From Raw Data to Physics Results Part 2 GeV/c ² 2009 200 600 • $\gamma^*/Z \rightarrow ee Data$ $\Box \gamma'/Z \rightarrow ee MC$ Events/ 400 300 200 100 40 50 60 70 80 90 100 110 120 130 M_{ee} (GeV/c²) Pi in **Günther Dissertori ETH Zürich CERN Summer Student Lectures 2009**

A "more complicated" example

"The greater the obstacle, the more glory in overcoming it." (Moliere)

$\widehat{\mathsf{W}}$ JET production at hadron colliders Φ Particle Physics

JET production at hadron colliders Φ ETH Institute for Particle Physics

In at the Tevatron, or in the future at the LHC

$\widehat{\mathsf{Particle Physics}}$ JET production at hadron colliders $\widehat{\Phi}^{\mathsf{ETH Institute for Particle Physics}}$

Goal

- measure probability that quarks/gluons are produced with a certain energy, at a certain angle
- Problem : do not observe quarks and gluons directly, only hadrons, which appear collimated into jets
- Reconstruct tracks and/or energy clusters in the calorimeter

see also lecture by B. Heinemann

"cluster/spray of particles (tracks, calorimeter deposits) or flow of energy in a restricted angular region"

"cluster/spray of particles (tracks, calorimeter deposits) or flow of energy in a restricted angular region"

"cluster/spray of particles (tracks, calorimeter deposits) or flow of energy in a restricted angular region"

♀ clear : need some algorithmic definition. See later..

Problem 1 : Energy scale

- ETH Institute for Particle Physics
- Question : how well do we know the energy calibration?
- Critical because of very steeply falling spectrum!

Problem 1 : Energy scale

- Question : how well do we know the energy calibration?
- Critical because of very steeply falling spectrum!

ETH Institute for Particle Physics

Problem 1 : Energy scale

- Question : how well do we know the energy calibration?
- Critical because of very steeply falling spectrum!

ETH Institute for Particle Physics

Problem 2 : Energy resolution Φ ETH Institute for Particle Physics

- The energy resolution can distorts the spectrum
- Again : Critical because of very steeply falling spectrum!

$\widehat{Problem 2}: Energy resolution \quad \widehat{\Phi}^{\text{ETH Institute for Particle Physics}}$

- The energy resolution can distorts the spectrum
- Again : Critical because of very steeply falling spectrum!

$\widehat{Problem 2}: Energy resolution \quad \widehat{\Phi}^{\text{ETH Institute for Particle Physics}}$

- The energy resolution can distorts the spectrum
- Again : Critical because of very steeply falling spectrum!

After data flow from DAQ: data reduction and abstraction

- After data flow from DAQ: data reduction and abstraction
 - reconstruct tracks, energy deposits (clusters) in calorimeters

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis

- See Section Sectio
 - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis
 - define the theoretically computed observable(s) to be measured

- See a second second
 - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis
 - define the theoretically computed observable(s) to be measured
 - apply event selection (cuts)

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis
 - define the theoretically computed observable(s) to be measured
 - apply event selection (cuts)
 - estimate efficiencies and backgrounds, eg. from MC simulation

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis
 - define the theoretically computed observable(s) to be measured
 - apply event selection (cuts)
 - estimate efficiencies and backgrounds, eg. from MC simulation
 - if distributions are measured : take care of absolute calibrations and effects because of detector resolution/smearing
 - correct for these effects

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis
 - define the theoretically computed observable(s) to be measured
 - apply event selection (cuts)
 - estimate efficiencies and backgrounds, eg. from MC simulation
 - if distributions are measured : take care of absolute calibrations and effects because of detector resolution/smearing
 - correct for these effects
 - determine statistical and systematic uncertainties

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis
 - define the theoretically computed observable(s) to be measured
 - apply event selection (cuts)
 - estimate efficiencies and backgrounds, eg. from MC simulation
 - if distributions are measured : take care of absolute calibrations and effects because of detector resolution/smearing
 - correct for these effects
 - determine statistical and systematic uncertainties
 - compare with theory, found a deviation, something new?

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis
 - define the theoretically computed observable(s) to be measured
 - apply event selection (cuts)
 - estimate efficiencies and backgrounds, eg. from MC simulation
 - if distributions are measured : take care of absolute calibrations and effects because of detector resolution/smearing
 - correct for these effects
 - determine statistical and systematic uncertainties
 - compare with theory, found a deviation, something new?
 - if yes, book the ticket to Stockholm

- - reconstruct tracks, energy deposits (clusters) in calorimeters
 - calculate "high-level" physics quantities
 - eg. momentum of charged particles, energy of neutral particles
 - apply even higher-level algorithms, eg. jet finding
 - store all these quantities/objects event per event
- The data analysis
 - define the theoretically computed observable(s) to be measured
 - apply event selection (cuts)
 - estimate efficiencies and backgrounds, eg. from MC simulation
 - if distributions are measured : take care of absolute calibrations and effects because of detector resolution/smearing
 - correct for these effects
 - determine statistical and systematic uncertainties
 - compare with theory, found a deviation, something new?
 - if yes, book the ticket to Stockholm
 - determine parameters, eg. by fitting the prediction to the data

How is all this done in practice?

"The only place you'll find SUCCESS before WORK is in the dictionary" (May B. Smith)

The process in practice

The reconstruction step is usually done in common

- "Tracks", "particle ID", "calorimeter towers" etc are general concepts, not analysis-specific. Common algorithms make it easier to understand how well they work
- "very coordinated" data access

The process in practice

The reconstruction step is usually done in common

- "Tracks", "particle ID", "calorimeter towers" etc are general concepts, not analysis-specific. Common algorithms make it easier to understand how well they work
- "very coordinated" data access

Analysis is a very individual thing

- Many different measurements being done at once
- Small groups working on topics they are interested in
- Many different time scales for these efforts
- "chaotic" data access

The process in practice

The reconstruction step is usually done in common

- "Tracks", "particle ID", "calorimeter towers" etc are general concepts, not analysis-specific. Common algorithms make it easier to understand how well they work
- "very coordinated" data access

Analysis is a very individual thing

- Many different measurements being done at once
- Small groups working on topics they are interested in
- Many different time scales for these efforts
- "chaotic" data access
- Collaborations build offline computing systems to handle all this

Track finding

Why does tracking need to be done well?

- Determine how many charged particles were created in an event
- Measure their momentum
 - direction, magnitude
 - combine these to look for decays of particles with known masses
 - only final stable particles are visible

Why does tracking need to be done well? Φ ETH Institute for Particle Physics

- Determine how many charged particles were created in an event
- Measure their momentum
 - direction, magnitude
 - combine these to look for decays of particles with known masses
 - only final stable particles are visible

Measure spatial trajectories

combine to look for separated vertices, indicating particles with long lifetimes

ID straight line fit as simple case

Two perfect measurements

- away from interaction point
- no measurement uncertainty
- *iust draw a straight line through them and extrapolate*
- Imperfect measurements give less precise results

ID straight line fit as simple case

Two perfect measurements

- away from interaction point
- no measurement uncertainty
- just draw a straight line through them and extrapolate

Imperfect measurements give less precise results

the farther you extrapolate, the less you know

ID straight line fit as simple case

Two perfect measurements

away from interaction point

CSS09

- no measurement uncertainty
- just draw a straight line through them and extrapolate

Imperfect measurements give less precise results

- the farther you extrapolate, the less you know

CSS09

1D straight line fit as simple case 9

Two perfect measurements 9

- away from interaction point Ģ
- no measurement uncertainty ý.
- just draw a straight line through them and extrapolate Ş
- **Imperfect** measurements give less precise results G
 - the farther you extrapolate, the less you know
- Smaller errors and more points help to constrain the possibilities. 9 But how to find the best point from a large set of points? • • •

Quantitatively

Ş

parameterize a track:

In case of straight line (
$$y(x)$$
 =

$$(x) = heta \, x + d$$
) or, eg., helix in case of magnetic field present

13

1D straight line fit as simple case 9 Two perfect measurements away from interaction point no measurement uncertainty just draw a straight line through them and extrapolate **Imperfect** measurements give less precise results the farther you extrapolate, the less you know Smaller errors and more points help to constrain the possibilities. 9 But how to find the best point from a large set of points? Quantitatively parameterize a track: $y(x) = \theta x + d$ or, eg., helix in case of magnetic field present In case of straight line (predicted track position at ith hit position of ith hit $n_{\rm hits}$ Find track parameters by Least-Squares-Minimization Ģ uncertainty of ith measurement G. Dissertori : From raw data to physics results

Track Fitting

13

ETH Institute for Particle Physics

Two perfect measurements away from interaction point no measurement uncertainty just draw a straight line through them and extrapolate **Imperfect** measurements give less precise results 9 the farther you extrapolate, the less you know Smaller errors and more points help to constrain the possibilities. 9 But how to find the best point from a large set of points? Quantitatively also lecture by G. Cowan parameterize a track: $y(x) = \theta x + d$) or, eg., helix in case of magnetic field present In case of straight line (predicted track position at ith hit position of ith hit $n_{\rm hits}$ Find track parameters by Least-Squares-Minimization Ģ Obtain also uncertainties on track parameters $\delta heta$ δd uncertainty of ith measurement

1D straight line fit as simple case 9

Track Fitting

G. Dissertori : From raw data to physics results

CSS09

See

- Solution Error δd on position is about ±10 microns
- Solution Error $\delta \Theta$ on angle is about ±0.1 milliradians (±0.002 degrees)
- Satisfyingly small errors
 - allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

However

we "see" particles by interaction with a detector (=material)

CSS09

- Solution Error δd on position is about ±10 microns
- Solution Error $\delta \Theta$ on angle is about ±0.1 milliradians (±0.002 degrees)
- Satisfyingly small errors
 - allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

However

- we "see" particles by interaction with a detector (=material)
- interaction leads to : energy loss, change in direction

 θ_{MS}

- Solution Error δd on position is about ±10 microns
- Solution Error $\delta \Theta$ on angle is about ±0.1 milliradians (±0.002 degrees)
- Satisfyingly small errors
 - allows separation of tracks that come from different particle decays (which can be separated at the order of mm)

However

- we "see" particles by interaction with a detector (=material)
- interaction leads to : energy loss, change in direction
- This is Multiple Scattering
 - Charged particles passing through matter "scatter" by a random angle

$$\sqrt{\langle \theta_{\rm MS}^2 \rangle} = \frac{15 \,{\rm MeV}/c}{\beta p} \sqrt{\frac{\rm thickness}{X_{\rm rad}}}$$

examples:

- 300 micron Si : RMS = 0.9 mrad $/\beta p$
- 1 mm Be : RMS = 0.8 mrad $/\beta p$
- → leads to additional position errors

 θ_{MS}

- So? Could extend track parameterization to take this into account
 - * *n* additional parameters $y(x) = d + \theta x + \Theta(x x_1)\theta_1(x x_1) + \Theta(x x_2)\theta_1(x x_2) + \cdots$
- and include the multiple scattering information into the Least-Squares (*n* equations, *n* unknowns)
 - For large *n*, computing time grows like $O(n^3)$, quickly un-practicable

- So? Could extend track parameterization to take this into account
 - *n* additional parameters $y(x) = d + \theta x + \Theta(x x_1)\theta_1(x x_1) + \Theta(x x_2)\theta_1(x x_2) + \cdots$ Ş
- and include the multiple scattering information into the Least-Squares (*n* equations, *n* unknowns) $\chi^2 = \chi^2_{\rm old} + \sum_i \frac{\theta_i^2}{\sigma^2_{\rm MS}}$
 - For large *n*, computing time grows like $O(n^3)$, quickly un-practicable
 - anyway, not interested in all these angles, only in parameters at the origin Ş

- For large *n*, computing time grows like $O(n^3)$, quickly un-practicable
- anyway, not interested in all these angles, only in parameters at the origin Ş

Instead, approximate, work inward *N* times 9

- anyway, not interested in all these angles, only in parameters at the origin
- Instead, approximate, work inward *N* times

- and include the multiple scattering information into the Least-Squares (*n* equations, *n* unknowns) $\chi^2 = \chi^2_{\rm old} + \sum_i \frac{\theta_i^2}{\sigma^2_{\rm MS}}$
 - For large *n*, computing time grows like $O(n^3)$, quickly un-practicable
 - anyway, not interested in all these angles, only in parameters at the origin Ş
- Instead, approximate, work inward *N* times 9

- *n* additional parameters $y(x) = d + \theta x + \Theta(x x_1)\theta_1(x x_1) + \Theta(x x_2)\theta_1(x x_2) + \cdots$
- and include the multiple scattering information into the Least-Squares (*n* equations, *n* unknowns) $\chi^2 = \chi^2_{\rm old} + \sum_i \frac{\theta_i^2}{\sigma^2_{\rm MS}}$
 - For large *n*, computing time grows like $O(n^3)$, quickly un-practicable
 - anyway, not interested in all these angles, only in parameters at the origin Ş
- Instead, approximate, work inward *N* times 9

- anyway, not interested in all these angles, only in parameters at the on
- Instead, approximate, work inward *N* times

- leads to O(n) computations!
- in each step, make extrapolation to next layer, using information from current track parameters, expected scattering error, and measurement at next layer
- Needs a starting estimate (seed) and may need some iterations, smoothing
- This method is based on theory of the Kalman Filter

Calorimeter energy reconstruction

- Reconstruct energy deposited by charged and neutral particles
- Determine position of deposit, direction of incident particles
- Be insensitive to noise and "un-wanted" (un-correlated) energy

resolution!

Clusters of energy

- Calorimeters are segmented in cells
- Typically a shower extends over several cells
 - Useful to reconstruct precisely the impact point from the "center-of-gravity" of the deposits in the various cells

Clusters of energy

- Calorimeters are segmented in cells
- Typically a shower extends over several cells
 - Useful to reconstruct precisely the impact point from the "center-of-gravity" of the deposits in the various cells
- Example CMS Crystal Calorimeter:
 - In electron energy in central crystal ~ 80 %, in 5x5 matrix around it ~ 96 %

Clusters of energy

- Calorimeters are segmented in cells
- Typically a shower extends over several cells
 - Useful to reconstruct precisely the impact point from the "center-of-gravity" of the deposits in the various cells
- Example CMS Crystal Calorimeter:
 - In electron energy in central crystal ~ 80 %, in 5x5 matrix around it ~ 96 %
- So task is : identify these clusters and reconstruct the energy they contain

- Clustering algorithm groups individual channel energies
- Don't want to miss any; don't want to pick up fakes

ETH Institute for Particle Physics

- Clusters of energy in a calorimeter are due to the original particles
 - Clustering algorithm groups individual channel energies
 - Don't want to miss any; don't want to pick up fakes

- Clusters of energy in a calorimeter are due to the original particles
 - Clustering algorithm groups individual channel energies
 - Don't want to miss any; don't want to pick up fakes

Simple example of an algorithm

- Scan for seed crystals = local energy maximum above a defined seed threshold
- Starting from the seed position, adjacent crystals are examined, scanning first in φ and then in η
- Along each scan line, crystals are added to the cluster if
 - 1. The crystal's energy is above the noise level (lower threshold)
 - 2. The crystal has not been assigned to another cluster already
 - 3. The previous crystal added (in the same direction) has higher energy

ETH Institute for Particle Physics

Careful tuning of thresholds needed

- needs usually learning phase
- adapt to noise conditions
- too low : pick up too much unwanted energy
- too high : loose too much of "real" energy. Corrections/Calibrations will be larger
- Sometimes several clustering stages, in order separate or combine nearby clusters

Jet Algorithms

$\widehat{\mathbb{P}}$ Jets in Hadron Collider Detectors Φ ETH Institute for Particle Physics

Jets in DØ

CDF

- Introducing a cone prescription seems "natural"...
- But how to make it more quantitative?
 - don't want people "guessing" at whether there are 2,3, ... jets

The natural (?) definition of a jet in a hadron collider environment

24

Applicable at all levels

Requirements

- partons, stable particles e e
 - for theoretical calculations
- measured objects (calorimeter objects, tracks, etc) Ş
- Ş and always find the same jet

Requirements

- Applicable at all levels
 - partons, stable particles
 - for theoretical calculations
 - measured objects (calorimeter objects, tracks, etc)
 - and always find the same jet
- Independent of the very details of the detector
 - example : granularity of the calorimeter, energy response,...

Requirements

- Applicable at all levels
 - partons, stable particles
 - for theoretical calculations
 - measured objects (calorimeter objects, tracks, etc)
 - and always find the same jet
- Independent of the very details of the detector
 - example : granularity of the calorimeter, energy response,...
- Easy to implement !

24

Requirements

- Applicable at all levels
 - 9 partons, stable particles
 - for theoretical calculations
 - measured objects (calorimeter objects, tracks, etc) Ş
 - and always find the same jet Ş
- Independent of the very details of the detector
 - example : granularity of the Ģ calorimeter, energy response,...
- Easy to implement !
- Close correspondence between

The computing behind all this

Somewhere, something went terribly wrong

- Examples from CMS, estimates
 - Rate of events streaming out from High-Level Trigger farm ~150 Hz
 - each event has a size of the order of 200 kByte

- Examples from CMS, estimates
 - Rate of events streaming out from High-Level Trigger farm ~150 Hz
 - each event has a size of the order of 200 kByte
- CMS will record ~100k top-quark events per day
 - among about 10⁷ events in total per day
 - will have roughly 150 "physics" days per year
 - thus about 10⁹ evts/year, a few Pbyte

- Examples from CMS, estimates
 - Image: Image
 - each event has a size of the order of 200 kByte
- CMS will record ~100k top-quark events per day
 - among about 10⁷ events in total per day
 - will have roughly 150 "physics" days per year
 - thus about 10⁹ evts/year, a few Pbyte
- "prompt" processing
 - Expect to do first reprocessing step within one day
 - Reco time per event on std. CPU: < 5 sec (on lxplus)</p>
 - Note : will have to reprocess several times
 - new/better algorithms, updated calibrations, etc.

- Examples from CMS, estimates
 - Image: Image
 - each event has a size of the order of 200 kByte
- CMS will record ~100k top-quark events per day
 - among about 10⁷ events in total per day
 - will have roughly 150 "physics" days per year
 - thus about 10⁹ evts/year, a few Pbyte
- "prompt" processing
 - Expect to do first reprocessing step within one day
 - Reco time per event on std. CPU: < 5 sec (on lxplus)</p>
 - Note : will have to reprocess several times
 - new/better algorithms, updated calibrations, etc.
- Expect to simulate several 100s to 1000s of millions of events
 - will be mostly done at computing centres outside CERN
 - Simulation time per event now ~ 100 secs (eg. for QCD or top evts)

- Examples from CMS, estimates
 - Rate of events streaming out from High-Level Trigger farm ~150 Hz
 - each event has a size of the order of 200 kByte
- CMS will record ~100k top-quark events per day
 - among about 10⁷ events in total per day
 - will have roughly 150 "physics" days per year
 - thus about 10⁹ evts/year, a few Pbyte
- "prompt" processing
 - Expect to do first reprocessing step within one day
 - Reco time per event on std. CPU: < 5 sec (on lxplus)</p>
 - Note : will have to reprocess several times
 - new/better algorithms, updated calibrations, etc.
- Expect to simulate several 100s to 1000s of millions of events
 - will be mostly done at computing centres outside CERN
 - Simulation time per event now ~ 100 secs (eg. for QCD or top evts)
 - Now : ~2 million lines of code (reconstruction and simulation)

ETH Institute for

Flow of simulated data

Flow of simulated data

ETH Institute for Particle Physics

Flow of simulated data

Partitioning production systems Φ ETH Institute for Particle Physics

Partitioning production systems $\Phi^{\text{ETH Institute for Particle Physics}}$

Partitioning production systems Φ ETH Institute for Particle Physics

CMS Computing Model: Data Flow

CMS Computing Model: Data Flow

CMS Computing Model: Data Flow

Summary

"Doing something ordinary is a waste of time" (Madonna)

What wasn't covered

ETH Institute for Particle Physics

- Details on track fitting, Kalman filters
- Secondary Vertex finding
- Alignment
- Particle Identification
- Calibration techniques, "in-situ" methods
- Particle/Energy flow
- Trigger menus, their studies
- more details on parameter fitting,
 eg. lifetime and mass measurements
- how to estimate systematic errors
- Databases, persistent data storage
- Programming languages in use (F77, C, C++, JAVA, ...)

- Reconstruction and Analysis is how we get from raw data to physics papers
- On your way

- Reconstruction and Analysis is how we get from raw data to physics papers
- On your way
 - \checkmark first you have too much information \rightarrow reduce

On your way

- \checkmark first you have too much information \rightarrow reduce
- sometimes too little information or little prior knowledge
 - make hypotheses

On your way

- irst you have too much information \rightarrow reduce
- sometimes too little information or little prior knowledge
 - make hypotheses
- What makes it hard, but also exciting

On your way

- irst you have too much information \rightarrow reduce
- sometimes too little information or little prior knowledge
 - make hypotheses
- What makes it hard, but also exciting
 - many many cross checks

On your way

- irst you have too much information \rightarrow reduce
- sometimes too little information or little prior knowledge
 - make hypotheses

What makes it hard, but also exciting

- many many cross checks
- more cross checks

On your way

- irst you have too much information \rightarrow reduce
- sometimes too little information or little prior knowledge
 - make hypotheses

What makes it hard, but also exciting

- many many cross checks
- more cross checks
- sometimes some "art" involved

On your way

- irst you have too much information \rightarrow reduce
- sometimes too little information or little prior knowledge
 - make hypotheses

What makes it hard, but also exciting

- many many cross checks
- more cross checks
- sometimes some "art" involved
- tuning, evolutionary improvement

On your way

- irst you have too much information \rightarrow reduce
- sometimes too little information or little prior knowledge
 - make hypotheses

What makes it hard, but also exciting

- many many cross checks
- more cross checks
- sometimes some "art" involved
- tuning, evolutionary improvement

Even to me it is often a miracle that we can generate wonderful results from these complicated instruments!

Reconstruction and Analysis is how we get from raw data to physics papers

On your way

- \blacksquare first you have too much information \rightarrow reduce
- sometimes too little information or little prior knowledge
 - make hypotheses

What makes it hard, but also exciting

- many many cross checks
- more cross checks
- sometimes some "art" involved
- tuning, evolutionary improvement

Even to me it is often a miracle that we can generate wonderful results from these complicated instruments!