

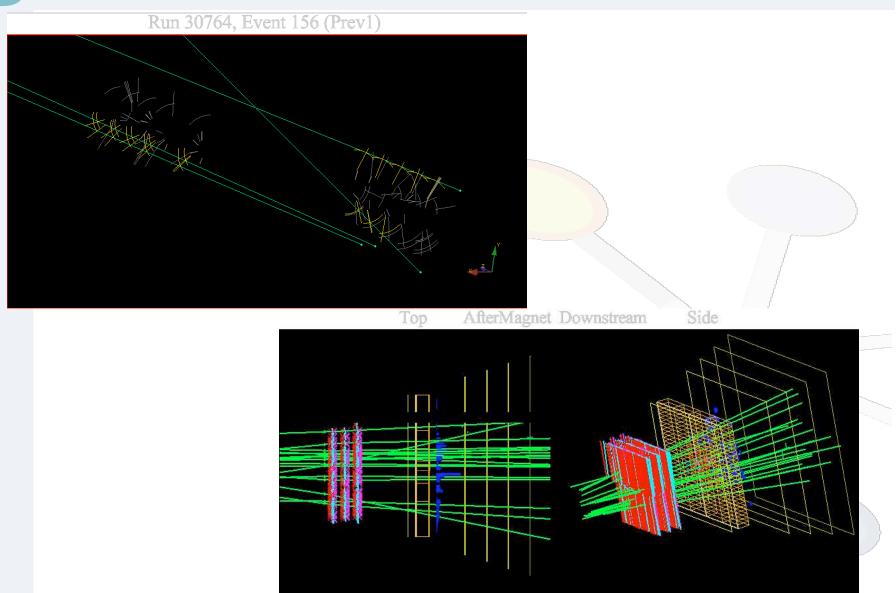
LHCb Status November 2008

Core Software (Gaudi)

- Stable version was ready for 2008 data taking
 - Gaudi based on latest LCG 55a
 - Applications ready for using survey geometry, conditionsDB
 - Still difficulties in commissioning CondDB access at Tier1s
- Plans for the shutdown
 - Use opportunity for "cleaning" part of the framework
 - Unifying some interfaces, remove obsolete parts...
 - Workshop with ATLAS 2 weeks ago...
 - Merger with ATLAS on "configurables"
 - Python-based configuration of applications
 - New ROOT schema evolution
 - Support file-related records
 - Needed for file summary records (luminosity, statistics for skimming etc...)
 - More on interactivity (GaudiPython)
 - Some improvements for Online usage
 - Studies on multi-core support (parallel file processing)
 - → In collaboration with LCG-AA / PH-SFT

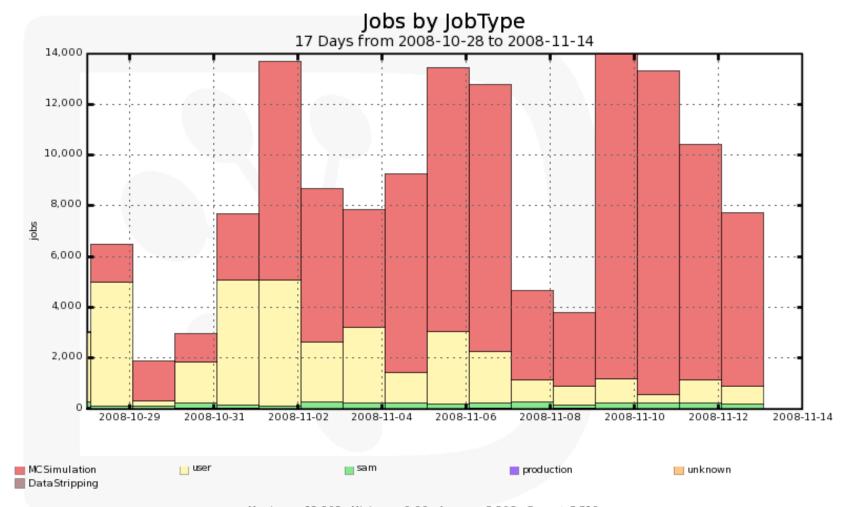
LHCb recent activities

- Commissioning of DIRAC3
 - Fully reengineered system (started in September '07)
 - Main features:
 - Single framework for services, clients and agents
 - Fully integrated Workload and Data Management Systems
 - Supports production and user analysis activities
 - * Allow to apply VO policy: priorities, quotas...
 - ∴ Uses pilot jobs (as DIRAC2)
 - * Ready for using generic pilot jobs (not switched on yet)
 - * Full scale test with generic pilots will take place in the coming weeks
 - New integrated bookkeeping system
- o Production activities (fully DIRAC3)
 - Complete simulation and stripping of MC data (so-called DC06)
 as was launched in 2006)
 - Start 2008 simulation
 - Mainly for alignment and calibration studies
 - Physics studies (as of January, currently certifying Geant4 9.1)
 - ★ FEST'09 preparatory phase (see later)


Cosmics and first beam data

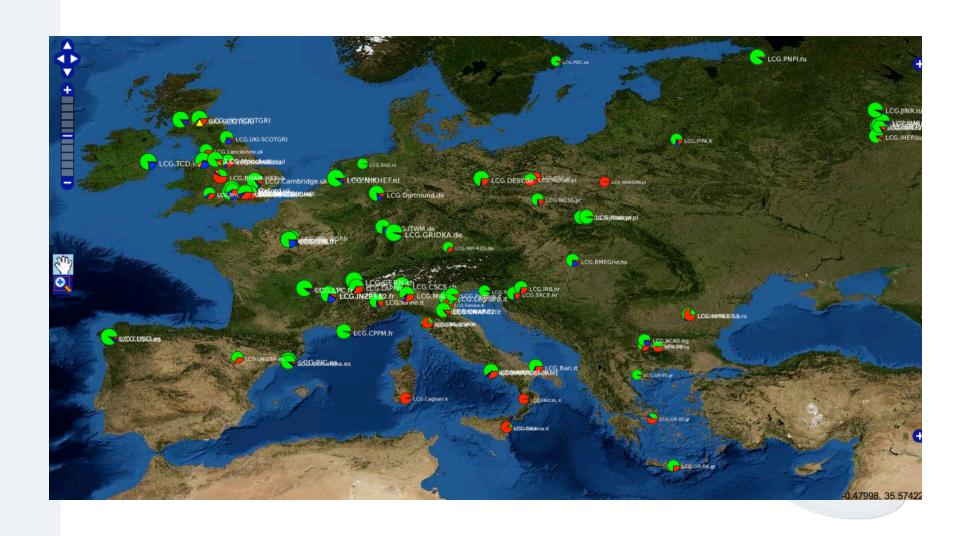
- Cosmics used for detector commissioning
 - Of course very few detectors are hit!
 - Allows internal time alignment of subdetectors
 - Using consecutive 25ns slots
 - Partially time alignment between detectors
 - A Shifting timing by 12.5 ns and equalising population in consecutive bins...
 - All subdetectors included in global runs as of end August
- o TED data
 - LHCb was first to see tracks coming from the injection line!
 - Single shots with ~2 muons/cm², but once every 48 ns!
 - First tracks in the VeLo
 - Allowed rough detector time alignment (~2ns)
- o 10th September
 - Only muons, calorimeters and short time OT

First data



- DIRAC3 will be fully ready for first data
 - Analysis is being migrated
 - * End of 2008: no LCG-RB needed
 - Since end of September: no dependency any longer on SRM v1
- Still to come:
 - Glexec on worker nodes
 - ☆ Will allow to exploit the full power of DIRAC
 - * Allows late binding of jobs, VO policy etc...
 - Running analysis jobs with higher priority without site intervention
 - > DIRAC3 model was certified long ago by the GDB working group
 - ★ Waiting for middleware to be ready (SCAS service)
 - Commissioning of the alignment and calibration loop
 - Setting up an LHCb-CAF (Calibration and Alignment Facility)
 - * Requirements are rather modest ("simple" detector)
 - * Start with 2 8-core machines, 200 GB of disk
 - * Full commissioning of Conditions Database update and streaming
 - * Currently very few commits to CondDB

DIRAC3 jobs


Maximum: 13,963, Minimum: 0.00, Average: 7,868, Current: 7,710

PhC

DIRAC3 portal

PhC

Recent issues encountered

- o Storage
 - Instability of SEs, in particular dCache
 - Very good response from sites and dCache developers
 - Permanent struggle due to various causes:
 - * Software issues (addressed with sites and developers)
 - * Sub-optimal hardware configuration at some Tier1's
 - * Unavailability of files: are in the namespace at site but cannot be accessed or even get a tURL
 - Damaged tapes, unavailable servers...
 - Transfers are OK (low throughput needed: 70 MB/s)
- Workload Management
 - Three severe issues with WMS (fixes being certified)
 - * Mixing up credentials of jobs submitted by the same user with different roles
 - Limitation in proxy handling (too few delegations allowed) preventing some users to run jobs (e.g. from French CA)
 - Misbehavior of WMS after some idle time: cannot find suitable sites even for a job without requirements!
- Issues with local shared software repository at sites
 - Stability and access rights (being addressed)

LHCb Computing Operations

- Production manager
 - Schedules production work, sets up and checks workflows, reports to LHCb operations
- o Computing shifters
 - Computing Operations shifter (pool of ~12 shifters)
 - ☆ Covers 14h/day, 7 days / week
 - ☆ Computing Control room (2-R-014)
 - Data Quality shifter
 - covers 8h/day, 7 days / week
 - Both are in the LHCb Computing Control room (2-R-014)
- Daily DQ and Operations meetings
 - Week days
- Grid Expert on-call
 - On duty for a week
 - Runs the operations meetings
- Grid Team (~6 FTEs)
 - Shared responsibilities (WMS, DMS, SAM, Bookkeeping...)

o Aim

- Replace the non-existing 2008 beam data with MC
- Points to be tested
 - - * Emulated in software
 - ★ HLT strategy
 - * First data (loose trigger)
 - * High lumi data (b-physics trigger)
 - Online detector monitoring
 - * Based on event selection from HLT e.g. J/Psi events
 - * Automatic detector problems detection
 - Data streaming
 - Physics stream (all triggers) and calibration stream (subset of triggers, typically 5 Hz)
 - Alignment and calibration loop
 - * Trigger re-alignment
 - * Run alignment processes
 - * Validate new alignment (based on calibration stream

PhC

FEST'09 preparation (2)

- o File merging (into 2-3 GB files)
 - Small files at CERN on a TOD1 space
 - Merging being done at CERN
- Online developments
 - Event injector
 - Read MC files
 - * Emulate LO trigger (conditions my be varied)
 - Creates multi-event packets (MEP as font-end does)
 - > Send MEP to an HLT farm node
 - Event injector control system
 - * Emulation of the standard Run Control
 - Simulates a regular run, but using event injector as source
 - Multiple streams
 - Using HLT classification as criterion
 - * Was not needed for 2008 run, hence was delayed
 - Readiness
 - * Tests in December, operational in January

FEST'09 runs

- Description of the activity
 - Define FEST conditions
 - Start a run
 - * Events are injected and follow the normal path
 - Files export to TierO and distribution to Tier1s
 - ☆ CCRC'08 repetition
 - Automatic reconstruction jobs at CERN and Tier1s
- Short test periods
 - Typically a week
 - Depending on results, take a week interval for fixing problems
- Vary conditions
 - L0 parameters
 - Event rates
 - HLT parameters
 - Trigger calibration and alignment loop

2009 resources

- o No reason to change drastically the overall amount of data
 - Real data
 - ☆ Split year in two parts:
 - * 0.5 106 s at low lumi
 - * 4 106 s at nominal lumi (2 1032)
 - Trigger rate constant: 2 kHz
 - Simulation: 2 109 events.
- New assumptions for (re-)processing and analysis
 - Lack of experience from 2008 non-data
 - More re-processings in a first instance in 2009
 - More calibration checks (done at Tier0)
 - Envision more analysis at CERN with first data
 - ☆ Increase from 25% (TDR) to 50% (first part) and 35% (second part)
 - ★ Include SW development and testing (LXBATCH)
 - Almost same events sizes and processing times as in TDR
 - Small adjustments due to more precise estimates
 - * Some up, some down...
- Need to account for non-flat usage of resources...

Conclusion

- Due to lack of 2008 real data
 - Use MC data for further testing the whole system
 - FEST'09
 - * Full system test including HLT, online monitoring, streaming etc...
 - Short periods (one week) from January to March
 - More FEST in May if no beam
- o 2009 real data
 - Use TED runs (as soon as SPS is running)
 - Allows completion of calibration and alignment
 - First pilot run
 - ★ Equivalent to 2008 run
 - Useful for detector understanding / tuning
 - * First physics results expected even with 108 events
 - Nominal (LHCb) luminosity run
 - ★ Assume 4 10⁶ seconds
- Resource needs are being re-evaluated
 - Minor changes except for CERN CPU (3 MSI2k)

