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Beam Energy and Stored Energy Yl

EERM

e Let's assume we store N, bunches (e.g. 2808, fitting the buckets of the
accelerating RF voltage) which each contain N, protons (e.g. 1.15 x 10'1).
In total we have then N, x N, protons stored.

« Each proton is accelerated to the beam energy E, (e.g. 7 TeV).

« The proton beam then stores the following energy:

E. =N_-N 5 .1.6022x107%]

stored — 'Vp b’ (GeV)

« For nominal LHC parameters this gives 362 MJ, the same energy as
contained in 80 kg of TNT explosive.

R. Assmann, 12JUNO09
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Why has LHC VERY High Stored Energy? 7N
It is the Luminosity... N

 Luminosity can be expressed as a function of transverse energy E
that is stored in each beam (for round beams at IP):

stored

cunnel lenath beam-beam £ =P beta function (ﬂxzﬂy)
tant g Iimits & = norm. transv. emittance
cons N, = protons per bunch

f., = revolution frequency

F = geometrical correction

m, = restmass, e.g. of proton
rev c = velocity of light
stored

IR optics Injectors limits
limits Robustness limits

LHC luminosity is increased
via stored energy!

 What limits stored energy? No hard limit!
« LHC was pushed to very high stored energy!

R. Assmann, 12JUNO09



Nominal LHC Stored Energy is Factor 200
Above World Record in SC Colliders N
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LHC Collimation

Quench Limit of LHC Super- 7N
Conducting Magnets Nt
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Stored Energy Density Tﬂ;\jﬂ
y

EERM

o If a beam impacts on material, what matters is the stored energy density.
 With the horizontal and vertical beam sizes o, and o, we get the stored
energy density:

Estored
JC (TX . Gy

PE =

 Material damage is avoided if either the stored energy is low or diluted
over a large area (big beam size).

« LHC beam sizes are very small. Typical values at 7 TeV: ~ 200 pum

« As aconsequence the LHC beam can be extremely destructive if
material is hit.

R. Assmann, 12JUNO09



Evolution Transverse Energy Density
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2000um 500 kW 20 GeV e- beam hitting
a 30cm Cu block a few mm from edge
for 1.3 sec (0.65 MJ)

'LMC Collimation
&+ Projest

Exact Nature & Extent of Damaged Region still
not really known well. We need beam tests with
prototype.

Thin Cu sample in FFTB electron beam at SLAC
Hole = Beam Size

0.5 MJ
Tevatron

CERN Phase Il Design Meeting - 19 September 2008 13 LHC Rotatable Phase |l Collimators



LHC Collimation
. Project

Summary LHC Challenge

i EERM

Energy density pg Stored energy

at collimators E.iored

State-of-the art
(Tevatron, HERA) 1 MJ/mm? 2 MJ

Nominal LHC
1 GJ/mm?2 360 MJ

LHC upgrade
scenarios 2 GJ/mm? 800 MJ

Limit (avoid copper
damage/quench) 50 kJ/mm? 5-30 mJ/cm3

R. Assmann, 12JUNO09
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Perfect and Real World ‘l

 No problem in the perfect world: Beam is stored and no losses or only
losses of very few protons appear (except some local losses at special
locations).

 However, reality is different:

— Failures (trips of power supplies, power cut, short circuits, ...) lead to
beam perturbations and loss of the full beam =» machine protection
for early interception of problems and safe beam dump before
damage occurs.

— Formation of beam halo and loss of small fractions of beam from
many different effects (beam resonances, shaking of magnets with
distant earth quakes, dynamic aperture, chaotic islands, beam-beam
effects, residual beam-gas scattering, fall of dust particle through the
beam, ...) = cleaning/collimation for safe interception and
absorption of beam losses without magnet quenches.

R. Assmann, 12JUNO09
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Part 1: Machine Protection Yl

« LHC machine protection relies on multiple sub-systems for fulfilling its
duty.

 Conseqguences are severe If it fails: System designed to rely on multiple,
redundant channels.

 The systems are OK for up to ultimate intensity, except collimation.

« LHC machine protection must be reviewed and re-qualified for
upgrades beyond the LHC baseline design with ultimate intensity:

— New machine elements, e.g. new D1 in phase 1 triplet upgrade or crab
cavities.

— New optics.

— Intensity above ultimate intensity. Requires hardware changes.

« Several places involved: LHC Machine Committee, Machine Protection
Panel, Beam Dump & Injection WG, Collimation WG

R. Assmann, 12JUNO09



@) LHC: Strategy for machine protection

« Definition of aperture by collimators. Beam Cleaning System

« Early detection of failures for equipment acting on Powering Interlocks

beams generates dump request, possibly before the ~ Fast Magnet Current
beam is affected. change Monitor

» Active monitoring of the beams detects abnormal Beam Loss Monitors
beam conditions and generates beam dump requests

. : Other Beam Monitors
down to a single machine turn.

* Reliable transmission of beam dump requests to
beam dumping system. Active signal required for Beam Interlock System
operation, absence of signal is considered as beam
dump request and injection inhibit.

» Reliable operation of beam dumping system for
dump requests or internal faults, safely extract the Beam Dumping System
beams onto the external dump blocks.

e Passive protection by beam absorbers and Beam Absorbers
collimators for specific failure cases.

CAS June 2008 R. Schmidt, J. Wenninger



@) Systems detecting failures and LHC Beam

InterIOCkS R. Schmidt, J. Wenninger
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Beam dump design

central MP System

- schematic |ay0u’[ ust ALWAYS work safely

TDE dump block

TCDQ protection

and survive the dumped
peam — bigd challenge€

10 x MKB kickers

15 x MSD septa

/’ TCDS protection/ 15 x MKD kickers

Q4
Diluter | K&c}l((gr 'Il:')(ll,lgg

B

" Diluter Kicker Diluter
TCDQ MKB

= Kicker -
MKD

B. Goddard

Total ‘beamline’ length :

975m from kicker MKD to dump TDE



Present system — TDE absorber

@ 0.7m x 7.7 m C cylinder

B. Goddard



Dilution with spiral sweep

« Dilution kicker frequency increased — x4 sweep
length

— 14 to 56 kHz... would require ~4 times more kicker length

— Increase sweep
length (higher f,=
more kickers)

- Upgrade dump
block (longer,
lower density C);

— Upgrade protection
devices (longer,
lower density C,
more A,).

I. 400 cm sweep length

— At 7 TeV would allow currents of ~4 A In distributed
bunches

— At 14 TeV would allow ~1 A in distributed bunches
B. Goddard
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Part 2: Beam Cleaning / Collimation

EERM

e Shock beam impact: 2 MJ/mm?in 200 ns (0.5 kg TNT)

e Maximum beam loss at 7 TeV: 0.1% of beam (360 MJ) per second

(assumed 6-10 times better than
Tevatron/HERA)

=>» proportional to stored energy

360 kW

e Quench limit of
SC LHC magnet:

~5 mW/cm?3

R. Assmann, 12JUNO09



2\

Required “filter” factor:

1 x 1010 = Leakage / Dilution

| eakage factor (inefficiency): 104

Dilution factor: 106

Cannot be achieved with single
collimator =» therefore multi-stage
collimation for betatron cleaning (X, v,
skew) and momentum cleaning.

Incoming: up to ~ 50 MJ/mm?2 (primary collimator)

R. Assmann, 12JUNO09
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Multi-Stage Cleaning & Protection N
3-4 Stages P A
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“Phase I”

IP4

Momentum
Cleaning

LA.7R3
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TCLA.BSR3 *
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TCSG.ABR3J,
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TCSG.5L3
TCP.BL3

TCSG.4L3
TCSG.ASL3
TCSG.B5L3
TCLA.ASL3
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108 collimators
and absorbers

in phase | (only
movable shown in
sketch)

R. Assmann, 12JUNO09
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LHC Collimation
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LHC Collimation

The LHC Collimation System 7in'y

« The by far largest and most precise system of its kind that has been
built to this date:

130 phase I collimators and absorbers produced with specifications
and control at 10 um level (including spares).

Phase I: In total 108 devices installed (~210 m length occupied).

97 movable collimators with a total of 194 jaws and > 450 degrees of
freedom for positioning. All ready for LHC startup.

Phase II: In total 158 devices installed (~ 310 m length occupied).

147 movable collimators. Majority approved and infrastructure
Installed.

Maximum possible: In total 168 devices installed (~ 330 m length
occupied). Only space reservations at this time.

R. Assmann, 12JUNO09
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Tunnel: Cleaning Insertion IR7 TN
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Cleaning/Collimation Limited
Intensity Reach Model

Allowed Quench threshold
intensity (7.6 x10% p/m/s @ 7 TeV)

Illustration of LHC dipole in tunnel

N;nax ~7- Ry Fav - Lo /77

Cleaning inefficiency

Beam lifetime BLM threshold  Loss =
(e.g. 0.2 h minimum) (e.g. 30%) length Number of escaping p (>100c)

Number of impacting p (6c)

Collimation performance can limit the intensity and therefore
LHC luminosity.

Simulations performed on the Grid (CPU limited)

R. Assmann, 12JUNO09 23
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Phase | Peak Instantaneous N
Luminosity N

R. Assmann and W. Herr
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Phase | Collimation Limit for
Stored Energy vs Beam Energy
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All Depends on Maximum Loss Rate

Here for 5 TeV...

&

LHC Collimation
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Limit: Proton/lon Losses in Dispersion
Suppressor Downstream IR7
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Collisions p on carbon generate off-momentum protons (mostly single-diffractive scattering). Are
kicked out by the first bending dipoles (classical spectrometer).
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iy o
Various Coll. Settings (Phase | & Phase _\_,l
1) /

£ERN
><1I]'3 R. Assmann, T. Weiler, E. Metral
= 014
= - ldeal Performance 2
=~ 012— §
- Phase |
01—
0.08— | —> Phase
- In the following: Review on
0.06 Concentrate on Phase | April 2/3!
0.04—
- Phase Il
002F=- - peer L X ] %
— ﬁ!/ o
_I | L1 | ] ] L1 | ] L1 ] | ] ] 11 | LA T—T_l__l__lf--l-- ] | ] L1 ] | L1 11
-8 7 -6 -5 -3 -2 -1 0
P - Re(A Q) [10™]
worse better

Efficiency:
R. Assmann, 12JUNO9 99.99992 95 Simulations performed on the Grid (CPU limited)



LEC Collimatian

Phase Il Collimation Work Plan _\?r_\ﬁ

 R&D on advanced, low impedance materials for LHC collimators.

« Design, prototyping and testing of phase Il secondary collimators,
implementing in-jaw pick-ups (improved operation) and various jaw
materials (lower impedance). Construct 30 plus spares.

» |nstall HIRadMat beam test facility for beam verification of advanced
collimator designs.

o Start R&D, prototyping and testing on hollow e-beam lens for LHC
scraping: FNAL and CERN.

« Work out technical design for modified dispersion suppressors in IR3/7.
Design and build new cryostat for missing dipole. R&D on “cryo-
collimators” for modified dispersion suppressors and construction.

o Support R&D on new concepts (crystal collimation, crab cavities, ...).

o Collaboration with 12 institutes in Europe, funded by EU (FP7).
Collaboration with 3 institutes in U.S., funded by DOE (LARP).

R. Assmann, 12JUNO09



BPM integration

Integration of BPMs into the jaw assembly gives a clear

advantage for set-up time = Prototyping started at CERN

BPM pick-ups ~ —

: BPM cables and
| electrical
connections
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Il Collimator Slots
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Scenarios for Collimation Upgrade 7in'y

N

EERM

« Conceptual solution for collimation upgrade has been worked out,
performance estimated and work plan proposed.

* Presented to international review beginning of April. See for presentations
and supporting committee report:

http://indico.cern.ch/conferenceDisplay.py?confld=55195

e Timeline for collimation upgrade will depend on available resources and
priority put.

 Two scenarios analyzed:
— Case 1: Upgrade 2013/14.
— Case 2: First step installed 2010/11.

 Performance predictions for the two scenarios.

R. Assmann, 12JUNO09


http://indico.cern.ch/conferenceDisplay.py?confId=55195

Case 1: Stored Energy versus Time

(without phase Il IR upgrade)

Collimation limited ‘ Beam-beam limited

LEC Collimatian
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R. Assmann, 12JUNO09
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Case 1: Peak Luminosity versus Time -~ X

(without phase Il IR upgrade) \ 78
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Case 2: Stored Energy versus Time =N\
(without phase Il IR upgrade) - ﬂ
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Case 2: Peak Luminosity versus Time =\

(without phase Il IR upgrade) ij 4 |
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Conclusion Yl

 LHC is designed to extend the intensity frontier by more than 2 orders of
magnitude.

« Machine protection OK up to ultimate intensity. Revalidation for new
devices, optics, configuration. New hardware above ultimate intensity.

» Cleaning/collimation (10 orders of magnitude dilution & absorption) will
not be easy: staged approach.

 Phase | collimation is completed and already is the largest such
system built to date. Expect to reach around 20 MJ (10 times world
record) with phase | collimation, but below nominal design.

 Phase Il collimation has been worked out and will be implemented in
steps until 2014 to upgrade performance. It will allow nominal and higher
intensities (hopefully before 2014, depending on support).

 Work is performed in international collaboration, supported by EU and
DOE/LARP. Thanks to all who help us in this challenge!

R. Assmann, 12JUNO09
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