Study of γ -jets physics in the ATLAS experiment

MERIC Nicolas

CERN

Student sessions 2009 August 11th 2009

Why this study?

- Necessary for backgrounds rejection
- γ -jets events : half of the background in the H $\to \gamma\gamma$ decay's channel
- \bullet Should help us to select only the right $\gamma\gamma$ emission to find the higgs
- Promising tool for quick and dirty jet calibration

What is a jet?

- Hard scattering processes with hadrons ⇒ outgoing partons (i.e. quarks and gluons)
- They can't remain as free partons (colour confinement)
- They will quickly 'fragment' into hadrons with a complex substructure (hadronization)
- We see only colour neutral particles (charged or not) with the same kinematics properties than the free partons
- But jets are actually meaningless without a precise definition ⇒ jets algorithms

How to define a jet?

Cluster algorithm

Theoretical and experimental requirements

Theoretical requirements

Infrared safety

Collinear safety

Experimental requirements

- high speed
- pile-up resistant
- small sensitivity to underlying event
- flexibility
- ability to resolve the jet's sub-structure

Jet shape analysis

- Jet shape is a useful tool to
 - derive out of cone energy correction
 - get information about the nature of the jet
 - have soft physics under control
 - check Monte-Carlo description of datas
- the integral allows us to check
 - jet calibration
 - jet energy scale
 - algorithm performances
 - underlying event rejection

Jet shape analysis

- We can estimate the contribution of the underlying event, looking at the transverse region
- This distribution should be better understood and we have to focus to the underlying event to do the correct estimation.

Underlying event analysis

What do we get?

- Jets
 - Hard scattered partons
 - Final state radiation
 - + hadronization
- Underlying event
 - Initial state radiation
 - Beam-beam remnants
 - Multiple partons interaction
 - + hadronization

Underlying event analysis

What do we see?

- Underlying event distribution in $\eta = -\ln(\tan(\frac{\theta}{2}))$
 - at detector level
 - This curve is a useful tool to get an accurate estimation of the calorimeters response
 - We have an estimation of the underlying event that we can use to calibrate jets at detector level
 - at particle level
 - We need to use this curve with those above to get the calorimeter response
 - We have an estimation of UE at particle level useful to get the right jet energy scale

What's next?

- We are waiting for the first LHC datas
- The measure of the underlying event will be the first measurement which will be proceed
- We will have to compare this results with the real one to check the validity of models
- We are expecting surprises (soft physics can become hard at LHC)