Dave Probert, Ph.D. - Windows Kernel Architect
Core Operating Systems Division — Microsoft

EVOLUTION OF THE WINDOWS

KERNEL ARCHITECTURE

Copyright Microsoft Corporation




Environment which influenced

fundamental design decisions

16-bit program address space 32-bit program address space
Kbytes of physical memory Mbytes of physical memory
Swapping system with memory mapping | Virtual memory

Kbytes of disk, fixed disks Mbytes of disk, removable disks
Uniprocessor Multiprocessor (4-way)
State-machine based 1/O devices Micro-controller based I/O devices
Standalone interactive systems Client/Server distributed computing
Small number of friendly users Large, diverse user populations

Copyright Microsoft Corporation




NT vs UNIX

Unit of concurrency:

Process creation:
1/O:

Namespace root:
Security:

Threads vs processes
CreateProcess() vs fork()
Async vs sync

Virtual vs Filesystem
ACLs vs uid/gid

Addr space, uniproc
Addr space, swapping
Swapping, 1/0O devices
Removable storage
User populations

Copyright Microsoft Corporation




64-bit addresses

GBytes of physical memory

TBytes of rotational disk

New Storage hierarchies (SSDs)

Hypervisors, virtual processors

Multi-core/Many-core

Heterogeneous CPU architectures, Fixed function hardware
High-speed internet/intranet, Web Services

Media-rich applications

Single user, but vulnerable to hackers worldwide

Convergence: Smartphone / Netbook / Laptop / Desktop / TV / Web / Cloud

Copyright Microsoft Corporation




]
WinMgt.Exe ..
SpoolSv.Exe | I
|
- e —
II

System Service Dispatcher

(kernel mode callable interfaces)

m 1/0 Mgr
1 " T Zaw 2 < 4 7 520 3
od ZO O gg o o = > O Q93 nS -
, R R - <@ = 3%¢ 33 D 2B aoa o6
Device & San =2 =0 2 2 = o5 Q= o 8 =20 Graphics
a o T+ (o) = [e] + — Q = c = .
FI;Ie: Sys. 3 = a s 2< < w 0 29 o a Drivers
rivers
Kernel

Hardware Abstraction Layer (HAL)

hardware interfaces (buses, 1/O devices, interrupts,
interval timers, DMA, memory cache control, etc., etc.) . . .
Copyright Microsoft Corporation



user

TN NT AP stubs (wrap sysenter) -- system library (ntdll.dll)

NTOS Trap/Exception/Interrupt Dispatch

kernel
layer CPU mgmt: scheduling, synchr, ISRs/DPCs/APCs

: Procs/Threads IPC Object Mgr
Drivers

DIEEEs), FIeE, Virtual Memory glue Security
Volumes,

Networking, Caching Mgr /10 Registry

Graphics
NTOS executive layer

Hardware Abstraction Layer (HAL): BIOS/chipset details
T T T e —————————————————
WElel e CPU, MMU, APIC, BIOS/ACPI, memory, devices

Copyright Microsoft Corporation




» Kernel layer — ntos/ke — ~ 5% of NTOS source)

Abstracts the CPU

Threads, Asynchronous Procedure Calls (APCs)
Interrupt Service Routines (ISRs)
Deferred Procedure Calls (DPCs — aka Software Interrupts)

Providers low-level synchronization

= Executive layer

OS Services running in a multithreaded environment
Full virtual memory, heap, handles
Extensions to NTOS: drivers, file systems, network, ...

Copyright Microsoft Corporation




(&ProcHandle, Access,
DebugPort, ExceptionPort, ...)
(&ThreadHandle, , Access,
ThreadContext, bCreateSuspended, ...)
( , Addr, Size,

Type, Protection, ...)
(SectionHandle, ,
Addr, Size, Protection, ...)
( , Addr, Size, ...)
( , srcObjHandle,
, dstHandle, Access, Attributes,

Options)

Copyright Microsoft Corporation




= [Ke@rnel ehanges mostly minor improvements
Algorithms, scalability, code maintainability
CPU timing: Uses Time Stamp Counter (TSC)
Interrupts not charged to threads
Timing and quanta are more accurate
Communication
ALPC: Advanced Lightweight Procedure Calls
Kernel-mode RPC
New TCP/IP stack (integrated IPv4 and IPv6)
/O
Remove a context switch from I/O Completion Ports
/O cancellation improvements
Memory management
Address space randomization (DLLs, stacks)
Kernel address space dynamically configured
Security: BitLocker, DRM, UAC, Integrity Levels

Copyright Microsoft Corporation




» Miscellaneous kernel changes
MinWin
Change how Windows is built
Lots of DLL refactoring
APl Sets (virtual DLLs)
Working-set management
Runaway processes quickly start reusing own pages

Break up kernel working-set into multiple working-sets
= System cache, paged pool, pageable system code

Security

Better UAC, new account types, less BitLocker blockers
Energy efficiency

Trigger-started background services

Core Parking

Timer-coalescing, tick skipping

= Major scalability improvements for large server apps

Broke apart last two major kernel locks, >64p

= Kernel support for ConcRT
User-Mode Scheduling (UMS)

Copyright Microsoft Corporation




Core Parking Operation

Socket 0 Socket 1

™ Workload

Copyright Microso ft Corporation




Timer Coalescing

Q Staying idle requires minimizing timer interrupts
© Before, periodic timers had independent cycles even when
period was the same
© New timer APIs permit timer coalescing
© Application or driver specifies tolerable delay

© Timer system shifts timer firing to align periods on a
coalescing interval:
© 50ms, 100ms, 250ms, 1s

A

Timer tick
15.6 ms

Timer Events

I Periodic

Windows 7

Copyright Microsoft Corporation




= Scheduler Dispatcher lock hottest on server workloads
Lock protects all thread state changes (wait, unwait)
Very hot lock at >64x

= Dispatcherlock broken up in Windows 7/ Server 2008 R2
Each object protected by its own lock
Many operations are lock-free

Copyright Microsoft Corporation




= Windows tracks the state of pages in physical memory

In use: in working sets:
Not assigned: on paging lists: freemodified, standby, ...

= Before, all page state changes protected by global PFN
(Physical Frame Number) lock

= As of Windows 7 the PFN lock is gone
Pages are now locked individually

Improves scalability for large memory applications

Copyright Microsoft Corporation




Improve support for efficient cooperative multithreaded
scheduling of small tasks (over-decomposition)
Want to schedule tasks in user-mode

Use NT threads to simulate CPUs, multiplex tasks onto these
threads

When a task calls into the kernel and blocks, the CPU may get
scheduled to a different app
If a single NT thread per CPU, when it blocks it blocks.

Could have extra threads, but then kernel and user-mode are
competing to schedule the CPU

Tasks run arbitrary Win32 code (but only x64/I1A64)

Assumes running on an NT thread (TEB, kernel thread)

Used by ConcRT (Visual Studio 2010’s Concurrency Run-
Time)

Copyright Microsoft Corporation




= UMS breaks NT thread into two parts:
UT: user-mode portion (TEB, ustack, registers)
KT: kernel-mode portion (ETHREAD, kstack, registers)
» Three key properties:
User-mode scheduler switches UTs w/o ring crossing
KT switch is lazy: at kernel entry (e.g. syscall, pagefault)
CPU returned to user-mode scheduler when KT blocks

= KT “returns” to user-mode by queuing completion

User-mode scheduler schedules corresponding UT
(similar to scheduler activations, etc)

Copyright Microsoft Corporation




x86 core
Kernel-mode

Scheduler

NTOS executive

NT Thread is Kernel Thread (KT) and User Thread (UT)
UT/KT form a single logical thread representing NT thread in user or
kernel

KT: ETHREAD, KSTACK, link to EPROCESS

UT: TEB, USTACK

Copyright Microsoft Corporation




NTOS executive

KT, blocks

i IR pimary
trap code Thread Parking Thread
kernel

user N
UT Completion list

User-mode
Only primary thread runs in user-mode Scheduler

Trap code switches to parked KT l \
uT
uT

KT blocks = primary returns to user-mode

KT unblocks & parks = queue UT completion 1

Copyright Microsoft Corporation




= Based on NT threads
Each NT thread has user & kernel parts (UT & KT)

When a thread becomes UMS, KT never returnsto UT
—

Instead, the primary thread calls the USched
= USched

Switches between UTs, all in user-mode

When a UT enters kernel and blocks, the primary thread will hand
CPU back to the USched declaring UT blocked

When UT unblocks, kernel queues notification
USched consumes notifications, marks UT runnable

= Primary Thread
Self-identified by entering kernel with wrong TEB
So UTs can migrate between threads
Affinities of primaries and KTs are orthogonal issues

Copyright Microsoft Corporation




* Primary threads: represent CPUs, normal app threads enter the
USched world and become primaries, primaries also can be created
by UScheds to allow parallel execution

= UMS threads (UT/KTs): allow blocking in the kernel without losing
the CPU

Copyright Microsoft Corporation




Thread Scheduling vs UMS

Non-running threads
I

User
Thread

1 2
Thread Thread Thread

- 4 > 6

Kernel
Thread
2

-

Kernel
Thread
6

Cooperative Thread Scheduling

Copyright Microsoft Corporation




Why not Win32 fibers?

= TEBissues
Contains TLS and Win32-specific fields (incl LastError)
Fibers run on multiple threads, so TEB state doesn't track

= Kernel thread issues
Visibility to TEB
/O is queued to thread
Mutexes record thread owner
Impersonation
Cross-thread operations expect to find threads and IDs
Win32 code has thread and affinity awareness

Copyright Microsoft Corporation




Types of APCs

User and Kernel (both Normal kernel and Special kernel)

User APCs only delivered when waiting in the kernel

Only a few APCs are important w.r.t. user-mode
Suspend/resume thread
Get/set thread context
Thread termination

Need to force the UT into the kernel
UMSContextLock — coordinates between USched/kernel
Tells USched not to schedule UT
Tells kernel which primary to force into kernel

Thread termination

Queues notification of termination to completion list

Copyright Microsoft Corporation




= User-mode scheduling cannot set debug registers
store debug registers in user-mode context

when switching to a UT with debug registers, the USched must
enter the kernel to do the actual switch

Copyright Microsoft Corporation




x86 core
Kernel-mode NTOS executive

Scheduler \

remote kernel -

trap code Thread Parking \
\

] 44*;
Syscall Request Queue Syscall Completion Queue
m cermore Remote x86
Scheduler

UTs (can) run on accelerators or x86s ‘ \
U

KTs run on x86s, syscalls remoted/batched
Pagefaults are just like syscalls
Accelerator never “loses the CPU” (implicit primary)

Copyright Microsoft Corporation




Many-core challenge
New driving force in software innovation:
Amdahl’s Law overtakes Moore’s Law as high-order bit

Heterogeneous cores?

OS Scalability
Loosely —coupled OS: mem + cpu + services?
Energy efficiency

Hypervisor/Kernel/Runtime relationships
Move kernel scheduling (cpu/memory) into run-times?
Move kernel resource management into Hypervisor?
Shrink-wrap and Freeze-dry applications?

Copyright Microsoft Corporation







