

Coulomb excitations of ⁸⁴Kr -figuring out the shape of the nucleus by Gunvor Koldste Thinggaard Aarhus University, Denmark

Supervisor: Jarno Van de Walle Miniball setup, REX-ISOLDE

⁸⁴Kr... ... a sphere, or not a sphere? that is the question

The answer lies in the quadrupole moment

⁸⁴Kr... ... a sphere, or not a sphere? that is the question

Gunvor Koldste Thinggaard

Gunvor Koldste Thinggaard

About the experiment

As Rutherford in 1911: Alpha particles on a gold target, which let to the discovery of the nucleus

About the experiment

About the experiment

About the experiment

*The formulas can be found in "Electromanetic Excitation" by Alder & Winther

2009-08-12

1

	Kr	gate		Au gate				
279.0 keV		547	547.5 keV		279.0 keV		547.5 keV	
$\sigma^{Kr} = 0.126 (12) b$		$\sigma^{Kr} = 0$	$\sigma^{Kr} = 0.134$ (13) b		σ ^{Kr} = 0.163 (16) b		$\sigma^{Kr} = 0.180 (19) b$	
Q	σ^{Kr}	Q	σ ^{Kr}	Q	σ^{Kr}	Q	σ ^{Kr}	
-1.00	0.117	-0.30	0.136	-0.50	0.148	-0.15	0.178	
-0.80	0.122	-0.20	0.138	-0.40	0.156	-0.10	0.183	
-0.60	0.127	-0.10	0.141	-0.35	0.160	-0.05	0.188	
-0.50	0.130	-0.00	0.144	-0.30	0.165	-0.00	0.193	
-0.40	0.133	0.10	0.147	-0.20	0.174	0.05	0.198	

Q = -0.29 (12) *e*b

Physics Letters B 546 (2002) 48-54

First measurement of the quadrupole moment in the 2_1^+ state of 84 Kr

A. Osa^a, T. Czosnyka^b, Y. Utsuno^a, T. Mizusaki^c, Y. Toh^a, M. Oshima^a, M. Koizumi^a, Y. Hatsukawa^a, J. Katakura^a, T. Hayakawa^a, M. Matsuda^a, T. Shizuma^a, M. Sugawara^d, T. Morikawa^e, H. Kusakari^f

Table 3

The comparison of the experimental electromagnetic quantities with the shell-model calculation. The fourth and fifth columns show experimental values measured in the present experiment and the adopted values in Nuclear Data Sheets [12], respectively, while the sixth column shows the corresponding shell-model values. The *B*(E2), quadrupole moment, and *B*(M1) values are in unit of $10^{-2}e^2 b^2$, *e* b and μ_N^2 , respectively

respectively						6-	12 - 10 -
Quantity	State		Experiment		Theory	$12^{+}_{10}^{+}$	
	Initial	Final	Present	MDS [12]	SM	$\begin{bmatrix} 12\\10^+ \end{bmatrix}$	10 ⁺ 8 ⁺
<i>B</i> (E2)	2_{1}^{+}	0_{1}^{+}	2.4 ± 0.3	2.45 ± 0.11	2.81	8+	
	2^{+}_{2}	0_{1}^{+}	0.55 ± 0.06	$0.57_{-0.13}^{+0.20}$	0.41	ſ	6+
	2^{+}_{2}	2^{+}_{1}	2.4 ± 1.0	$2.4^{+0.9}_{-0.7}$	3.12	$> 4 - 6^+$	o ⁺ + -
	4_{1}^{+}	2^{+}_{1}	5.3 ± 0.7	4.8 ± 0.7	3.33		$_{6^{+}}^{\circ} = 5^{-}$
	4^{+}_{2}	2_{1}^{+}		0.034 ± 0.004	0.20		-
	4^{+}_{2}	2^{+}_{2}		0.35 ± 0.05	1.09		a^+ + 4^+ -
	6^+_1	4_{1}^{+}		1.51 ± 0.39	2.02	$2 - + 4^{+} - 4^{+} - 4^{+}$	$0 - 4^{-}$
	12^{+}_{1}	10^{+}_{1}		0.81 ± 0.09	1.19	$2 0^{-1} 2^{-1}$	2—
Q moment	2	+ 1	$\left(-0.26 \pm 0.13 \right)$		-0.18	$>_1$	2+]
<i>B</i> (M1)	2^{+}_{2}	2_{1}^{+}	0.025 ± 0.007	0.021 ± 0.007	0.060	1 2'-	2
g factor	8	+ 1		-0.246 ± 0.002	-0.24	$0 - 0^+$	0+
	12	9+ 1		$+0.17\pm0.01$	+0.20		
						Exp.	SM

My value: Q = -0.29 (12) *e*b

Fig. 4. Experimental energy levels of 84 Kr (Exp.) compared with the corresponding ones calculated by the shell model (SM).

Gunvor Koldste Thinggaard

2009-08-12

Questions?

⁸⁴Kr... The next step

⁸⁴Kr on ⁶⁰Ni

