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A “more complicated” 
example

“The greater the obstacle, the more glory in overcoming it.”  (Moliere)
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JET production at hadron colliders
at the Tevatron, or in the future at the LHC
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JET production at hadron colliders
at the Tevatron, or in the future at the LHC

a

b

h1

h2

c

d

fa/h1

ŝ

fb/h2

h1, h2 : p, p   ECM=1.96 TeV

h1, h2 : p, p   ECM = 14 TeV

Goal
  measure probability that quarks/gluons are produced 

     with a certain energy, at a certain angle 

  Problem : do not observe quarks and gluons directly, 
                    only hadrons, which appear collimated into jets

  Reconstruct tracks and/or energy clusters in the calorimeter

d,c : quarks/gluons 
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What do we have to measure?
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Goal
  measure cross section (probability)

    that jets are produced with a
    certain transverse energy ET,
    within a certain rapidity range 

  Test of perturbative QCD, 
     over many orders of magnitude!

  Look at very high energy tail, 
    new physics could show up there in
    form of excess 
   (eg. sub-structure of quarks?)
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What do we have to measure?

4

Goal
  measure cross section (probability)

    that jets are produced with a
    certain transverse energy ET,
    within a certain rapidity range 

  Test of perturbative QCD, 
     over many orders of magnitude!

  Look at very high energy tail, 
    new physics could show up there in
    form of excess 
   (eg. sub-structure of quarks?)

efficiency to reconstruct jets

           integrated accelerator luminosity

bin ∆ET

 count number of events, N, in this bin

 for a certain range in rapidity (angle) ∆η
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What is a jet? 

“cluster/spray of particles (tracks, calorimeter deposits) or flow 
of energy in a restricted angular region”
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What is a jet? 

“cluster/spray of particles (tracks, calorimeter deposits) or flow 
of energy in a restricted angular region”

clear : need some algorithmic definition. See later..

simulation of a jet in CMS
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Problem 1 : Energy scale
Question : how well do we know the energy calibration? 

Critical because of very steeply falling spectrum!

6

δN

δET

d2σ

dET dη
≈ const · ET

−6

δN

N
≈ 6 · δET

ET

relative uncertainties

so beware:
eg. an uncertainty of 5% on absolute 
energy scale (calibration) 

➔  an uncertainty of 30% (!) on the
           measured cross section
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Problem 2 : Energy resolution
The energy resolution can distorts the spectrum 

Again : Critical because of very steeply falling spectrum!
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Again : Critical because of very steeply falling spectrum!
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T ) =
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eg. Gaussian resolution function
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)
∝ exp

[
− (Emeas

T − Etrue
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]

“true” spectrum

σET

measured spectrum

so beware:
A bad energy resolution can distort the true 
spectrum

➔  have to determine the energy resolution 

➔  have to “unfold” the measured spectrum
    

➔  problem is minimized if bin width ~ σET
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Where do we stand now?
After data flow from DAQ: data reduction and abstraction

reconstruct tracks, energy deposits (clusters) in calorimeters 
calculate “high-level” physics quantities

• eg. momentum of charged particles, energy of neutral particles
apply even higher-level algorithms, eg. jet finding
store all these quantities/objects event per event

The data analysis
define the theoretically computed observable(s) to be measured
apply event selection (cuts)
estimate efficiencies and backgrounds, eg. from MC simulation
if distributions are measured : take care of absolute calibrations and effects 
because of detector resolution/smearing

• correct for these effects
determine statistical and systematic uncertainties
compare with theory, found a deviation, something new?

• if yes, book the ticket to Stockholm
determine parameters, eg. by fitting the prediction to the data

8



 

CSS09 G. Dissertori : From raw data to physics results 
9

How is all this done in 
practice?

“The only place you’ll find SUCCESS before WORK is in the dictionary”  (May B. Smith)



CSS09 G. Dissertori : From raw data to physics results 10

The process in practice
The reconstruction step is usually 
done in common

“Tracks”, “particle ID”, “calorimeter towers” etc 
are general concepts, not analysis-specific. 
Common algorithms make it easier to 
understand how well they work
“very coordinated” data access

Analysis
Info

Raw
Data

Production
Reconstruction
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The process in practice
The reconstruction step is usually 
done in common

“Tracks”, “particle ID”, “calorimeter towers” etc 
are general concepts, not analysis-specific. 
Common algorithms make it easier to 
understand how well they work
“very coordinated” data access

 Analysis is a very individual thing
Many different measurements being done at 
once
Small groups working on topics they are 
interested in
Many different time scales for these efforts
“chaotic” data access

Collaborations build 
offline computing systems 
to handle all this

Analysis
Info

Raw
Data

Production
Reconstruction

Physics
Papers

Individual
Analyses
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Track finding
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Why does tracking need to be done well? 
Determine how many charged particles were created in an event
Measure their momentum

direction, magnitude
combine these to look for decays of particles with known masses
only final stable particles are visible
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Why does tracking need to be done well? 
Determine how many charged particles were created in an event
Measure their momentum

direction, magnitude
combine these to look for decays of particles with known masses
only final stable particles are visible

Measure 
spatial 
trajectories

combine to look 
for separated 
vertices, 
indicating 
particles 
with long 
lifetimes
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Track Fitting
1D straight line fit as simple case
Two perfect measurements

away from interaction point

no measurement uncertainty

just draw a straight line through them and extrapolate

Imperfect measurements give less precise results
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Two perfect measurements

away from interaction point

no measurement uncertainty

just draw a straight line through them and extrapolate

Imperfect measurements give less precise results
the farther you extrapolate, the less you know

Smaller errors and more points help to constrain the possibilities.
But how to find the best point from a large set of points?

Quantitatively
parameterize a track: 
In case of straight line                                      or, eg., helix in case of magnetic field present

Find track parameters by Least-Squares-Minimization

y(x) = θ x + d

χ2 =
nhits∑

i=1

(yi − y(xi))
2

σ2
i

position of ith hit
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Track Fitting
1D straight line fit as simple case
Two perfect measurements

away from interaction point

no measurement uncertainty

just draw a straight line through them and extrapolate

Imperfect measurements give less precise results
the farther you extrapolate, the less you know

Smaller errors and more points help to constrain the possibilities.
But how to find the best point from a large set of points?

Quantitatively
parameterize a track: 
In case of straight line                                      or, eg., helix in case of magnetic field present

Find track parameters by Least-Squares-Minimization

Obtain also uncertainties on track parameters

y(x) = θ x + d

χ2 =
nhits∑

i=1

(yi − y(xi))
2

σ2
i

position of ith hit

predicted track position 
at ith hit

uncertainty of ith measurement

δθ δdse
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“Typical” size of errors

Error δd on position is about ±10 microns
Error δθ on angle is about ±0.1 milliradians (±0.002 degrees)
Satisfyingly small errors

allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

However
we “see” particles by interaction with a detector (=material)

±10 microns±10 microns
10 cm

10 cm



CSS09 G. Dissertori : From raw data to physics results 14

“Typical” size of errors

Error δd on position is about ±10 microns
Error δθ on angle is about ±0.1 milliradians (±0.002 degrees)
Satisfyingly small errors

allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

However
we “see” particles by interaction with a detector (=material)
interaction leads to : energy loss, change in direction

±10 microns±10 microns
10 cm

10 cm

θMS



CSS09 G. Dissertori : From raw data to physics results 14

“Typical” size of errors

Error δd on position is about ±10 microns
Error δθ on angle is about ±0.1 milliradians (±0.002 degrees)
Satisfyingly small errors

allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

However
we “see” particles by interaction with a detector (=material)
interaction leads to : energy loss, change in direction
This is Multiple Scattering

• Charged particles passing through matter “scatter” by a random angle

±10 microns±10 microns
10 cm

10 cm

θMS

√
〈θ2

MS〉 =
15 MeV/c

βp

√
thickness

Xrad

examples:
300 micron Si : RMS = 0.9 mrad /βp
1 mm Be        : RMS = 0.8 mrad /βp
➔  leads to additional position errors
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Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable

1

2

3 n

θ1
θ2

θ3 θn

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·
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Kalman filter

So?  Could extend track parameterization to take this into account 
n additional parameters

and include the multiple scattering information into the Least-Squares 
(n equations, n unknowns)

For large n, computing time grows like O(n3), quickly un-practicable
anyway, not interested in all these angles, only in parameters at the origin

Instead, approximate, work inward N times

leads to O(n) computations!
in each step, make extrapolation to next layer, using information from current track 
parameters, expected scattering error, and measurement at next layer
Needs a starting estimate (seed) and may need some iterations, smoothing
This method is based on theory of the Kalman Filter

1

2

3 n

θ1
θ2

θ3 θn

1

2

3 n

y(x) = d + θ x + Θ(x− x1)θ1(x− x1) + Θ(x− x2)θ1(x− x2) + · · ·

χ2 = χ2
old +

∑

i

θ2
i

σ2
MS
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Calorimeter energy 
reconstruction
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Goals 
Reconstruct energy deposited by charged and neutral particles
Determine position of deposit, direction of incident particles
Be insensitive to noise and “un-wanted” (un-correlated) energy

and obtain the best possible
resolution!
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Clusters of energy 
Calorimeters are segmented in cells
Typically a shower extends over several cells

Useful to reconstruct precisely the impact point from the “center-of-gravity” of the deposits 
in the various cells

Example CMS Crystal Calorimeter:
electron energy in central crystal ~ 80 %, in 5x5 matrix around it ~ 96 %

So task is : identify these clusters and reconstruct the energy they contain
front view

side view
view in (φ,η) cells
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Clusters of energy in a calorimeter are due to the original particles

Clustering algorithm groups individual channel energies
Don’t want to miss any; don’t want to pick up fakes
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Cluster Finding
Clusters of energy in a calorimeter are due to the original particles

Clustering algorithm groups individual channel energies
Don’t want to miss any; don’t want to pick up fakes
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low threshold,
against noise

high threshold,
for seed finding

Simple example of an algorithm
  Scan for seed crystals = local energy maximum above a defined seed threshold
  Starting from the seed position, adjacent crystals are examined, scanning first in φ and then in η
  Along each scan line, crystals are added to the cluster if

1. The crystal’s energy is above the noise level (lower threshold) 
2. The crystal has not been assigned to another cluster already
3. The previous crystal added (in the same direction) has higher energy
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Difficulties 
Careful tuning of thresholds needed

needs usually learning phase
adapt to noise conditions
too low : pick up too much unwanted energy
too high : loose too much of “real” energy. Corrections/Calibrations will be larger

Sometimes several clustering stages, in order separate or 
combine nearby clusters

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Channe l

low threshold,
against noise

high threshold,
for seed finding

example : one lump or two?
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Jet Algorithms
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Jets in Hadron Collider Detectors

Introducing a cone prescription seems “natural”...
But how to make it more quantitative?

don’t want people “guessing” at whether there are 2,3, ...  jets

Jets in       DØ CDF
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Cones...

23
from J. Huston, CTEQ summer school 2004

The natural (?) definition of a jet in a hadron collider environment
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Requirements
  Applicable at all levels 

partons, stable particles
 for theoretical calculations

measured objects (calorimeter objects, tracks, etc)

and always find the same jet

                  
  Independent of the very details of the 
detector 

example : granularity of the 
calorimeter, energy response,...                                                                 

                  
Easy to implement !

Energy
Momentum

angle

Close correspondence between

Pparton           Pjet
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The CONE algorithm

Compute centroid 
using R

Is new axis 
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of protojets

Remove

Is list 
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Send list of 
protojets to

split/merge algo 

Start with 
list of 
seeds

Cone already
found? 

Y

Y

Y
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using R
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Send list of 
protojets to

split/merge algo 
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Seeds: for example, energy deposits with 
transverse energy (ET = E sinθ) > 2 GeV 
in a tower of the calorimeter

Centroid (one possible def) : 
i ∈ C :

√
(ηi − ηC)2 + (Φi − ΦC)2 ≤ R cone radius (1)

ηC =
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∑

i∈C

Ei
T (2)

1



CSS09 G. Dissertori : From raw data to physics results 25

The CONE algorithm

Compute centroid 
using R

Is new axis 
same as old 

one? 

Add to list 
of protojets

Remove

Is list 
exhausted?

Send list of 
protojets to

split/merge algo 

Start with 
list of 
seeds

Cone already
found? 

Y

Y

Y

N

N

N

Seeds: for example, energy deposits with 
transverse energy (ET = E sinθ) > 2 GeV 
in a tower of the calorimeter

Centroid (one possible def) : 
i ∈ C :

√
(ηi − ηC)2 + (Φi − ΦC)2 ≤ R cone radius (1)

ηC =
1

EC
T

∑

i∈C

Ei
T ηi ; ΦC =

1

EC
T

∑

i∈C

Ei
T Φi ; EC

T =
∑

i∈C

Ei
T (2)

1



 

CSS09 G. Dissertori : From raw data to physics results 
26

The computing 
behind all this
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Some numbers
Examples from CMS, estimates

Rate of events streaming out from High-Level Trigger farm ~150 Hz
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Some numbers
Examples from CMS, estimates

Rate of events streaming out from High-Level Trigger farm ~150 Hz
each event has a size of the order of 200 kByte

CMS will record ~100k top-quark events per day
among about 107 events in total per day
will have roughly 150 “physics” days per year
thus about 109 evts/year, a few Pbyte

 “prompt” processing
Expect to do first reprocessing step within one day
Reco time per event on std. CPU: < 5 sec (on lxplus)
Note : will have to reprocess several times

• new/better algorithms, updated calibrations, etc.

 Expect to simulate several 100s to 1000s of millions of events
will be mostly done at computing centres outside CERN
Simulation time per event now ~ 100 secs (eg. for QCD or top evts)

Now : ~2 million lines of code (reconstruction and simulation)
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RECO flow

Recorded
signals

DAQ
system

Prompt
Reconstruction

Reconstruction Observed 
tracks, etc

Interpreted
events

Physics Tools
eg. jet algos

Root,
... Individual

Analyses Data storage
Various formats:
Full Event info,
only RECO info,

reduced/selected RECO 
info
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Flow of simulated data
Generators

Response
Simulation

Geometry
Simulation

Specific
reaction

Particle 
paths
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Flow of simulated data
Generators

Response
Simulation

Geometry
Simulation

Specific
reaction

Particle 
paths

Background
reaction

Measured
backgrounds

Merge 
Processing

Background
generator

Reconstruction Observed 
tracks, etc

Interpreted
events

Physics Tools
eg. jet algos

Individual
Analyses

Recorded
signals

Separate components:
often made by different experts

makes it more manageable 

Product is realistic “data” for analysis

Building a better model:
improved details (eg. better detector geometry)

real backgrounds
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Partitioning production systems
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Response
Simulation

Geometry
Simulation

Specific
reaction

Particle 
paths

Reconstruction Observed 
tracks, etc

Interpreted
events
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Analyses

Recorded
signals

SIM step 
eg. 
PYTHIA  +
CMSSW
(simulation part,
based on GEANT)

DIGI step 
CMSSW

RECO step 
CMSSW

ROOT
PAW (in good old times)
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Summary

“Doing something ordinary is a waste of time”  (Madonna)
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What wasn’t covered
Details on track fitting, Kalman filters
Secondary Vertex finding
Alignment
Particle Identification
Calibration techniques, “in-situ” methods
Particle/Energy flow
Trigger menus, their studies
more details on parameter fitting, 
eg. lifetime and mass measurements
how to estimate systematic errors
Databases, persistent data storage
Programming languages in use (F77, C, C++, JAVA, ...)
.....
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