Cosmic rays and climate

Jasper Kirkby / CERN CERN Colloquium, 4 June 2009

1. Present climate change

Climate forcings (IPCC 2007)

- 0.7°C rise since 1900 (not uniform)
- IPCC findings:
 - Total anthropogenic 1.6 W/m²
 (≅ I candle per 25 m²)

Radiative Forcings, 1750--2006 (IPCC, 2Feb07)

- Negligible natural (solar) contribution: 0.12 W/m²
- Clouds poorly understood

Why clouds are important for climate change

John Constable, Cloud study, 1821

- Clouds cover ~65%
 of globe, annual
 average
- Net cooling of 30 W/m²
- c.f. 1.6 W/m² total anthropogenic

NASA CERES satellite

- Data from CERES satellite (Clouds and Earth's Radiant Energy System)
- Clouds (and oceans) are poorly simulated in climate models (finest grid sizes ~100 km x 100 km)

II. Evidence for pre-industrial solar-climate variability

- Numerous palaeoclimatic reconstructions suggest that solar/GCR variability has an important influence on climate
- However, there is no established physical mechanism, and so solar-climate variability is:
 - Controversial subject
 - Not included in current climate models

Little Ice Age and the sunspot record

• Inactive sun (low sunspot peak, long cycle length) \Rightarrow cold climate

• Active sun (high sunspot peak, short cycle length) \Rightarrow warm climate

Year

1000 1200 1400 1600 1800 2000 Greenland surface temperature (OC) a) Northern hemisphere temperature 0.4 Medieval Warm Little Ice Age Temperature anomaly (^oC) instrumental hockey stick Dye 3 GRIP -32 -20.6 multi-proxy (tree rings, pollen, shells, stalagmites, etc.) Greenland boreholes (rhs) -0.8 worldwide boreholes b) Galactic cosmic rays ¹⁰Be (Greenland) GCR change (% from 1950 value) -10 4C (rh scale) (arb. scale) -20 Carbon-14 anomaly (x 10⁻³) increasing GCR ¹⁰Be (South Pole) 30 20 (Ih scale) 40 c) Tropical Andes glaciers 0 Lake Mucubaji magnetic susceptibility (SI x10-6) GCR/ $\Delta^{14}C$ glacial advance 3 (‰) 6 1200 1400 1600 1800 2000 1000 8 Year (AD)

Global climate - last 2000yr

- Little Ice Age and Medieval Warm Period
- Global observations

high GCR flux	cool climate
low GCR flux	warm climate

Austrian speleothem:

Siberian climate - last 700 yr

- Correlation recently reported between solar/GCR variability and temperature in Siberia from glacial ice core
- 30 yr lag (ie. ocean currents may be part of response)

N. Atlantic ice rafted debris - last 10 kyr (Holocene)

• LIA is merely the most recent of around 10 such events in Holocene

GCR influence on ITCZ/monsoon in Little Ice Age?

high GCR flux	southerly ITCZ shift
low GCR flux	northerly ITCZ shift

Indian Ocean monsoon - 6.5-9.5 kyr ago

Solar/GCR forcing of Indian
 Ocean monsoons (ITCZ
 migration) on centennial—even
 decadel—timescales

Solar-climate mechanisms

- Candidates for solar-climate variability:
 - direct effect:
 - ◆ total solar irradiance
 - ◆ solar UV
 - indirect effect:

- galactic cosmic rays (GCRs) /ionising particles
- Can be resolved in principle since GCRs are, in addition to II-year solar cycle, modulated by:
 - solar magnetic disturbances (esp. high latitude effects)
 - geomagnetic field (low latitude effects)
 - galactic environment

Asian monsoon and geomagnetic field

- Asian monsoon controlled by orbital insolation with strong millennial-scale variability
- Possible influence of geomagnetic field on Asian monsoon?
- Opposite sign of effect: lower B field \rightarrow increased GCR \rightarrow increased monsoon intensity, which could result from latitudinal differences of solar- and geomagnetic modulations

Galactic modulation of climate? - 500 Myr

- Orbital period of Sun/Earth around Milky Way ~550Myr
- High GCR flux in spiral arms => 140 Myr period
- Same period and phase found in benthic sea temperature (4°C amplitude) and ice age epochs (icehouse/greenhouse)

15

III. Solar variability in the 20th century

Sun (photosphere) seen in visible (677nm) at solar max (2001)

NASA/ESA SOHO

Sun (corona) seen with extreme UV eyes (20nm)

NASA/ESA SOHO

Cosmic ray changes during 20th century

- Solar open magnetic flux increased by x2.3 in 20th century
- (mostly in 1st half of century)

 Largely only solar cycle variations GCR net decrease by ~20%
- of GCR flux in 2nd half

Sea-level change in 20th century

- Steady rise of sea-level; mean rate = 1.7 mm/yr
- No increase in rate during recent decades
- Thermal expansion of oceans (mainly) + land ice melting
- Rate of sea-level rise is strongly modulated
 - ⇒ solar modulation? (but solar irradiance variation is too small)

Sea-level positive feedback

Recent global temperatures - last 30 yr

Satellite observations 1979-2006 (UAH MSU) Latitude

- El Niño-Southern Oscillation (eg 1997-98) + volcanoes (El Chichon 1982, Pinatubo 1991)
- Satellite and radiosonde (tropospheric) data show
 - less warming than thermometer measurements of surface
 - no enhanced upper tropospheric warming, expected from GHG
- Mean global temperatures flat over last 8 years. Cause not known but CO₂ increasing, so must be natural forcing

Pacific Decadel Oscillation

- PDO (Hare 1996) is similar to ENSO (temperature anomalies and surface winds), except for long (30 yr) periodicity and primary effect on Pacific NW
- PDO transitions coincide with gradient changes of global temperatures
- PDO may be shifting to negative phase

Sunspot weakening

Livingston and Penn, National Solar Observatory, Tucson, AZ "Sunspots may vanish by 2015", submitted 2005 (rejected for publication)

- Temperature-sensitive molecular lines
- Zeeman splitting of Fe I line
- Continuum brightness of sunspot umbrae
- Sunspot umbrae warming at 45K /yr
- Sunspot magnetic fields decreasing at 77 G/yr
- Independent of sunspot cycle
 - Linear extrapolation ⇒ sunspots vanish after 2015 (like Maunder Minimum)

Current very low solar activity

- Currently one sunspot on Sun, and GCRs high
- Next sunspot cycle 24 is very late
- Mean sunspot cycle length is 11.1 yr
- Length of cycle 23 is now > 13.1 yr
- Last time such a long cycle occurred was cycle 4 (1784-1798) just before the Dalton minimum coincided with notable cold period of few decades
- We live in interesting times for the Sun... (hopefully a blessing not a curse)

IV. Physical mechanism

- GCRs/ionising radiation may affect cloud amount via:
 - CCN number concentration, and/or
 - ice particle formation in clouds

Radiative forcing from aerosols

- All cloud droplets form on aerosol "seeds" known as cloud condensation nuclei - CCN
- Cloud properties are sensitive to number of droplets
- More aerosols/CCN
 => brighter clouds, with longer lifetimes

Seeds for cloud formation

- Aerosol particles = condensation seeds
- Charged particles = condensation seeds (at very high supersaturations)

 Can cosmic rays, under natural conditions, influence aerosols, clouds and climate?

Possible mechanism

- Important source of cloud condensation nuclei is gas-to-particle conversion: trace gas → CN → CCN
- Ion-induced nucleation pathway is energetically favoured but limited by the ion production rate and ion lifetime

Is ion-induced nucleation globally important?

F. Yu et al., ACP 2008

Ratio of ion-induced nucleation rates to all primay aerosol sources (dust, sea salt, black carbon, organic carbon) - for lowest 3km altitude

- Modeling studies:
 - Kazil et al. ACP 2006: "No"
 - Pierce & Adams GRL 2009: "No"
 - Yu et al., ACP 2008: "Yes"
- All modeling studies depend on uncertain experimental parameters
- Atmospheric observations over land (boreal forest) suggest ~10-20% of new particles are ion-induced (Laakso et al, 2007), but alternative model interpretation of same dataset (Yu and Turco, 2008) find much higher fraction, ~80%
- Ion-induced nucleation likely to be more important over oceans and at high altitudes (lower background aerosols, trace gas concentrations and temperatures) - but few measurements exist

Aerosol production by solar cosmic rays

- Solar proton event 20 Jan 2005 (GLE)
- TOMS satellite measurement of optical depth/Aerosol Index (AI)
- Increase of sulphate/nitrate aerosol
- Further satellite/LIDAR observations have been made of increased aerosol production in atmosphere due to ionising particles

Cloud observations

- Original GCR-cloud correlation made by Svensmark & Friis-Christensen, 1997
- Many studies since then supporting or disputing solar/GCR cloud correlation
- Not independent most use the same ISCCP satellite cloud dataset
- No firm conclusion yet requires more data but, if there is an effect, it is likely
 to be restricted to certain regions of globe and at certain altitudes & conditions
- Eg. correlation (>90% sig.) of low cloud amount and solar UV/GCR, I 984-2004:

Global electrical circuit

- Cosmic rays ionise atmosphere and control Earth-ionosphere conductivity
- Large aerosol charges at cloud boundaries => unipolar space charge region
- Can be entrained inside clouds and may affect:
 - Rate of aerosol accretion by cloud droplets
 - Ice particle formation
 - Atmospheric dynamics
- Largest ionisation in polar regions; many observations of cloud and T/P changes caused by Forbush decreases, solar disturbances, magnetic sector crossings...

V. CLOUD experiment at CERN

CLOUD collaboration

- 19 institutes from Europe, Russia and USA
- 14 atmospheric institutes + 5 space/CR/particle physics Germany:
- **CLOUD-ITN** network of 10 Marie Curie fellows: 8 PhD students + 2 postdocs

Austria:

University of Innsbruck, Institute of Ion Physics and Applied Physics University of Vienna, Institute for Experimental Physics

Bulgaria:

Institute for Nuclear Research and Nuclear Energy, Sofia

Estonia:

University of Tartu, Department of Environmental Physics

Finland:

Helsinki Institute of Physics and University of Helsinki, Department of Physics Finnish Meteorological Institute, Helsinki University of Kuopio, Department of Physics Tampere University of Technology, Department of Physics

Goethe-University of Frankfurt, Institute for Atmospheric and Environmental Sciences Leibniz Institute for Tropospheric Research, Leipzig

Portugal:

University of Lisbon, Department of Physics

Russia:

Lebedev Physical Institute, Solar and Cosmic Ray Research Laboratory, Moscow

Switzerland:

CERN, Physics Department

Fachhochschule Nordwestschweiz (FHNW), Institute of Aerosol and Sensor Technology, Brugg Paul Scherrer Institute, Laboratory of Atmospheric Chemistry

United Kingdom:

University of Leeds, School of Earth and Environment University of Reading, Department of Meteorology Rutherford Appleton Laboratory, Space Science Department

United States:

California Institute of Technology, Division of Chemistry and Chemical Engineering

Cloud observational scales

CLOUD method

- aerosol chamber +
 state-of-the-art
 analysing instruments
 in CERN PS beamline
- laboratory expts. under precisely controlled conditions (T, trace gases, aerosols, ions)
- study aerosol
 nucleation & growth;
 and cloud droplet & ice
 particle microphysics with and without beam

CLOUD-06

- Beam tests of pilot CLOUD experiment at CERN PS in Oct/Nov 2006
- Aims:
 - Technical input for CLOUD design
 - ▶ First physics measurements (H₂SO₄ ion-induced nucleation)

Aerosol bursts

- Bursts of aerosol particle production growing to CCN size in few hours observed throughout troposphere
- Associated with H₂SO₄ production, but at very low concentrations
- Not yet understood:
 - ▶ Extra vapours (NH₃, VOC)?
 - Ion-induced nucleation?

CLOUD-06 results

Results of pilot CLOUD run:

- validated the basic experimental concept of CLOUD
- suggestive evidence for ion-induced nucleation of H₂SO₄-H₂O under atmospheric conditions
- provided important technical input for CLOUD design

CLOUD-09 design requirements

- Large chamber:
 - ▶ Diffusion lifetime of aerosols/trace gases to walls ~L²
 - ▶ Dilution lifetime of makeup gases ~L³
 - => 3m chamber has typically 5-10 hr lifetimes
- Ultra-clean conditions:
 - Condensable vapours, eg. $[H_2SO_4] \sim 0.1$ pptv
 - Ultrapure air supply from cryogenic liquids
 - ▶ UHV procedures for inner surfaces, no plastics 50
- Temperature stability and wide T range
 - 0.1°C stability
 - Fibre-optic UV system for photochemistry
 - ▶ $-90C \rightarrow +100C$ range
- Field cage up to 30 kV/m:
 - Zero residual field
- Particle beam
 - Wide beam for ~uniform exposure
- Comprehensive analysers (measure "everything", as for collider detectors...)
 - ▶ Mass spectrometers for H₂SO₄, organics, aerosol composition

CLOUD-09 chamber at CERN

CLOUD plans

• 2009:

- commission CLOUD-09
- ▶ study H₂SO₄-H₂O nucleation with and without beam
- reproducibility of nucleation events
- PTR-Mass Spect. to measure organics at 10 pptv level
- new ion-TOF Mass Spect. for ion characterisation

2010:

- ▶ commission thermal system (-90C \rightarrow +100C)
- study H₂SO₄/water + volatile organic compounds with and without beam
- temperature dependence (effect of altitude)

2011-2013:

 extend studies to other trace vapours, and to cloud droplets & ice particles (adiabatic expansions in chamber)

Conclusions

- Climate has continually varied in the past, and the causes are not well understood - especially on the 100 year timescale relevant for today's climate change
- Strong evidence for solar-climate variability, but no established mechanism. A cosmic ray influence on clouds is a leading candidate
- CLOUD at CERN aims to study and quantify the cosmic raycloud mechanism in a controlled laboratory experiment
- The question of whether and to what extent the climate is influenced by solar/cosmic ray variability remains central to our understanding of anthropogenic climate change