

Future colliders: physics motivations

CERN Summer Student Lecture Programme

F. Richard LAL/Orsay

Introduction

- Particle physics requires long term planning
- □ LHC has taken >20 years (reminder: first workshop on LHC was 1984...)
- Satellite expts also very long: Planck Surveyor (CMB), just launched, planned since 1992
- □ Since a long time there is an international consensus that the next large HEP machine should be an e+e-linear collider LC
- Basic questions:
- Which type of linear collider ?
- For which physics ?
- Why do we need a machine beyond LHC?

The standard view BSM

- ☐ From LEP/SLC/TeVatron compelling arguments (precision measurements PM) to expect a **light Higgs** within SM or its SUSY extension MSSM
- A LC is ideal to study the properties of a light Higgs
- MSSM passes remarkably PM offering full calculability
- In particular it allows to extrapolate the weak/em/strong couplings to an unification scale without very large quantum corrections to the Higgs mass
- It is fair to say that the model is not predictive on flavours in particular fermion masses hierarchies and CP violation
- A basic input to decide the energy of a LC is missing: what are the masses of the **lightest SUSY particles** (charginos, neutralinos, sleptons) best studied at LC?

Alternates

- Other views have emerged allowing for very different pictures: Composite Higgs and even Higgless
- □ They often are linked to extra dimensions
- Eminent role of top physics in this view: it could also be composite like the Higgs
- In the language of extra dimensions Kaluza Klein bosons couple preferentially to Higgs and top quarks generating large deviations in top couplings
- A LC measuring top and Higgs couplings with excellent accuracies is ideally well suited to observe these effects

Elementary scalar

Minimal SUSY

ZH guaranteed

SUSY masses?

Absent

Strong interactions

New resonances ?

> 1 TeV

Composite

SI but ~ to ND>4

Affects H and top quark

ZH top pairs at ILC

Major differences LHC/LC

- LC with a well defined initial state and energy gives precise masses e.g. Z/W at LEP (also true for sparticles)
- □ LC has polarised electrons essential to test SU(2)L⊕U(1) see SLC vs LEP
- □ Accurate **luminosity** + absence of trigger allows very clean unbiased determination of cross sections with accuracies well below 1%
- □ In a hadron machine with PDF+QCD corrections $(\alpha s/\alpha em)$ accuracies ~10%

Democratic Production

- All processes have similar cross section
- HZ the 'gold plated' process comes out very cleanly and allows to measure Higgs BR at %
- □ Top quarks reconstructed with low background
- Charginos can be studied in great detail

ee->Z*->HZ

- □ The recoil mass technique with Z->µ+µ- gives a very clean signal
- Works even if H decays into invisible or complex modes
- □ ZZH coupling constant determined to 1%
- □ In the SM case most BR ratios known 10 times more precisely than at LHC

Why so precise?

Deviations from SM

(By S. Yamashita)

SUSY (2 Higgs Doublet Model)

Extra dimension (Higgs-radion mixing)

Top physics

- □ LC 1 pb, LHC 1nb but with larger uncertainties
- Very good s/b at ILC and energy conservation allows to reconstruct modes with a neutrino
- ☐ Mt and \(\Gamma\) t with 50 MeV error, 0.4% on cross section
- □ Polarisation allows to separate tR and tL (extra dimensions)

Dark matter & SUSY

- With LHC+LC it is possible to reach sufficient accuracy on the predicted dark matter to match cosmological observations
- □ Do they coincide ?

How to go from LEP/SLC to the next LC

- □ Not possible to recycle bunches like in circular machines (LEP) and SLC luminosity needs a 10000 increase
- Use very intense beams with focussing 1000 smaller than SLC (improving emittance)
- Requires large damping rings (multi-bunch)
- Large power needed in such machines -> crucial is η=Beampower/Plug power
- Bunch separation is an issue for detectors
- Standard way like SLC: klystron+ modulators with low η
- □ Two ways:
- ILC supraconductive linac allowing large bunch time separation
- CLIC a two beam accelerator with high gradient

CLIC and ILC layouts

$L \sim \eta \frac{P_{ ext{ electrical}}}{E_{\mathit{CM}}} \sqrt{\frac{\delta_{\mathit{E}}}{arepsilon_{\mathit{n,y}}}} H_{\mathit{D}}$

Some parameters

Type	LEP200	SLC100	ILC500	CLIC500
Vertical size nm	4000	700	5.7	2.3
Total P MW	65	50	216	129.4
Wall plug transf %			9.4	7.4
Luminosity $10^{31} \text{cm}^{-2} \text{s}^{-1}$	5	0.2	1500	1400
Interval between	>>>	>>>	176	0.5
bunches ns				
Polarisation %	No	80	>80	>80
Gradient MV/m	8	17	31.5	100

- ILC and CLIC intend to start at 500 GeV
- ILC is upgradable, with present technology, at 1 TeV
- □ CLIC could reach 3 TeV but with \sim constant luminosity (same δ)

CLIC

- Higher gradient at CLIC -> shorter machine reaching higher energies
- □ CLIC has tight requirements on alignment due to wake fields (frequency x10) and beam size at IP
- CLIC has to demonstrate its feasibility with the test station CTF3
- Both machines have in common several critical R&Ds e.g. on positron generation
- Several methods are developed to generate large flux of photons which are then converted into e+e-
- These photons can be polarized transmitting their polarisation to positrons

Detectors for LC

- ☐ Can work with improved performances /LHC
- Open trigger with no bias on new physics
- Higher quality of b/c tagging (low radiation)
- Reconstruct separately charged and neutral particles (PFLOW) possible with high granularity calorimeters
- These detectors are challenging: need to reconstruct complex final states with multijets: ttH has 8 jets
 - > full solid angle coverage essential
- A major difference with LEP: only one detector can take data at a given time
 - -> concept of push-pull

Detectors for ILC (~1000 physicists and Engineers)

Where are we?

- □ ILC is developed internationally after a choice of technology by an international panel ITRP 2004
- □ A TDR is expected in 2012 for the machine (CLIC not before 2015)
- □ ILC relies on a well developed technology used to build an XFEL in DESY but with higher gradients ~+25% (underway)
- A baseline design study for detectors with detailed interfacing to the machine
- Will need a demonstrator: ready ~2013
- ILC has few options: Gigaz (which requires polarised positrons to cope with the accuracies) and a γγ collider

Option

- \square $\gamma\gamma$ collider
- □ Laser beams (eV energy) scatter onto incident electron beams ~100 GeV are transformed into photon beams carrying 80% of the electron energy
- Challenging lasers given the high repetition rate
- Laser pulses stored in cavities and re-used
- Higgs couples to two photons and can be directly produced
- $\square \gamma \gamma -> h/H/A$ while ee->Zh and HA

Set up

Where do we go?

- Initial view was that we need a LC irrespective of LHC results since LC is optimal for a light Higgs
- □ 500 GeV sufficient (Higgs+top physics)
- Time has past, our ideas have evolved on what could be BSM (composite, noHiggs, heavy Higgs)
- Present idea:
 - Wait for LHC (and Tevatron) results to decide
 - Get ready in 2012 (on all essential aspects) to propose a project to the funding authorities

HEP strategy

- Connect CLIC and ILC efforts to avoid duplication and potentially damaging competition
- Prepare for major challenges: technical (industrialisation 16000 SC cavities), financial (~6 B\$), political with a worldwide machine (LHC different, ~ITER?) OCDE, ESFRI
- ILC and CLIC projects intend to address these problems
- Present uncertainties justify an open scenario
- However ILC is ready to go while it will take longer to complete the CLIC project

Apologies

- Other projects are also on the print board
- s-LHC for x10 Luminosity very advanced
- LHeC to send electrons on protons from LHC
- μ-collider revived at Fermilab
- Laser and beam plasma acceleration
 > 1 GV/m progressing fast but with limited η

In conclusion

- The HEP community has developped a consistent and worldwide strategy to construct an e+e- LC
- A viable project, ILC, can be presented to the governments end of 2012
- A final decision (ILC/CLIC) will depend on the physics results from LHC

 Z'

LHC:

- up to ~5 TeV direct observation
- up to ~2 TeV identif.
- LC can :
- discriminate between models up to ≥ 5 TeV
- predict MZ' with a relative accuracy
- < (MZ'/10TeV) 2
- < 25 % at 5 TeV

7/3/2009

CLIC 3 TeV main parameters

Center-of-mass energy	CLIC conserv.	CLIC Nominal	
Total (Peak 1%) luminosity	1.5(0.73)10 ³⁴	5.9(2.0)·10 ³⁴	
Repetition rate (Hz)	50		
Loaded accel. gradient MV/m	100		
Main linac RF frequency GHz	12 (NC)		
Bunch charge109	3.72		
Bunch separation ns	0.5		
Beam pulse duration (ns)	156		
Beam power/linac (MWatts)	14		
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	3 / 40	2.4 / 25	
Hor/Vert FF focusing (mm)	10/0.4	8/0.1	
Hor./vert. IP beam size (nm)	83 / 2.0	40 / 1.0	
Soft Hadronic event at IP	0.57	2.7	
Coherent pairs/crossing at IP	5 10 ⁷	3.8 10 ⁸	
BDS length (km)	2.75		
Total site length (km)	48.3		
Wall plug to beam transfer eff.	6.8%		
Total power consumption (MW)	4	415	

LC 500 GeV Main parameters

Center-of-mass energy	ILC	CLIC Conserv.	CLIC Nominal	
Total (Peak 1%) luminosity	2.0(1.5)·10 ³⁴	0.9(0.6)·10 ³⁴	2.3(1.4)·10 ³⁴	
Repetition rate (Hz)	5	50		
Loaded accel. gradient MV/m	33.5	80		
Main linac RF frequency GHz	1.3 (SC)	12 (NC)		
Bunch charge109	20	6.8		
Bunch separation ns	176	0.5		
Beam pulse duration (ns)	1000	177		
Beam power/linac (MWatts)	10.2	4.9		
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	10/40	3 / 40	2.4 / 25	
Hor/Vert FF focusing (mm)	20/0.4	10/0.4	8/0.1	
Hor./vert. IP beam size (nm)	640/5.7	248 / 5.7	202/ 2.3	
Soft Hadronic event at IP	0.12	0.07	0.19	
Coherent pairs/crossing at IP	10?	10	100	
BDS length (km)	2.23 (1 TeV)	1.87		
Total site length (km)	31	1	13.0	
Wall plug to beam transfer eff.	9.4%	9.4% 7.5%		
Total power consumption MW	216 129.4			