
Introduction to ROOT 1

Summer Students Lecture
6 July 2009

Fons Rademakers (PH/SFT)
Jan Fiete Grosse-Oetringhaus (PH/AIP)

Introduction to ROOT

http://root.cern.ch

Introduction to ROOT 2

ROOT in a Nutshell
n ROOT is a large Object-Oriented data handling and analysis

framework
n Efficient object store scaling from KB’s to PB’s
n C++ interpreter
n Extensive 2D+3D scientific data visualization capabilities
n Extensive set of multi-dimensional histograming, data fitting, modeling

and analysis methods
n Complete set of GUI widgets
n Classes for threading, shared memory, networking, etc.
n Parallel version of analysis engine runs on clusters and multi-core
n Fully cross platform, Unix/Linux, MacOS X and Windows

n The user interacts with ROOT via a graphical user interface, the command
line or scripts

n The command and scripting language is C++, thanks to the embedded
CINT C++ interpreter, and large scripts can be compiled and dynamically
loaded

Introduction to ROOT 3

The ROOT Libraries
n Over 1500 classes

n 2,000,000 lines of
code

n CORE (8 Mbytes)
n CINT (2 Mbytes)
n Green libraries

linked on demand
via plug-in manager
(only a subset
shown)

n 100 shared libs

Introduction to ROOT 4

ROOT: An Open Source Project

n The project was started in Jan 1995
n First release Nov 1995
n The project is developed as a collaboration between:

n Full time developers:
n 8 people full time at CERN (PH/SFT)
n 2 developers at Fermilab/USA

n Large number of part-time contributors (160 in CREDITS file)
n A long list of users giving feedback, comments, bug fixes and many

small contributions
n 3870 registered to RootTalk forum
n 10,000 posts per year

n An Open Source Project, source available under the
LGPL license

n Used by all HEP experiments in the world
n Used in many other scientific fields and in commercial
world

ROOT Stats

n ROOT binaries have been downloaded more
than 650000 times since 1997

n The estimated user base is about 20000 people

Introduction to ROOT 5

Introduction to ROOT 6

ROOT: a Framework and a Library

n User classes

n User can define new classes interactively

n Either using calling API or sub-classing API

n These classes can inherit from ROOT classes

n Dynamic linking

n Interpreted code can call compiled code

n Compiled code can call interpreted code

n Macros can be dynamically compiled & linked

This is the normal
operation mode

Interesting feature
for GUIs &

event displays

Script Compiler
root > .x file.C++

Introduction to ROOT 7

ROOT Application Domains

Data Storage: Local, Network

Data Analysis & Visualization

Introduction to ROOT 8

Three User Interfaces
n GUI
windows, buttons, menus

n Command line
CINT (C++ interpreter)

n Macros, applications,
libraries (C++ compiler
and interpreter)

Introduction to ROOT 9

CINT Interpreter

Introduction to ROOT 10

CINT in ROOT

n CINT is used in ROOT:
n As command line interpreter
n As script interpreter
n To generate class dictionaries
n To generate function/method calling stubs
n Signals/Slots with the GUI

n The command line, script and programming
language become the same

n Large scripts can be compiled for optimal
performance

Introduction to ROOT 11

Compiled versus Interpreted

q Why compile?
! Faster execution, CINT has some limitations…

q Why interpret?
! Faster Edit → Run → Check result → Edit cycles
("rapid prototyping"). Scripting is sometimes
just easier.

q Are Makefiles dead?
! No! if you build/compile a very large application
! Yes! ACLiC is even platform independent!

Introduction to ROOT 12

Running Code

To run function mycode() in file mycode.C:
root [0] .x mycode.C

Equivalent: load file and run function:
root [1] .L mycode.C
root [2] mycode()

All of CINT's commands (help):
root [3] .h

Introduction to ROOT 13

Running Code

Macro: file that is interpreted by CINT (.x)

Execute with .x mymacro.C(42)

int mymacro(int value)
{
int ret = 42;
ret += value;
return ret;

}

Introduction to ROOT 14

Unnamed Macros

No functions, just statements

Execute with .x mymacro.C

No functions thus no arguments

Named macro recommended!
Compiler prefers it, too…

{
float ret = 0.42;
return sin(ret);

}

Introduction to ROOT 15

Running Code – Libraries

"Library": compiled code, shared library
CINT can call its functions!
Building a library from a macro: ACLiC
(Automatic Compiler of Libraries for CINT)
.x mymacro.C(42)++

Use "+" instead of writing a Makefile…

CINT knows all functions in mymacro_C.so/.dll
mymacro(42)

Introduction to ROOT 16

My First Session

root [0] 344+76.8
(const double)4.20800000000000010e+002
root [1] float x=89.7;
root [2] float y=567.8;
root [3] x+sqrt(y)
(double)1.13528550991510710e+002
root [4] float z = x+2*sqrt(y/6);
root [5] z
(float)1.09155929565429690e+002
root [6] .q

root

root

root [0] try up and down arrows

See file $HOME/.root_hist

Introduction to ROOT 17

My Second Session

root [0] .x session2.C
for N=100000, sum= 45908.6

root [1] sum
(double)4.59085828512453370e+004

Root [2] r.Rndm()
(Double_t)8.29029321670533560e-001

root [3] .q

root

{
int N = 100000;
TRandom r;
double sum = 0;
for (int i=0;i<N;i++) {

sum += sin(r.Rndm());
}
printf("for N=%d, sum= %g\n",N,sum);

}

session2.C

unnamed macro
executes in global scope

Introduction to ROOT 18

My Third Session

root [0] .x session3.C
for N=100000, sum= 45908.6

root [1] sum
Error: Symbol sum is not defined in current scope
*** Interpreter error recovered ***

Root [2] .x session3.C(1000)
for N=1000, sum= 460.311

root [3] .q

root

void session3 (int N=100000) {
TRandom r;
double sum = 0;
for (int i=0;i<N;i++) {

sum += sin(r.Rndm());
}
printf("for N=%d, sum= %g\n",N,sum);

}

session3.C

Named macro
Normal C++ scope rules

Introduction to ROOT 19

My Third Session with ACLIC
root [0] gROOT->Time();
root [1] .x session4.C(10000000)
for N=10000000, sum= 4.59765e+006
Real time 0:00:06, CP time 6.890

root [2] .x session4.C+(10000000)

for N=10000000, sum= 4.59765e+006

Real time 0:00:09, CP time 1.062

root [3] session4(10000000)
for N=10000000, sum= 4.59765e+006
Real time 0:00:01, CP time 1.052

root [4] .q

#include “TRandom.h”
void session4 (int N) {

TRandom r;
double sum = 0;
for (int i=0;i<N;i++) {

sum += sin(r.Rndm());
}
printf("for N=%d, sum= %g\n",N,sum);

}

session4.C

File session4.C
Automatically compiled

and linked by the
native compiler.

Must be C++ compliant

Introduction to ROOT 20

root [0] .x session5.C >session5.log
root [1] .q

void session5(int N=100) {
session5a(N);
session5b(N);
gROOT->ProcessLine(“.x session4.C+(1000)”);

}
void session5a(int N) {

for (int i=0;i<N;i++) {
printf("sqrt(%d) = %g\n",i,sqrt(i));

}
}
void session5b(int N) {

double sum = 0;
for (int i=0;i<N;i++) {

sum += i;
printf("sum(%d) = %g\n",i,sum);

}
}

session5.C

.x session5.C
executes the function

session5 in session5.C

root [0] .L session5.C
root [1] session5(100); >session5.log
root [2] session5b(3)
sum(0) = 0
sum(1) = 1
sum(2) = 3

root [3] .q

use gROOT->ProcessLine
to execute a macro from a

macro or from compiled
code

Macros With More Than One Function

Introduction to ROOT 21

Generating a Dictionary

MyClass.h

MyClass.cxx rootcint –f MyDict.cxx –c MyClass.h

compile and link

libMyClass.so

MyDict.h
MyDict.cxx

Introduction to ROOT 22

Graphics & GUI

Introduction to ROOT 23

TPad: Main Graphics Container

Hello

Root > TLine line(.1,.9,.6,.6)

Root > line.Draw()

Root > TText text(.5,.2,”Hello”)

Root > text.Draw()

The Draw function adds the object to the
list of primitives of the current pad.

If no pad exists, a pad is automatically
created with a default range [0,1].

When the pad needs to be drawn or
redrawn, the object Paint function is called.

Only objects deriving
from TObject may be drawn

in a pad
ROOT Objects or User objects

Introduction to ROOT 24

Basic Primitives

TButton

TLine TArrow TEllipse

TCurvyLine

TPaveLabel

TPave

TDiamond

TPavesText

TPolyLine

TLatex

TCrown

TMarker

TText

TCurlyArc

TBox

Introduction to ROOT 25

Full LateX
support
on screen
and

postscript

TCurlyArc
TCurlyLine
TWavyLine

and other building
blocks for

Feynmann diagrams

Feynman.C

latex3.C

Formula or
diagrams

can be
edited with
the mouse

Introduction to ROOT 26

Graphs

TGraph(n,x,y)

TCutG(n,x,y)

TGraphErrors(n,x,y,ex,ey)

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh)

TMultiGraph

gerrors2.C

Introduction to ROOT 27

Graphics Examples

Introduction to ROOT 28

More Graphics Examples

Introduction to ROOT 29

Even More Graphics Examples

Introduction to ROOT 30

Special Graphics

Introduction to ROOT 31

Graphics (2D-3D)

“SURF”
“LEGO”

TF3

TH3

TGLParametric

Introduction to ROOT 32

ASImage: Image processor

Introduction to ROOT 33

GUI (Graphical User Interface)

Introduction to ROOT 34

Canvas tool bar/menus/help

Introduction to ROOT 35

Object Editor Click on any
object to show

its editor

Introduction to ROOT 36

ROOT Browser

Introduction to ROOT 37

ROOT Browser

Introduction to ROOT 38

GUI C++ Code Generator

n When pressing ctrl+S on any
widget it is saved as a C++
macro file thanks to the
SavePrimitive methods
implemented in all GUI classes.
The generated macro can be
edited and then executed via
CINT

n Executing the macro restores the
complete original GUI as well as
all created signal/slot connections
in a global way

// transient frame
TGTransientFrame *frame2 = new TGTransientFrame(gClient-
>GetRoot(),760,590);
// group frame
TGGroupFrame *frame3 = new TGGroupFrame(frame2,"curve");

TGRadioButton *frame4 = new TGRadioButton(frame3,"gaus",10);
frame3->AddFrame(frame4);

root [0] .x example.C

Introduction to ROOT 39

n The GUI builder
provides GUI tools
for developing user
interfaces based on
the ROOT GUI
classes. It includes
over 30 advanced
widgets and an
automatic C++
code generator.

The GUI Builder

Introduction to ROOT 40

More GUI Examples
$ROOTSYS/tutorials/gui

$ROOTSYS/test/RootShower

$ROOTSYS/test/RootIDE

Introduction to ROOT 41

Geometry

The GEOMetry package is used
to model very complex
detectors (LHC). It includes

-a visualization system

-a navigator (where am I,
distances, overlaps, etc)

Introduction to ROOT 42

OpenGL

see $ROOTSYS/tutorials/geom

Introduction to ROOT 43

Math Libraries

Introduction to ROOT 44

Peak Finder + Deconvolutions

TSpectrum

Introduction to ROOT 45

Fitters

Minuit

Fumili

LinearFitter

RobustFitter

RooFit

Introduction to ROOT 46

Fit Panel

Introduction to ROOT 47

RooFit: a Powerful Fitting
Framework

see $ROOTSYS/tutorials/roofit/RoofitDemo.C

Introduction to ROOT 48

Input/Output

Introduction to ROOT 49

I/O

Object in
Memory

Streamer:
No need for

transient / persistent
classes

http

sockets

File on
disk

Net File

Web File

XML XML File

SQL RDBMS

Local
B

uf
fe

r

Introduction to ROOT 50

Object Oriented Concepts

n Members: a “has a”
relationship to the
class.

n Inheritance: an “is a”
relationship to the
class.

§ Class: the description of a “thing” in the system
§ Object: instance of a class
§ Methods: functions for a class TObject

Jets Tracks EvNum

Momentum

Segments

Charge

Event

IsA

HasA
HasA

HasA

HasAHasAHasA

If you would like to refresh or even learn C++, we have a C++ on-line tutorial available at:
		www-pat/fnal/gov/root/CPlusPlus/index.html
Or you can read the chapter "A little C++" in the ROOT User's Guide

Introduction to ROOT 51

TFile / TDirectory

n A TFile object may be divided in a hierarchy of
directories, like a Unix file system.

n Two I/O modes are supported
n Key-mode (TKey). An object is identified by a
name (key), like files in a Unix directory. OK
to support up to a few thousand objects, like
histograms, geometries, mag fields, etc.

n TTree-mode to store event data, when the
number of events may be millions, billions.

Introduction to ROOT 52

Self-describing Files

n Dictionary for persistent classes written to the
file

n ROOT files are self describing
n Support for Backward and Forward compatibility
n Files created in 2001 must be readable in 2015
n Classes (data objects) for all objects in a file can
be regenerated via TFile::MakeProject

Root >TFile f(“demo.root”);

Root > f.MakeProject(“dir”,”*”,”new++”);

Introduction to ROOT 53

Example of Key Mode

void keywrite() {

TFile f(“keymode.root”,”new”);

TH1F h(“hist”,”test”,100,-3,3);

h.FillRandom(“gaus”,1000);

h.Write()

}

void keyRead() {

TFile f(“keymode.root”);

TH1F *h = (TH1F*)f.Get(“hist”);;

h.Draw();

}

Introduction to ROOT 54

A Root file pippa.root
with two levels of

directories

Objects in directory
/pippa/DM/CJ

e.g.:
/pippa/DM/CJ/h15

Introduction to ROOT 55

1 billion people
surfing the Web

LHC: How Much Data?

105

104

103

102

Level 1 Rate
(Hz)

High Level-1 Trigger
(1 MHz)

High No. Channels
High Bandwidth
(500 Gbit/s)

High Data Archive
(5 PetaBytes/year)
10 Gbits/s in Data base

LHCB

KLOE

HERA-B

CDF II

CDF

H1
ZEUS

UA1

LEP

NA49
ALICE

Event Size (bytes)

104 105 106

ATLAS
CMS

106

107
STAR

Introduction to ROOT 56

ROOT Trees

Introduction to ROOT 57

Why Trees ?
q Trees have been designed to support very large
collections of objects. The overhead in memory
is in general less than 4 bytes per entry.

q Trees allow direct and random access to any
entry (sequential access is the best)

q Trees have branches and leaves. One can read
a subset of all branches.

q High level functions like TTree::Draw loop on all
entries with selection expressions.

q Trees can be browsed via TBrowser
q Trees can be analyzed via TTreeViewer

Memory <--> Tree
Each Node is a Branch in the Tree

Introduction to ROOT 58

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

T.Fill()

T.GetEntry(6)

T

Introduction to ROOT 59

ROOT I/O -- Split/Cluster
Tree version

Streamer

File

Branches

Tree in memory

Tree entries

Introduction to ROOT 60

Writing/Reading a Tree
class Event : public Something {class Event : public Something {class Event : public Something {class Event : public Something {

Header fHeader; Header fHeader; Header fHeader; Header fHeader;

std::list<Vertex*> fVertices; std::list<Vertex*> fVertices; std::list<Vertex*> fVertices; std::list<Vertex*> fVertices;

std::vector<Track> fTracks; std::vector<Track> fTracks; std::vector<Track> fTracks; std::vector<Track> fTracks;

TOF fTOF; TOF fTOF; TOF fTOF; TOF fTOF;

Calor *fCalor; Calor *fCalor; Calor *fCalor; Calor *fCalor;

}}}}

main() {main() {main() {main() {

Event *event = 0;Event *event = 0;Event *event = 0;Event *event = 0;

TFile f(“demo.root”, ”recreate”);TFile f(“demo.root”, ”recreate”);TFile f(“demo.root”, ”recreate”);TFile f(“demo.root”, ”recreate”);

int split = 99; //maximnum splitint split = 99; //maximnum splitint split = 99; //maximnum splitint split = 99; //maximnum split

TTree *T = new TTree(“T”,”demo Tree”);TTree *T = new TTree(“T”,”demo Tree”);TTree *T = new TTree(“T”,”demo Tree”);TTree *T = new TTree(“T”,”demo Tree”);

TTTT---->Branch(“event”, ”Event”, &event, split);>Branch(“event”, ”Event”, &event, split);>Branch(“event”, ”Event”, &event, split);>Branch(“event”, ”Event”, &event, split);

for (int ev = 0; ev < 1000; ev++) {for (int ev = 0; ev < 1000; ev++) {for (int ev = 0; ev < 1000; ev++) {for (int ev = 0; ev < 1000; ev++) {

event = new Event(…);event = new Event(…);event = new Event(…);event = new Event(…);

TTTT---->Fill();>Fill();>Fill();>Fill();

delete event;delete event;delete event;delete event;

}}}}

tttt---->AutoSave();>AutoSave();>AutoSave();>AutoSave();

}}}}

main() {main() {main() {main() {

Event *event = 0;Event *event = 0;Event *event = 0;Event *event = 0;

TFile f(“demo.root”);TFile f(“demo.root”);TFile f(“demo.root”);TFile f(“demo.root”);

TTree *T = (TTree*)f.Get(”T”);TTree *T = (TTree*)f.Get(”T”);TTree *T = (TTree*)f.Get(”T”);TTree *T = (TTree*)f.Get(”T”);

TTTT---->SetBranchAddress(“event”, &event);>SetBranchAddress(“event”, &event);>SetBranchAddress(“event”, &event);>SetBranchAddress(“event”, &event);

Long64_t N = TLong64_t N = TLong64_t N = TLong64_t N = T---->GetEntries();>GetEntries();>GetEntries();>GetEntries();

for (Long64_t ev = 0; ev < N; ev++) {for (Long64_t ev = 0; ev < N; ev++) {for (Long64_t ev = 0; ev < N; ev++) {for (Long64_t ev = 0; ev < N; ev++) {

TTTT---->GetEntry(ev);>GetEntry(ev);>GetEntry(ev);>GetEntry(ev);

// do something with event// do something with event// do something with event// do something with event

}}}}

}}}}

Event.h

Write.C Read.C

Introduction to ROOT 61

8 Branches of T

8 leaves of branch
Electrons

A double-click
to histogram
the leaf

Browsing a Tree

Introduction to ROOT 62

The TTreeViewer

Introduction to ROOT 63

TTree Selection Syntax

Print the first 8 variables of the tree.

Print all the variables of the tree.

Print the values of var1, var2 and var3.

Print the values of var1, var2 and var3 for the entries where
var1 is exactly 0.

MyTree->Scan();

MyTree->Scan("*");

MyTree->Scan("var1:var2:var3");

MyTree->Scan("var1:var2:var3", "var1==0");

Introduction to ROOT 64

Data Volume & Organisation

100MB 1GB 10GB 1TB100GB 100TB 1PB10TB

1 1 500005000500505

TTree
TChain

A TChain is a collection of TTrees or/and TChains

A TFile typically contains 1 TTree

A TChain is typically the result of a query to the file catalogue

Introduction to ROOT 65

Chains of Trees

n A TChain is a collection of Trees.
n Same semantics for TChains and TTrees

n root > .x h1chain.C
n root > chain.Process(“h1analysis.C”)

{
//creates a TChain to be used by the h1analysis.C class
//the symbol H1 must point to a directory where the H1 data sets
//have been installed

TChain chain("h42");
chain.Add("$H1/dstarmb.root");
chain.Add("$H1/dstarp1a.root");
chain.Add("$H1/dstarp1b.root");
chain.Add("$H1/dstarp2.root");

}

Introduction to ROOT 66

Tree Friends
0123456789101112131415161718

0123456789101112131415161718

0123456789101112131415161718

Public

read

Public

read

User

Write

Entry # 8

Introduction to ROOT 67

GRIDs & Multi-Cores & PROOF

Introduction to ROOT 68

From the desktop to the GRID

Desktop
Local/remote

Storage

Online/Offline

Farms

GRID

New data analysis tools
must be able to use in
parallel remote CPUS,
storage elements and
networks in a transparent
way for a user at a desktop

Introduction to ROOT 69

GRID: Interactive Analysis
Case 1

n Data transfer to user’s laptop
n Optional Run/File catalog
n Optional GRID software

Optional
run/File
Catalog

Remote
file server

e.g. xrootd

Trees

Trees

Analysis scripts are interpreted
or compiled on the local machine

Introduction to ROOT 70

GRID: Interactive Analysis
Case 2

n Remote data processing
n Optional Run/File catalog
n Optional GRID software

Run/File
Catalog

Remote
data analyzer

e.g. PROOF

Trees

Trees

Commands, scripts

Histograms,trees

TreesTreesTrees

TreesTreesTrees

slave

slave

slave

slave

slave

slave

Analysis scripts are interpreted
or compiled on the remote master(s)

Introduction to ROOT 71

Parallel ROOT Facility
n A system for running ROOT queries in parallel on a large number of

distributed computers or many-core machines
n PROOF is designed to be a transparent, scalable and adaptable

extension of the local interactive ROOT analysis session
n Extends the interactive model to long running “interactive batch”

queries
n Uses xrootd for data access and communication infrastructure
n For optimal CPU load it needs fast data access (SSD, disk, network)

as queries are often I/O bound
n Can also be used for pure CPU bound tasks like toy Monte Carlo’s

for systematic studies or complex fits

Introduction to ROOT 72

PROOF Storage

PROOF cluster

MASTER

§ Cluster perceived as extension of local PC
§ Same macro and syntax as in local session

§ More dynamic use of resources
§ Real-time feedback
§ Automated splitting and merging

commands,commands,
scriptsscripts

list of outputlist of output
objectsobjects

(histograms, …)(histograms, …)

Introduction to ROOT 73

ROOT is MORE….

n In this talk, I presented the most basic classes typically
used during Physics Analysis.

n ROOT contains many more libraries, e.g.
n FFT library
n Oracle, MySQL, etc interfaces
n XML drivers
n TMVA (Multi Variate Analysis)
n GRID, networking and thread classes
n Interfaces to Castor, Dcache, GFAL, xrootd
n Interfaces to Pythia, Geant3, Geant4, gdml
n Matrix packages, Fitting packages, etc

Introduction to ROOT 74

Documentation

n Users Guide and Reference Manuals are
available at http://root.cern.ch

Tomorrow Jan Fiete will demo in his session
many of the features I’ve presented today

