Coulomb excitations of ${ }^{84} \mathrm{Kr}$

-figuring out the shape of the nucleus

by Gunvor Koldste Thinggaard
Aarhus University, Denmark

Supervisor: Jarno Van de Walle Miniball setup, REX-ISOLDE

${ }^{84} \mathrm{Kr} .$.

... a sphere, or not a sphere? that is the question

The answer lies in the quadrupole moment

$$
\propto\langle J| E 2|J\rangle
$$

${ }^{84} \mathrm{Kr} .$.

${ }^{84} \mathrm{Kr} .$.

... a sphere, or not a sphere? that is the question

$\mathrm{Q}=0$

About the experiment

Beam

Target

As Rutherford in 1911:
Alpha particles on a gold target, which let to the discovery of the nucleus

About the experiment

Rutherford scattering:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \propto \sin ^{-4} \frac{v_{\mathrm{c} M}}{2}
$$

About the experiment

Coulomb excitations

About the experiment

${ }^{84} \mathrm{Kr}$ on ${ }^{197} \mathrm{Au}$

Simulation

Analytical calculations* of kinematics

*The formulas can be found in "Electromanetic Excitation" by Alder \& Winther

${ }^{84} \mathrm{Kr}$ on ${ }^{197} \mathrm{Au}$

Kr gate

Au gate

${ }^{84} \mathrm{Kr}$ on ${ }^{197} \mathrm{Au}$

${ }^{84} \mathrm{Kr}$ on ${ }^{197} \mathrm{Au}$

Kr gate

Au gate

${ }^{84} \mathrm{Kr}$ on ${ }^{197} \mathrm{Au}$

${ }^{84} \mathrm{Kr}$ on ${ }^{197} \mathrm{Au}$

${ }^{84} \mathrm{Kr}$ on ${ }^{197} \mathrm{Au}$

Kr gate				Au gate			
279.0 keV		547.5 keV		279.0 keV		547.5 keV	
$\sigma^{\mathrm{Kr}}=0.126$	(12) b	$\sigma{ }^{\mathrm{Kr}}=0$	134 (13) b	$\sigma^{\mathrm{Kr}}=0.16$	(16) b	$\sigma^{\mathrm{Kr}}=$. 180 (19)
Q	σ^{Kr}	Q	$\sigma^{K r}$	Q	σ^{Kr}	Q	σ^{Kr}
-1.00	0.117	-0.30	0.136	-0.50	0.148	-0.15	0.178
-0.80	0.122	-0.20	0.138	-0.40	0.156	-0.10	0.183
-0.60	0.127	-0.10	0.141	-0.35	0.160	-0.05	0.188
-0.50	0.130	-0.00	0.144	-0.30	0.165	-0.00	0.193
-0.40	0.133	0.10	0.147	-0.20	0.174	0.05	0.198

$Q=-0.29(12) e b$

First measurement of the quadrupole moment in the 2_{1}^{+}state of ${ }^{84} \mathrm{Kr}$

A. Osa ${ }^{\text {a }}$, T. Czosnyka ${ }^{\text {b }}$, Y. Utsuno ${ }^{\text {a }}$, T. Mizusaki ${ }^{\text {c }}$, Y. Toh ${ }^{\text {a }}$, M. Oshima ${ }^{\text {a }}$, M. Koizumi ${ }^{\text {a }}$, Y. Hatsukawa ${ }^{\text {a }}$, J. Katakura ${ }^{\text {a }}$, T. Hayakawa ${ }^{\text {a }}$, M. Matsuda ${ }^{\text {a }}$, T. Shizuma ${ }^{\text {a }}$, M. Sugawara ${ }^{\text {d }}$, T. Morikawa ${ }^{\mathrm{e}}$, H. Kusakari ${ }^{\text {f }}$

Table 3

The comparison of the experimental electromagnetic quantities with the shell-model calculation. The fourth and fifth columns show experimental values measured in the present experiment and the adopted values in Nuclear Data Sheets [12], respectively, while the sixth column shows the corresponding shell-model values. The $B(\mathrm{E} 2)$, quadrupole moment, and $B(\mathrm{M} 1)$ values are in unit of $10^{-2} e^{2} \mathrm{~b}^{2}, e \mathrm{~b}$ and μ_{N}^{2}, respectively

Quantity	State		Experiment		Theory
	Initial	Final	Present	MDS [12]	SM
B (E2)	2_{1}^{+}	0_{1}^{+}	2.4 ± 0.3	2.45 ± 0.11	2.81
	2_{2}^{+}	0_{1}^{+}	0.55 ± 0.06	$0.57_{-0.13}^{+0.20}$	0.41
	2_{2}^{+}	2_{1}^{+}	2.4 ± 1.0	$2.4{ }_{-0.7}^{+0.9}$	3.12
	4_{1}^{+}	2_{1}^{+}	5.3 ± 0.7	4.8 ± 0.7	3.33
	4_{2}^{+}	2_{1}^{+}		0.034 ± 0.004	0.20
	4_{2}^{+}	2_{2}^{+}		0.35 ± 0.05	1.09
	6_{1}^{+}	4_{1}^{+}		1.51 ± 0.39	2.02
	12_{1}^{+}	10_{1}^{+}		0.81 ± 0.09	1.19
Q moment	2_{1}^{+}		-0.26 ± 0.13		-0.18
B (M1)	$2{ }_{2}^{+}$	2_{1}^{+}	0.025 ± 0.007	0.021 ± 0.007	0.060
g factor	$\begin{gathered} 8_{1}^{+} \\ 12_{1}^{+} \\ \hline \end{gathered}$			-0.246 ± 0.002	-0.24
				$+0.17 \pm 0.01$	$+0.20$

My value: $Q=-0.29$ (12) eb

Fig. 4. Experimental energy levels of ${ }^{84} \mathrm{Kr}$ (Exp.) compared with the corresponding ones calculated by the shell model (SM).

${ }^{84} \mathrm{Kr} . .$.
 Conclusion

Questions?

${ }^{84} \mathrm{Kr} .$. The next step

