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EVOLUTION OF THE WINDOWS

KERNEL ARCHITECTURE
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Environment which influenced

fundamental design decisions

16-bit program address space 32-bit program address space
Kbytes of physical memory Mbytes of physical memory
Swapping system with memory mapping | Virtual memory

Kbytes of disk, fixed disks Mbytes of disk, removable disks
Uniprocessor Multiprocessor (4-way)
State-machine based 1/O devices Micro-controller based I/O devices
Standalone interactive systems Client/Server distributed computing
Small number of friendly users Large, diverse user populations
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NT vs UNIX

Unit of concurrency:

Process creation:
1/O:

Namespace root:
Security:

Threads vs processes
CreateProcess() vs fork()
Async vs sync

Virtual vs Filesystem
ACLs vs uid/gid

Addr space, uniproc
Addr space, swapping
Swapping, 1/0O devices
Removable storage
User populations
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64-bit addresses

GBytes of physical memory

TBytes of rotational disk

New Storage hierarchies (SSDs)

Hypervisors, virtual processors

Multi-core/Many-core

Heterogeneous CPU architectures, Fixed function hardware
High-speed internet/intranet, Web Services

Media-rich applications

Single user, but vulnerable to hackers worldwide

Convergence: Smartphone / Netbook / Laptop / Desktop / TV / Web / Cloud
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Hardware Abstraction Layer (HAL)

hardware interfaces (buses, 1/O devices, interrupts,
interval timers, DMA, memory cache control, etc., etc.) . . .
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user

TN NT AP stubs (wrap sysenter) -- system library (ntdll.dll)

NTOS Trap/Exception/Interrupt Dispatch

kernel
layer CPU mgmt: scheduling, synchr, ISRs/DPCs/APCs

: Procs/Threads IPC Object Mgr
Drivers

DIEEEs), FIeE, Virtual Memory glue Security
Volumes,

Networking, Caching Mgr /10 Registry

Graphics
NTOS executive layer

Hardware Abstraction Layer (HAL): BIOS/chipset details
T T T e —————————————————
WElel e CPU, MMU, APIC, BIOS/ACPI, memory, devices
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» Kernel layer — ntos/ke — ~ 5% of NTOS source)

Abstracts the CPU

Threads, Asynchronous Procedure Calls (APCs)
Interrupt Service Routines (ISRs)
Deferred Procedure Calls (DPCs — aka Software Interrupts)

Providers low-level synchronization

= Executive layer

OS Services running in a multithreaded environment
Full virtual memory, heap, handles
Extensions to NTOS: drivers, file systems, network, ...
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(&ProcHandle, Access,
DebugPort, ExceptionPort, ...)
(&ThreadHandle, , Access,
ThreadContext, bCreateSuspended, ...)
( , Addr, Size,

Type, Protection, ...)
(SectionHandle, ,
Addr, Size, Protection, ...)
( , Addr, Size, ...)
( , srcObjHandle,
, dstHandle, Access, Attributes,

Options)
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= [Ke@rnel ehanges mostly minor improvements
Algorithms, scalability, code maintainability
CPU timing: Uses Time Stamp Counter (TSC)
Interrupts not charged to threads
Timing and quanta are more accurate
Communication
ALPC: Advanced Lightweight Procedure Calls
Kernel-mode RPC
New TCP/IP stack (integrated IPv4 and IPv6)
/O
Remove a context switch from I/O Completion Ports
/O cancellation improvements
Memory management
Address space randomization (DLLs, stacks)
Kernel address space dynamically configured
Security: BitLocker, DRM, UAC, Integrity Levels
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» Miscellaneous kernel changes
MinWin
Change how Windows is built
Lots of DLL refactoring
APl Sets (virtual DLLs)
Working-set management
Runaway processes quickly start reusing own pages

Break up kernel working-set into multiple working-sets
= System cache, paged pool, pageable system code

Security

Better UAC, new account types, less BitLocker blockers
Energy efficiency

Trigger-started background services

Core Parking

Timer-coalescing, tick skipping

= Major scalability improvements for large server apps

Broke apart last two major kernel locks, >64p

= Kernel support for ConcRT
User-Mode Scheduling (UMS)
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Core Parking Operation

Socket 0 Socket 1

™ Workload
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Timer Coalescing

Q Staying idle requires minimizing timer interrupts
© Before, periodic timers had independent cycles even when
period was the same
© New timer APIs permit timer coalescing
© Application or driver specifies tolerable delay

© Timer system shifts timer firing to align periods on a
coalescing interval:
© 50ms, 100ms, 250ms, 1s

A

Timer tick
15.6 ms

Timer Events

I Periodic

Windows 7
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= Scheduler Dispatcher lock hottest on server workloads
Lock protects all thread state changes (wait, unwait)
Very hot lock at >64x

= Dispatcherlock broken up in Windows 7/ Server 2008 R2
Each object protected by its own lock
Many operations are lock-free
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= Windows tracks the state of pages in physical memory

In use: in working sets:
Not assigned: on paging lists: freemodified, standby, ...

= Before, all page state changes protected by global PFN
(Physical Frame Number) lock

= As of Windows 7 the PFN lock is gone
Pages are now locked individually

Improves scalability for large memory applications
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Improve support for efficient cooperative multithreaded
scheduling of small tasks (over-decomposition)
Want to schedule tasks in user-mode

Use NT threads to simulate CPUs, multiplex tasks onto these
threads

When a task calls into the kernel and blocks, the CPU may get
scheduled to a different app
If a single NT thread per CPU, when it blocks it blocks.

Could have extra threads, but then kernel and user-mode are
competing to schedule the CPU

Tasks run arbitrary Win32 code (but only x64/I1A64)

Assumes running on an NT thread (TEB, kernel thread)

Used by ConcRT (Visual Studio 2010’s Concurrency Run-
Time)
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= UMS breaks NT thread into two parts:
UT: user-mode portion (TEB, ustack, registers)
KT: kernel-mode portion (ETHREAD, kstack, registers)
» Three key properties:
User-mode scheduler switches UTs w/o ring crossing
KT switch is lazy: at kernel entry (e.g. syscall, pagefault)
CPU returned to user-mode scheduler when KT blocks

= KT “returns” to user-mode by queuing completion

User-mode scheduler schedules corresponding UT
(similar to scheduler activations, etc)
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x86 core
Kernel-mode

Scheduler

NTOS executive

NT Thread is Kernel Thread (KT) and User Thread (UT)
UT/KT form a single logical thread representing NT thread in user or
kernel

KT: ETHREAD, KSTACK, link to EPROCESS

UT: TEB, USTACK
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NTOS executive

KT, blocks

i IR pimary
trap code Thread Parking Thread
kernel

user N
UT Completion list

User-mode
Only primary thread runs in user-mode Scheduler

Trap code switches to parked KT l \
uT
uT

KT blocks = primary returns to user-mode

KT unblocks & parks = queue UT completion 1
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= Based on NT threads
Each NT thread has user & kernel parts (UT & KT)

When a thread becomes UMS, KT never returnsto UT
—

Instead, the primary thread calls the USched
= USched

Switches between UTs, all in user-mode

When a UT enters kernel and blocks, the primary thread will hand
CPU back to the USched declaring UT blocked

When UT unblocks, kernel queues notification
USched consumes notifications, marks UT runnable

= Primary Thread
Self-identified by entering kernel with wrong TEB
So UTs can migrate between threads
Affinities of primaries and KTs are orthogonal issues
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* Primary threads: represent CPUs, normal app threads enter the
USched world and become primaries, primaries also can be created
by UScheds to allow parallel execution

= UMS threads (UT/KTs): allow blocking in the kernel without losing
the CPU
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Thread Scheduling vs UMS

Non-running threads
I

User
Thread

1 2
Thread Thread Thread

- 4 > 6

Kernel
Thread
2

-

Kernel
Thread
6

Cooperative Thread Scheduling
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Why not Win32 fibers?

= TEBissues
Contains TLS and Win32-specific fields (incl LastError)
Fibers run on multiple threads, so TEB state doesn't track

= Kernel thread issues
Visibility to TEB
/O is queued to thread
Mutexes record thread owner
Impersonation
Cross-thread operations expect to find threads and IDs
Win32 code has thread and affinity awareness
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Types of APCs

User and Kernel (both Normal kernel and Special kernel)

User APCs only delivered when waiting in the kernel

Only a few APCs are important w.r.t. user-mode
Suspend/resume thread
Get/set thread context
Thread termination

Need to force the UT into the kernel
UMSContextLock — coordinates between USched/kernel
Tells USched not to schedule UT
Tells kernel which primary to force into kernel

Thread termination

Queues notification of termination to completion list
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= User-mode scheduling cannot set debug registers
store debug registers in user-mode context

when switching to a UT with debug registers, the USched must
enter the kernel to do the actual switch
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x86 core
Kernel-mode NTOS executive

Scheduler \

remote kernel -

trap code Thread Parking \
\

] 44*;
Syscall Request Queue Syscall Completion Queue
m cermore Remote x86
Scheduler

UTs (can) run on accelerators or x86s ‘ \
U

KTs run on x86s, syscalls remoted/batched
Pagefaults are just like syscalls
Accelerator never “loses the CPU” (implicit primary)
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Many-core challenge
New driving force in software innovation:
Amdahl’s Law overtakes Moore’s Law as high-order bit

Heterogeneous cores?

OS Scalability
Loosely —coupled OS: mem + cpu + services?
Energy efficiency

Hypervisor/Kernel/Runtime relationships
Move kernel scheduling (cpu/memory) into run-times?
Move kernel resource management into Hypervisor?
Shrink-wrap and Freeze-dry applications?
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