Niño-Southern Oscillation (eg 1997-98)
+ volcanoes (El Chichon 1982, Pinatubo 1991)

• Satellite and radiosonde (tropospheric) data show 

‣ less warming than thermometer measurements of surface

‣ no enhanced upper tropospheric warming, expected from GHG

• Mean global temperatures flat over last 8 years. Cause not known but 
CO2 increasing, so must be natural forcing
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Pacific Decadel Oscillation

• PDO (Hare 1996) is similar to ENSO (temperature anomalies and surface 
winds), except for long (30 yr) periodicity and primary effect on Pacific NW

• PDO transitions coincide with gradient changes of global temperatures

• PDO may be shifting to negative phase
23
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Livingston and Penn, 2005 example measurements:

Sunspot weakening

‣ Temperature-sensitive molecular lines
‣ Zeeman splitting of Fe I line
‣ Continuum brightness of sunspot umbrae

• Sunspot umbrae warming at 45K /yr

• Sunspot magnetic fields decreasing at 77 G/yr

• Independent of sunspot cycle

• Linear extrapolation ⇒ sunspots vanish after 

2015 (like Maunder Minimum)
24

Livingston and Penn, National Solar Observatory, Tucson, AZ
"Sunspots may vanish by 2015", submitted 2005 (rejected for publication)
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Current very low solar activity

• Currently one sunspot on 
Sun, and GCRs high

• Next sunspot cycle 24 is 
very late

• Mean sunspot cycle length 
is 11.1 yr

• Length of cycle 23 is now 
>13.1 yr

• Last time such a long cycle 
occurred was cycle 4 
(1784-1798) just before 
the Dalton minimum - 
coincided with notable 
cold period of few decades

• We live in interesting 
times for the Sun...
(hopefully a blessing not a 
curse)
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IV. Physical mechanism

• GCRs/ionising radiation may affect cloud amount via:
‣ CCN number concentration, and/or
‣ ice particle formation in clouds
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2. increased cloud lifetime

(drizzle suppression)

1. increased cloud

albedo

unperturbed cloudscattering and

absorption of

solar radiation

“direct effect” “indirect effect”

(more cloud droplets)

cloud droplet

(CCN)aerosol
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• All cloud droplets form on aerosol “seeds” known as 
cloud condensation nuclei - CCN 

• Cloud properties are sensitive to number of droplets

• More aerosols/CCN 
=> brighter clouds, with longer lifetimes

Radiative forcing from aerosols

cloud condensation

nucleus (CCN)

(~100 nm)

cloud droplet

(~10-20 m)



• Aerosol particles = condensation seeds

• Charged particles = condensation seeds
             (at very high supersaturations)

• Can cosmic rays, under natural conditions, 
influence aerosols, clouds and climate?

Seeds for cloud formation
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Possible mechanism
• Important source of cloud 

condensation nuclei is gas-to-particle 
conversion:   
trace gas → CN → CCN

• Ion-induced nucleation pathway is 
energetically favoured but limited by 
the ion production rate and ion lifetime
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F. Yu et al., ACP 2008

Ratio of ion-induced nucleation rates to all primay aerosol sources

(dust, sea salt, black carbon, organic carbon) - for lowest 3km altitude
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Is ion-induced nucleation globally important?

• Modeling studies:
‣ Kazil et al.

ACP 2006:  “No”
‣ Pierce & Adams

GRL 2009:  “No”
‣ Yu et al.,

ACP 2008:  “Yes” 

• All modeling studies depend on uncertain experimental parameters

• Atmospheric observations over land (boreal forest) suggest ~10-20% of new particles are 
ion-induced (Laakso et al, 2007), but alternative model interpretation of same dataset (Yu 
and Turco, 2008) find much higher fraction, ~80%

• Ion-induced nucleation likely to be more important over oceans and at high altitudes 
(lower background aerosols, trace gas concentrations and temperatures) - but few 
measurements exist
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highest SPE intensity sites (6 stars)
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Aerosol production by solar cosmic rays

• Solar proton event 20 Jan 2005 (GLE)

• TOMS satellite measurement of optical 
depth/Aerosol Index (AI)

• Increase of sulphate/nitrate aerosol

• Further satellite/LIDAR observations 
have been made of increased aerosol 
production in atmosphere due to 
ionising particles
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Mironova et al, GRL 2008



Cloud observations

• Original GCR-cloud correlation made by Svensmark & Friis-Christensen, 1997

• Many studies since then supporting or disputing solar/GCR - cloud correlation

• Not independent - most use the same ISCCP satellite cloud dataset

• No firm conclusion yet - requires more data - but, if there is an effect, it is likely 
to be restricted to certain regions of globe and at certain altitudes & conditions

• Eg. correlation (>90% sig.) of low cloud amount and solar UV/GCR,1984-2004:

32

Usoskin et al, GRL 2006
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• Cosmic rays ionise atmosphere and control Earth-ionosphere conductivity

• Large aerosol charges at cloud boundaries => unipolar space charge region

• Can be entrained inside clouds and may affect:
‣ Rate of aerosol accretion by cloud droplets
‣ Ice particle formation
‣ Atmospheric dynamics

• Largest ionisation in polar regions; many observations of cloud and T/P changes 
caused by Forbush decreases, solar disturbances, magnetic sector crossings...
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V. CLOUD experiment at CERN
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CLOUD collaboration
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• 19 institutes from Europe, 
Russia and USA

• 14 atmospheric institutes
+ 5 space/CR/particle physics

• CLOUD-ITN network of 10 
Marie Curie fellows: 8 PhD 
students + 2 postdocs
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CLOUD method

• aerosol chamber + 
state-of-the-art 
analysing instruments 
in CERN PS beamline 

• laboratory expts. under 
precisely controlled 
conditions (T, trace 
gases, aerosols, ions) 

• study aerosol 
nucleation & growth; 
and cloud droplet & ice 
particle microphysics - 
with and without beam
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CLOUD-06

• Beam tests of pilot CLOUD experiment at CERN PS in Oct/Nov 2006
• Aims:
‣ Technical input for CLOUD design
‣ First physics measurements (H2SO4 ion-induced nucleation)
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Aerosol bursts

• Bursts of aerosol particle 
production growing to CCN 
size in few hours observed 
throughout troposphere

• Associated with H2S04 

production, but at very low 
concentrations

• Not yet understood:

‣ Extra vapours (NH3, VOC)?

‣ Ion-induced nucleation?
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CLOUD-06 measurements:

Kulmala et al:
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CLOUD-06 results

• Results of pilot CLOUD run:

‣ validated the basic experimental concept of CLOUD

‣ suggestive evidence for ion-induced nucleation of H2SO4-H2O under 
atmospheric conditions

‣ provided important technical input for CLOUD design
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CLOUD-09 design requirements
• Large chamber:
‣ Diffusion lifetime of aerosols/trace gases to walls ~L2

‣ Dilution lifetime of makeup gases ~L3

     => 3m chamber has typically 5-10 hr lifetimes

• Ultra-clean conditions:
‣ Condensable vapours, eg. [H2SO4] ~0.1 pptv
‣ Ultrapure air supply from cryogenic liquids
‣ UHV procedures for inner surfaces, no plastics

• Temperature stability and wide T range
‣ 0.1oC stability
‣ Fibre-optic UV system for photochemistry
‣ -90C → +100C range

• Field cage up to 30 kV/m:
‣ Zero residual field

• Particle beam
‣ Wide beam for ~uniform exposure

• Comprehensive analysers (measure “everything”, as for collider detectors...)
‣ Mass spectrometers for H2SO4, organics, aerosol composition

41

100

80

60

40

20

0

C
P

C
 3

0
2

5
 [#

 c
m

-3]

Time [hrs]

50

40

30

20

10

0

C
P

C
 3

0
1

0
 [

#
 c

m
-3

]

27

26

25

T
e

m
p

e
ra

tu
re

 [°C
]

24201612840
Time [hrs]

1.2

0.8

0.4

0.0

S
O

2
 [

p
p

b
]

40

30

20

10

0

O
3
 [

p
p

b
]

40

20

0

R
H

 [%
]

 3 nm CPC 3025
 7 nm CPC 3010



CLOUD-09 chamber at CERN

42

P. Minginette



CLOUD plans
• 2009:
‣ commission CLOUD-09
‣ study H2SO4-H2O nucleation with and without beam
‣ reproducibility of nucleation events
‣ PTR-Mass Spect. to measure organics at 10 pptv level
‣ new ion-TOF Mass Spect. for ion characterisation

• 2010:
‣ commission thermal system (-90C → +100C)
‣ study H2SO4/water + volatile organic compounds with 

and without beam
‣ temperature dependence (effect of altitude)

• 2011-2013:
‣ extend studies to other trace vapours, and to cloud 

droplets & ice particles (adiabatic expansions in chamber) 
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Conclusions

• Climate has continually varied in the past, and the causes are 
not well understood - especially on the 100 year timescale 
relevant for today’s climate change

• Strong evidence for solar-climate variability, but no established 
mechanism.  A cosmic ray influence on clouds is a leading 
candidate

• CLOUD at CERN aims to study and quantify the cosmic ray-
cloud mechanism in a controlled laboratory experiment

• The question of whether - and to what extent - the climate is 
influenced by solar/cosmic ray variability remains central to 
our understanding of anthropogenic climate change
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