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On the Logical Origin of the Laws Governing the Fundamental Forces
of Nature: A New Algebraic-Axiomatic (Matrix) Approach

by: Ramin Zahedi

Logic and Philosophy of Science Research Group™, Hokkaido University, Japan

28 Jan 2015
The main idea and arguments of this article are based on my earlier publications (Refs. [1]-[4], Springer,
1996-1998). In this article, as a new mathematical approach to origin of the laws of nature, using a new basic
algebraic axiomatic (matrix) formalism based on the ring theory and Clifford algebras (presented in Sec.2),
“it is shown that certain mathematical forms of fundamental laws of nature, including laws governing the
fundamental forces of nature (represented by a set of two definite classes of general covariant massive field
equations, with new matrix formalisms), are derived uniquely from only a very few axioms”; where in
agreement with the rational Lorentz group, it is also basically assumed that the components of relativistic
energy-momentum can only take rational values. In essence, the main scheme of this new mathematical
axiomatic approach to fundamental laws of nature is as follows. First based on the assumption of rationality
of D-momentum, by linearization (along with a parameterization procedure) of the Lorentz invariant energy-
momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear equations
(with matrix formalisms compatible with certain Clifford, and symmetric algebras) is derived. Then by first
guantization (followed by a basic procedure of minimal coupling to space-time geometry) of these
etermined systems of linear equations, a set of two classes of general covariant massive (tensor) field
equations (with matrix formalisms compatible with certain Clifford, and Weyl algebrasf) is derived uniquely
as well. Each class of the derived general covariant field equations also includes a definite form of torsion
field appeared as generator of the corresponding field” invariant mass. In addition, it is shown that the (1+3)-
dimensional cases of two classes of derived field equations represent a new general covariant massive
formalism of bispinor fields of spin-2, and spin-1 particles, respectively. In fact, these uniquely determined
bispinor fields represent a unique set of new generalized massive forms of the laws governing the
fundamental forces of nature, including the Einstein (gravitational), Maxwell (electromagnetic) and Yang-
Mills §nuclear) field equations. Moreover, it is also shown that the (1+2)-dimensional cases of two classes of
these field equations represent (asymptotically) a new general covariant massive formalism of bispinor fields
of inn-S/Z and spin-1/2 particles, corresponding to the Dirac and Rarita—Schwinger equations.

s a particular consequence, it is shown that a certain massive formalism of general relativity — with a
definite form of torsion field appeared originally as the generator of gravitational field’s invariant mass — IS
obtained only by first quantization (followed by a basic procedure of minimal coupling to space-time
geometry) of a certain set of special relativistic algebraic matrix equations. It has been also proved that
Lagrangian densities specified for the originally derived new massive forms of the Maxwell, Yang-Mills and
Dirac field equations, are also gauge invariant, where the invariant mass of each field is generated solely by
the corresponding torsion field. In addition, in agreement with recent astronomical data, a new particular
form of massive boson is identified (corresponding to the U(1) gauge symmetry group) with invariant mass:
m,= 4.90571x107° kg, generated by a coupled torsion field of the background space-time geometry.

Moreover, based on the definite mathematical formalism of this axiomatic approach, along with the C, P
and T s%/mmetries (represented basically by the corresponding quantum operators) of the fundamentally
derived field equations, it is concluded that the universe could be realized solely with the (1+2) and (1+3)-
dimensional space-times (where this conclusion, in particular, is based on the T-symmetry). It is proved that
‘CPT" is the only (unigue) combination of C, P, and T symmetries that could be defined as a symmetry for
interacting fields. In addition, on the basis of these discrete symmetries of derived field equations, it has been
also shown that only left-handed particle fields (along with their complementary right-handed fields) could be
coupled to the corresponding (any? source currents. Furthermore, it has been shown that the metric of
background space-time is diagonalized for the uniquely derived fermion field equations (defined and
expressed solely in (1+2)-dimensional space-time), where this property generates a certain set of additional
symmetries corresponding uniquely to the SU(2) ®U(2)r symmetry group for spin-1/2 fermion fields
(representing “1+3” generations of four fermions, including a group of eight leptons and a group of eight
quarks), and also the SU(2), ®U(2) and SUSS) gauge symmetry groups for spin-1 boson fields coupled to the
spin-1/2 fermionic source currents. Hence, along with the known elementary particles, eight new elementary
particles, including four new charge-less right-handed spin-1/2 fermions (two leptons and two quarks), a
spin-3/2 fermion, and also three new spin-1 (massive) bosons, are predicted uniquely by this mathematical
axiomatic approach. As a particular result, based on the definite formulation of derived Maxwell (and Yang-
Mills) field equations, it has been also concluded that magnetic monopoles could not exist in nature.!

1. Introduction and Summary

Why do the fundamental forces of nature (i.e., the forces that appear to cause all the movements and
interactions in the universe) manifest in the way, shape, and form that they do? This is one of the
greatest ontological questions that science can investigate. In this article, we’1l consider this basic and
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and crucial question (and a number of relevant issues) via a new axiomatic mathematical formalism.
By definition, a basic law of physics (or a scientific law in general) is: “A theoretical principle
deduced from particular facts, applicable to a defined group or class of phenomena, and expressible
by the statement that a particular phenomenon always occurs if certain conditions be present” [55].
Eugene Wigner's foundational paper, “On the Unreasonable Effectiveness of Mathematics in the
Natural Sciences”, famously observed that purely mathematical structures and formalisms often lead
to deep physical insights, in turn serving as the basis of highly successful physical theories [50].
However, all the known fundamental laws of physics (and corresponding mathematical formalisms
which are used for their representations), are generally the conclusions of a number of repeated
experiments and observations over years and have become accepted universally within the scientific
communities [56, 57].

This article is based on my earlier publications (Refs. [1]-[4], Springer, 1996-1998). In this article, as
a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic
(matrix) formalism based on the ring theory and Clifford algebras (presented in Sec.2), “it is shown
that certain mathematical forms of fundamental laws of nature, including laws governing the
fundamental forces of nature (represented by a set of two definite classes of general covariant
massive field equations, with new matrix formalisms), are derived uniquely from only a very few
axioms”; where in agreement with the rational Lorentz group, it is also basically assumed that the
components of relativistic energy-momentum can only take rational values.. Concerning the basic
assumption of rationality of relativistic energy-momentum, it is necessary to note that the rational
Lorentz symmetry group is not only dense in the general form of Lorentz group, but also is
compatible with the necessary conditions required basically for the formalism of a consistent
relativistic quantum theory [77]. In essence, the main scheme of this new mathematical axiomatic
approach to fundamental laws of nature is as follows. First based on the assumption of rationality of
D-momentum, by linearization (along with a parameterization procedure) of the Lorentz invariant
energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous
linear equations (with matrix formalisms compatible with certain Clifford, and symmetric algebras)
is derived. Then by first quantization (followed by a basic procedure of minimal coupling to space-
time geometry) of these determined systems of linear equations, a set of two classes of general
covariant massive (tensor) field equations (with matrix formalisms compatible with certain Clifford,
and Weyl algebras) is derived uniquely as well. Each class of the derived general covariant field
equations also includes a definite form of torsion field appeared as generator of the corresponding
field’ invariant mass. In addition, it is shown that the (1+3)-dimensional cases of two classes of
derived field equations represent a new general covariant massive formalism of bispinor fields of
spin-2, and spin-1 particles, respectively. In fact, these uniquely determined bispinor fields represent
a unique set of new generalized massive forms of the laws governing the fundamental forces of
nature, including the Einstein (gravitational), Maxwell (electromagnetic) and Yang-Mills (nuclear)
field equations. Moreover, it is also shown that the (1+2)-dimensional cases of two classes of these
field equations represent (asymptotically) a new general covariant massive formalism of bispinor
fields of spin-3/2 and spin-1/2 particles, respectively, corresponding to the Dirac and Rarita—
Schwinger equations.



As a particular consequence, it is shown that a certain massive formalism of general relativity — with
a definite form of torsion field appeared originally as the generator of gravitational field’s invariant
mass — is obtained only by first quantization (followed by a basic procedure of minimal coupling to
space-time geometry) of a certain set of special relativistic algebraic matrix equations. It has been
also proved that Lagrangian densities specified for the originally derived new massive forms of the
Maxwell, Yang-Mills and Dirac field equations, are also gauge invariant, where the invariant mass of
each field is generated solely by the corresponding torsion field. In addition, in agreement with recent
astronomical data, a new particular form of massive boson is identified (corresponding to U(1) gauge
group) with invariant mass: m, = 4.90571x10°°kg, generated by a coupled torsion field of the
background space-time geometry.

Moreover, based on the definite mathematical formalism of this axiomatic approach, along with
the C, P and T symmetries (represented basically by the corresponding quantum operators) of the
fundamentally derived field equations, it has been concluded that the universe could be realized
solely with the (1+2) and (1+3)-dimensional space-times (where this conclusion, in particular, is
based on the T-symmetry). It is proved that 'CPT" is the only (unique) combination of C, P, and T
symmetries that could be defined as a symmetry for interacting fields. In addition, on the basis of
these discrete symmetries of derived field equations, it has been also shown that only left-handed
particle fields (along with their complementary right-handed fields) could be coupled to the
corresponding (any) source currents. Furthermore, it has been shown that the metric of background
space-time is diagonalized for the uniquely derived fermion field equations (defined and expressed
solely in (1+2)-dimensional space-time), where this property generates a certain set of additional
symmetries corresponding uniquely to the SU(2), ®U(2)r symmetry group for spin-1/2 fermion fields
(representing “1+3” generations of four fermions, including a group of eight leptons and a group of
eight quarks), and also the SU(2)_ ®U(2)r and SU(3) gauge symmetry groups for spin-1 boson fields
coupled to the spin-1/2 fermionic source currents. Hence, along with the known elementary particles,
eight new elementary particles, including: four new charge-less right-handed spin-1/2 fermions (two
leptons and two quarks, represented by “z. , z, and z, , z4”), a spin-3/2 fermion, and also three new

spin-1 massive bosons (represented by "W*,W,Z ", where in particular, the new boson Z is

complementary right-handed particle of ordinary Z boson), have been predicted uniquely and
expressly by this new mathematical axiomatic approach.

As a particular result, in Sec. 3-4-2, based on the definite and unique formulation of the derived
Maxwell’s equations (and also determined Yang-Mills equations, represented uniquely with two
specific forms of gauge symmetries, in 3-6-3-2), it has been also concluded generally that magnetic
monopoles could not exist in nature.



1-1. The main results obtained in this article are based on the following three basic assumptions
(as postulates):

(1)- “A new definite axiomatic generalization of the axiom of “no zero divisors” of integral
domains (including the ring of integers Z);”

This algebraic postulate (as a new mathematical concept) is formulated as follows:
“Let A= [a;] be a nxn matrix with entries expressed by the following linear homogeneous
polynomials in S variables over the integral domain Z: a; = a; (b,,b,,bs,...,b;) ZZHijkbk; suppose
k=1

also “3r eN: A" =F(b,b,,b;,....0,)1,”, where F(b,,b,,b,,...,b,) is a homogeneous polynomial of
degree r > 2, and |, is nxn identity matrix. Then the following axiom is assumed (as a new
axiomatic generalization of the ordinary axiom of “no zero divisors” of integral domain Z):

(A'=0)<= (AxM =0, M =0) (1)
where M is a non-zero arbitrary nx1 column matrix”.

The axiomatic relation (1) is a logical biconditional, where (A" =0) and (AxM =0, M =0) are
respectively the antecedent and consequent of this biconditional. In addition, based on the initial
assumption 3r eN: A" =F(b,b,,b;,...,b)1,, the axiomatic biconditional (1) could be also
represented as follows:

[F(b,b,,b;,....b)=0] < (AxM =0, M %0) (1-1)

where the homogeneous equation F(b,b,,b,,...,b)=0, and system of linear equations

(AxM =0, M =0)are respectively the antecedent and consequent of biconditional (1-1). The
axiomatic biconditional (1-1), defines a system of linear equations of the type AxM =0 (M =0),

as the algebraic equivalent representation of r" degree homogeneous equation F(b,,b,,b;,....b,) =0
(over the integral domain Z). In addition, according to the Ref. [6], since F(b,,b,,b;,...,b,)=0 is a

homogeneous equation over Z, it is also concluded that homogeneous equations defined over the
field of rational numbers @, obey the axiomatic relations (1) and (1-1) as well. As particular outcome
of this new mathematical axiomatic formalism (based on the axiomatic relations (1) and (1-1),
including their basic algebraic properties), in Sec. 3-4, it is shown that using, a unique set of general
covariant massive (tensor) field equations (with new matrix formalism compatible with Clifford, and
Weyl algebras), corresponding to the fundamental field equations of physics, are derived — where, in
agreement with the rational Lorentz symmetry group, it has been basically assumed that the
components of relativistic energy-momentum can only take the rational values. In Sections 3-2 — 3-6,
we present in detail the main applications of this basic algebraic assumption (along with the
following basic assumptions (2) and (3)) in fundamental physics.



(2)- “In agreement with the rational Lorentz symmetry group, we assume basically that the
components of relativistic energy-momentum (D-momentum) can only take the rational values;”

Concerning this assumption, it is necessary to note that the rational Lorentz symmetry group is not
only dense in the general form of Lorentz group, but also is compatible with the necessary conditions
required basically for the formalism of a consistent relativistic quantum theory [77]. Moreover, this
assumption is clearly also compatible with any quantum circumstance in which the energy-

momentum of a relativistic particle is transferred as integer multiples of the quantum of action “h”
(Planck constant).

Before defining the next basic assumption, it should be noted that from the basic assumptions (1) and
(2), it follows directly that the Lorentz invariant energy-momentum quadratic relation (represented by
formula (52), in Sec. 3-1-1) is a particular form of homogeneous quadratic equation (represented by
formula (18-2) in Sec. 2-2). Hence, using the set of systems of linear equations that are determined
uniquely as equivalent algebraic representations of the corresponding set of quadratic homogeneous
equations (given by equation (18-2) in various number of unknown variables, respectively), a unique set
of the Lorentz invariant systems of homogeneous linear equations (with matrix formalisms compatible
with certain Clifford, and symmetric algebras) are also determined, representing equivalent algebraic
forms of the energy-momentum quadratic relation in various space-time dimensions, respectively.
Subsequently, we’ve shown that by first quantization (followed by a basic procedure of minimal
coupling to space-time geometry) of these determined systems of linear equations, a unique set of
two definite classes of general covariant massive (tensor) field equations (with matrix formalisms
compatible with certain Clifford, and Weyl algebras) is also derived, corresponding to various space-
time dimensions, respectively. In addition, it is also shown that this derived set of two classes of general
covariant field equations represent new tensor massive (matrix) formalism of the fundamental field
equations of physics, corresponding to fundamental laws of nature (including the laws governing the
fundamental forces of nature). Following these essential results, in addition to the basic assumptions (1)
and (2), it would be also basically assumed that:

(3)- “We assume that the mathematical formalism of the fundamental laws of nature, are
defined solely by the axiomatic matrix constitution formulated uniquely on the basis of
postulates (1) and (2)”.

In addition to this basic assumption, in Sec. 3-5, the C, P and T symmetries of the uniquely derived
general covariant field equations (that are field equations (3) and (4) in Sec. 1-2-1), would be represented
basically by their corresponding quantum matrix operators.

1-2. In the following, we present a summary description of the main consequences of basic
assumptions (1) — (3) (mentioned in Sec. 1-1) in fundamental physics. In this article, the metric
signature (+ — ... —), the geometrized units [9] and also the following sign conventions have been

used in the representations of the Riemann curvature tensor R”_  , Ricci tensor R, and Einstein

ouv!

tensor G, :

A A o
Rpayv:(évrpcry+rpivro-y)_(ayrpo-v+rp/1yrav)’ VO'R,UV,D :VvRyp_vvap' G;

=871, +.... (2)

]



1-2-1. On the basis of assumptions (1) — (3), two sets of the general covariant field equations
(compatible with the Clifford algebras) are derived solely as follows:

(ina*v , —mPa’k,)¥; =0 (3)

(iha“D, -mPa’k,)¥ =0 (4)
where

0!” :ﬂ# _'_ﬁw’ &# :ﬁ# _ﬁw (5)

inV , and iAD, are the general relativistic forms of energy-momentum quantum operator (where
V ,is the general covariant derivative and D, is gauge covariant derivative, defining in Sections 3-
4, 3-4-1 and 3-4-2), m{® and m{" are the fields’ invariant masses, Kk, :(c/1/g°° 0,...,0) is the general

covariant velocity in stationary reference frame (that is a time-like covariant vector), S and g'“ are
two contravariant square matrices (given by formulas (6) and (7)), ¥y is a column matrix given by
formulas (6) and (7), which contains the components of field strength tensor R, (equivalent to the

Riemann curvature tensor), and also the components of a covariant quantity which defines the
corresponding source current (by relations (6) and (7)), ‘¥r is also a column matrix given by

formulas (6) and (7), which contains the components of tensor field F,, (defined as the gauge field

strength tensor), and also the components of a covariant quantity which defines the corresponding
source current (by relations (6) and (7)). In Sec. 3-5, based on a basic class of discrete symmetries of
general covariant field equations (3) and (4), it would be concluded that these equations could be
defined solely in (1+2) and (1+3) space-time dimensions, where the (1+2) and (1+3)-dimensional
cases these field equations are given uniquely as follows (in terms of the above mentioned
quantities), respectively:

- For (1+2)-dimensional space-time we have:

o 0 0 L c’+ot 0 1 |0 o’ .
P _{O —((70+O'1)} ﬁo_{ 0 O} p _{—0'2 0} ﬁl_{—

, [o -] , [0 -] , [t 0] , [oo0] |,
g g L i R P

Fio (R) o im{® (R)
0 0 ‘]pav = _(Vv +Tkv)¢po‘ ’ (6)
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- For (1+3)-dimensional space-time of we get:

o |0 0 , 1O+ o o 0 0y
/ {0 —(7°+71)} ﬁO{ 0 0} / {—73 0} ﬂl_[—f 0}
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In formulas (6) and (7), J® and J (™ are the covariant source currents expressed necessarily in

vpo

terms of the covariant quantities ¢ and ¢ (as initially given quantities). Moreover, in Sections

3-4 — 3-6, it has been also shown that the field equations in (1+2) dimensions, are compatible with
the matrix representation of Clifford algebra Ct;,, and represent (asymptotically) new general
covariant massive formalism of bispinor fields of spin-3/2 and spin-1/2 particles, respectively. It has
been also shown that these field equations in (1+3) dimensions are compatible with the matrix
representation of Clifford algebra Ct;3, and represent solely new general covariant massive
formalism of bispinor fields of spin-2 and spin-1 particles, respectively.

1-2-2. In addition, from the field equations (3) and (4), the following field equations (with ordinary
tensor formulations) could be also obtained, respectively:

6/1 quuv + 6,u Rpcrvl + 6v Rpo‘ﬂ,u = T T/lu Rpmv + T I:UVRpm'ﬂ, + T :/ﬂ. Rpo‘ry ’ (3-1)
VR, = (im®/m)k, R =-30" (3-2)
R, =@T%, +T",T" )=, +T"T" ),
im(R) im(R)
= im Im
‘]gl)/ =_(VV +Tokv)¢g)’ vazz_oh(gwkv _grvky)' (3-3)



and

D,F, +D,F,,+DF , =0, (4-1)
~ v _ V(F) .
D,F* =-3"; (4-2)
Fﬂv = DVAu - D/,Ay )
~ im® im"’
J‘EF) = _(Dv +—Oky)¢(F)' Zr/,zv = 2;[ (gwkv - grvk,u)' (4-3)

where in equations (3-1) - (3-2), I'”,, is the affine connection given by: I, =T% —K”_ , T'7 is

the Christoffel symbol (or the torsion-free connection), K”_ s a contorsion tensor defined by:
K, =(m$® /2m)g K, (that is anti-symmetric in the first and last indices), T, is its corresponding
torsion tensor given by: T, =K —K _ (as the generator of the gravitational field’s invariant mass),
V , is general covariant derivative defined with torsion T_ . In equations (4-1) — (4-3), D, is the
general relativistic form of gauge covariant derivative defined with torsion field Z_,, (which generates
the gauge field’s invariant mass), and A, denotes the corresponding gauge (potential) field.

1-2-3. In Sec. 3-5, on the basis of definite mathematical formalism of this axiomatic approach,
along with the C, P and T symmetries (represented basically by the corresponding quantum
operators, in Sec. 3-5) of the fundamentally derived field equations, it has been concluded that the
universe could be realized solely with the (1+2) and (1+3)-dimensional space-times (where this
conclusion, in particular, is based on the T-symmetry). It is proved that '‘CPT" is the only (unique)
combination of C, P, and T symmetries that could be defined as a symmetry for interacting fields. In
addition, on the basis of these discrete symmetries of derived field equations, it has been also shown
that only left-handed particle fields (along with their complementary right-handed fields) could be
coupled to the corresponding (any) source currents. Furthermore, it has been shown that the metric of
background space-time is diagonalized for the uniquely derived fermion field equations (defined and
expressed solely in (1+2)-dimensional space-time), where this property generates a certain set of
additional symmetries corresponding uniquely to the SU(2) . ®U(2)r symmetry group for spin-1/2
fermion fields (representing “1+3” generations of four fermions, including a group of eight leptons
and a group of eight quarks), and also the SU(2)_ ®U(2)r and SU(3) gauge symmetry groups for spin-
1 boson fields coupled to the spin-1/2 fermionic source currents. Hence, along with the known
elementary particles, eight new elementary particles, including: four new charge-less right-handed
spin-1/2 fermions (two leptons and two quarks, represented by “z. , z, and z, , z4”), a spin-3/2

fermion, and also three new spin-1 massive bosons (represented by "W*,W",Z ", where in

particular, the new boson Z is complementary right-handed particle of ordinary Z boson), have
been predicted uniquely by this new mathematical axiomatic approach (as shown in Sections 3-6-1-2
and 3-6-3-2).

1-2-4. As a particular consequence, in Sec. 3-4-2, it is shown that a certain massive formalism of
the general theory of relativity — with a definite torsion field which generates the gravitational field*s
mass — is obtained only by first quantization (followed by a basic procedure of minimal coupling to
space-time geometry) of a set of special relativistic algebraic matrix relations. In Sec. 3-4-4, it is also
proved that Lagrangian densities specified for the derived unique massive forms of Maxwell, Yang-



Mills and Dirac equations, are gauge invariant as well, where the invariant mass of each field is
generated by the corresponding torsion field. In addition, in Sec. 3-4-5, in agreement with recent
astronomical data, a new massive boson is identified (corresponding to U(1) gauge group) with
invariant mass: M, = 4.90571x10°°%kg, generated by a coupling torsion field of the background
space-time geometry. Furthermore, in Sec. 3-4-2, based on the definite and unique formulation of the
derived Maxwell‘s equations (and also determined Yang-Mills equations, represented ungiely with
two specific forms of gauge symmetries), it is also concluded that magnetic monopoles could not
exist in nature.

1-2-5. As it would be also shown in Sec. 3-4-3, if the Ricci curvature tensor R, is defined basically

by the following relation in terms of Riemann curvature tensor (which is determined by field

equations (3-1) — (3-3)):

im{® im{®
h h

then from this expression for the current in terms of the stress-energy tensor T, :

® im{® im{® im{® im{®
IJ® =-8(V, + . k(,)Tpv—(Vp+Tkp)Tw]+87zB[(VU+TkU)Tgpv—(Vp+Tkp)Tgw] (8-2)

where T =T*,, the gravitational field equations (including a cosmological constant A emerged
naturally in the course of derivation process) could be equivalently derived particularly from the
massless case of tensor field equations (3-1) — (3-3) in (1+3) space-time dimensions, as follows:

- o = im(®) -
vV, + KR, =(V, + 7; k)R, —(V,+ k,)R (8-1)
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R, =-87T, +4x19, —Ag,, 9)
1-2-6. Let we emphasize again that the results obtained in this article, are direct outcomes of a new
algebraic-axiomatic approach® which has been presented in Sec. 2. This algebraic approach, in the
form of a basic linearization theory, has been constructed on the basis of a new single axiom (that is
the axiom (17) in Sec. 2-1) proposed to replace with the ordinary axiom of “no zero divisors” of
integral domains (that is the axiom (16) in Sec. 2). In fact, as noted in Sec. 1-1 and also Sec. 2-1, the
new proposed axiom is a definite generalized form of ordinary axiom (16), which particularly has
been formulated in terms of square matrices (using basically as primary objects for representing the
elements of underlying algebra, i.e. integral domains including the ring of integers). In Sec. 3, based
on this new algebraic axiomatic formalism, as a new mathematical approach to origin of the laws of
nature, “it is shown that certain mathematical forms of fundamental laws of nature, including laws
governing the fundamental forces of nature (represented by a set of two definite classes of general
covariant massive field equations, with new matrix formalisms), are derived uniquely from only a
very few axioms”; where in agreement with the rational Lorentz group, it is also basically assumed
that the components of relativistic energy-momentum can only take rational values.

L Besides, we may argue that our presented axiomatic matrix approach (for a direct derivation and formulating the fundamental laws of nature
uniquely) is not subject to the Godel's incompleteness theorems [51]. As in our axiomatic approach, firstly, we've basically changed (i.e.
replaced and generalized) one of the main Peano axioms (when these axioms algebraically are augmented with the operations of addition and
multiplication [52, 53, 54]) for integers, which is the algebraic axiom of “no zero divisors”.

Secondly, based on our approach, one of the axiomatic properties of integers (i.e. axiom of “no zero divisors”) could be accomplished solely
by the arbitrary square matrices (with integer components). This axiomatic reformulation of algebraic properties of integers thoroughly has
been presented in Sec. 2 of this article.



2. Theory of Linearization: a New Algebraic-Axiomatic (Matrix) Approach
Based on the Ring Theory

In this Section a new algebraic theory of linearization (including the simultaneous parameterization) of
the homogeneous equations has been presented that is formulated on the basis of ring theory and matrix
representation of the generalized Clifford algebras (associated with homogeneous forms of degree r > 2

defined over the integral domain Z).

Mathematical models of physical processes include certain classes of mathematical objects and relations
between these objects. The models of this type, which are most commonly used, are groups, rings, vector
spaces, and linear algebras. A group is a set G with a single operation (multiplication) axb=c;
a,b,c e G which obeys the known conditions [5]. A ring is a set of elements R, where two binary
operations, namely, addition and multiplication, are defined. With respect to addition this set is a group,
and multiplication is connected with addition by the distributivity laws: ax(b+c)=(axb)+(axc),

(b+c)xa=(bxa)+(cxa); a,b,ceR. The rings reflect the structural properties of the set R. As

distinct from the group models, those connected with rings are not frequently applied, although in physics
various algebras of matrices, algebras of hyper-complex numbers, Grassman and Clifford algebras are
widely used. This is due to the intricacy of finding a connection between the binary relations of addition
and multiplication and the element of the rings [5, 2]. This Section is devoted to the development of a
rather simple approach of establishing such a connection and an analysis of concrete problems on this
basis.

I’ve found out that if the algebraic axiom of “no zero divisors” of integral domains is generalized
expressing in terms of the square matrices (as it has been formulated by the axiomatic relation (17)),
fruitful new results hold. In this Section, first on the basis of the matrix representation of the generalized
Clifford algebras (associated with homogeneous polynomials of degree r > 2 over the integral domain Z),
we’ve presented a new generalized formulation of the algebraic axiom of “no zero divisors” of integral
domains. Subsequently, a linearization theory has been constructed axiomatically that implies (necessarily
and sufficiently) any homogeneous equation of degree r > 2 over the integral domain Z, should be
linearized (and parameterized simultaneously), and then its solution be investigated systematically via its
equivalent linearized-parameterized formolation (representing as a certain type of system of linear
homogeneous equations). In Sections 2-2 and 2-4, by this axiomatic approach a class of homogeneous
quadratic equations (in various numbers of variables) over Z has been considered explicitly

2-1. The basic properties of the integral domain Z with binary operations (+ , x) are represented as

follows, respectively [5] (Va;, a;,8,...€Z):

- Closure: a +a,€Z, a xa, e’ (10)
- Associativity: a +(a +a,)=(a +a)+a,, a x(@xa,)=(a xa)xa, (11)
- Commutativity: a ta =a +a, axa =axa, (12)
- Existence of identity elements: a,+0=a,, a xl=a, (13)

Existence of inverse element (for operator of addition):
a, +(-a,)=0 (14)
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- Distributivity: a, x(a +a,)=(a, xa)+(a xa,), (a +a)xa, =(a xa,)+(axa,) (15)
- No zero divisors (as a logical bi-conditional for operator of multiplication):

a, =0<(a, xa =0, a #0) (16)
Axiom (16), equivalently, could be also expressed as follows,

(a =0va =0)<a xa =0 (16-1)
In this article as a new basic algebraic property of the domain of integers, we present the following
new axiomatic generalization of the ordinary axiom of “no zero divisors” (16), which particularly has

been formulated on the basis of matrix formalism of Clifford algebras (associated with homogeneous
polynomials of degree r > 2, over the integral domain Z):

“Let A= [a;] be a nxn matrix with entries expressed by the following linear homogeneous
polynomials in S variables over the integral domain Z: a; =g; (b;,b,,b;,...,b;) :ZHijkbk; suppose
k=1

also “3reN: A" =F(b,b,,b;,....0,)1,”, where F(b,,b,,b;,...,b,) is a homogeneous polynomial of
degree r > 2, and |, is nxn identity matrix. Then the following axiom is assumed (as a new
axiomatic generalization of the ordinary axiom of “no zero divisors” of integral domain Z):

(A"=0)< (AxM =0, M =0) @an
where M is a non-zero arbitrary nx1 column matrix”.

The axiomatic relation (17) is a logical biconditional, where (A" =0) and (AxM =0, M #0) are
respectively the antecedent and consequent of this biconditional. In addition, based on the initial
assumption 3reN: A" =F(b,b,,b,,..,b.)I, the axiomatic biconditional (17) could be also
represented as follows:

[F(b,b,,b,,....0)=0] <= (AxM =0, M #0) (17-1)

where the homogeneous equation  F(b,b,,b;,....b)=0, and system of linear equations
(AxM =0, M =0)are respectively the antecedent and consequent of biconditional (17-1). The
axiomatic biconditional (17-1), defines a system of linear equations of the type AxM =0 (M =0),
as the algebraic equivalent representation of r™ degree homogeneous equation F(b,,b,,b;,....b,) =0

(over the integral domain Z). The axiom (17) (or (17-1)) for n=1, is equivalent to the ordinary
axiom of “no zero divisors” (16). In fact, the axiom (16), as a particular case, can be obtained from
the axiom (17) (or (17-1), but not vice versa.

Moreover, according to the Ref. [6], since F(b,,b,,b;,,...,b,) = 0 is a homogeneous equation over Z, it

is also concluded that homogeneous equations defined over the field of rational numbers @Q, obey the
axiomatic relations (17) and (17-1) as well.
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As a crucial additional issue concerning the axiom (17), it should be noted that the condition
“3reN: A" =F(b,b,,b;,...,b,) 1, which is assumed initially in the axiom (17), is also compatible
with matrix representation of the generalized Clifford algebras [Refs. 40 — 47] associated with the
" degree homogeneous polynomials F(b,,b,,b;,...,b,) . In fact, we may represent uniquely the square

matrix A (with assumed properties in the axiom (17)) by this homogeneous linear form:

A=Y bE, , then the relation: A" =F(b,b,,b;,...,.b,)1  implies that the square matrices E, (which
k=1

their entries are independent from the variables b,) would be generators of the corresponding

generalized Clifford algebra associated with the r degree homogeneous polynomial
F(b,,b,,b,,...,b,) . However, in some particular cases and applications, we may also assume some

additional conditions for the generators E, , such as the Hermiticity or anti-Hermiticity (see Sections

2-2, 2-4 and 3-1). In Sec. 3, we use these algebraic properties of the square matrix A (corresponding
with the homogeneous quadratic equations), where we present explicitly the main applications of the
axiomatic relations (17) and (17-1) in foundations of physics (where we also use the basic
assumptions (2) and (3) mentioned in Sec. 1-1).

It is noteworthy that since the axiom (17) has been formulated solely in terms of square matrices, in
Ref. [76] we have shown that all the ordinary algebraic axioms (10) — (15) of integral domain Z
(except the axiom of “no zero divisors” (16)), in addition to the new axiom (17), could be also
reformulated uniformly in terms of the set of square matrices. Hence, we may conclude that the
square matrices, logically, are the most elemental algebraic objects for representing the basic
properties of set of integers (as the most fundamental set of mathematics).

In the following, based on the axiomatic relation (17-1), we’ve constructed a corresponding basic
algebraic linearization (including a parameterization procedure) approach applicable to the all classes
of homogeneous equation. Hence, it could be also shown that for any given homogeneous equation
of degree r > 2 over the ring Z (or field @), a square matrix A exists that obeys the relation (17-1).
In this regard, for various classes of homogeneous equations, their equivalent systems of linear
equations would be derived systematically. As a particular crucial case, in Sections 2-2 and 2-4, by
derivation of the systems of linear equations equivalent to a class of quadratic homogeneous
equations (in various number of unknown variables) over the integral domain Z (or field Q), these
equations have been analyzed (and solved) thoroughly by this axiomatic approach. In the following,
the basic schemes of this axiomatic linearization-parameterization approach are described.

First, it should be noted that since the entries a; of square matrix Aare linear homogeneous forms
S
expressed in terms of the integral variables b, i.e. a :ZHijkbk , We may also represent the square

k=1

S
matrix A by this linear matrix form: A=) 'bE,, then (as noted above) the relation:
k=1

A" =F(b,b,,b;,...,b,)1, implies that the square matrices E, (which their entries are independent
from the variables b,) would be generators of the corresponding generalized Clifford algebra
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associated with the r™ degree homogeneous polynomial F(b,,b,,b;,...,b,) [43 — 47]. However, for

some particular cases of the rh degree homogeneous forms F(b,,b,,b;,...,b,) (for I > 2, such as the
standard quadratic forms defined in the quadratic equation (18) in Sec. 2-2), without any restriction

S

in the existence and procedure of derivation of their corresponding square matrices A:ZbkEk (with
k=1

the algebraic properties assuming in axiom (17)) obeying the Clifford algebraic relation:

A" =F(b,b,,b,,...,b)1,, we may also assume certain additional conditions for the matrix
generators E, , such as the Hermiticity (or anti-Hermiticity), and so on (see Sections 2-2, 2-4 and 3-

1). In fact, these conditions could be required, for example, if a homogeneous invariant relation (of
physics) be represented by a homogeneous algebraic equation of the type: F(b,,b,,b;,...,b,) =0, with

the algebraic properties as assumed in the axiom (17), where the variables b, denote the components

of corresponding physical quantity (such as the relativistic energy-momentum, as it has been
assumed in Sec. 3-1 of this article based on the basic assumption (2) noted in Sections 1-1 and 3-1).

In Sec. 2-2, as one of the main applications of the axiomatic relations (17) and (17-1), we derive a unique
set the square matrices A, (by assuming a minimum value for n , i.e. the size of the corresponding

S
matrix A,,) corresponding to the quadratic homogeneous equations of the type: Zei f, =0, for
i=0
$=10,1,2,3,4,.., respectively. Subsequently, in Sec. 2-4, by solving the corresponding systems of linear
equations AxM =0, we obtain the general parametric solutions of quadratic homogeneous equations

S
Zei f, =0, for $=0,1,2,3/4,.., respectively. In addition, in Sec. 2-3 using this systematic axiomatic
i=0

approach, for some particular forms of homogeneous equations of degrees 3, 4 and 5 , their equivalent
systems of linear equations have been derived as well. It is noteworthy that using this general axiomatic

approach (on the basis of the logical biconditional relations (17) and (17-1)), for any given r" degree
homogeneous equation in S unknown variables over the integral domain over Z, its equivalent system(s)
of linear equations Ax M =0 is derivable (with a unique size, if in the course of the derivation, we also

assume a minimum value for N, i.e. the size of corresponding square matrix A, ). Furthermore, for a
given homogeneous equation of degree I' in S unknown variables, the minimum value for n, i.e. the size
of the corresponding square matrix A, in its equivalent matrix equation. AxM =0, is:
N =Fxr™ for r=2 and N, =r*xr® for r > 2. For additional detail concerning the general
methodology of the derivation of square matrix A, and the matrix equation: AxM =0 equivalent to a

given homogeneous equation of degree I' in S unknown variables, on the basis of the axiomatic relations
(17) and (17-1), see also the preprint versions of this article in Refs. [76].

2-2. In this section, on the basis of axiomatic relation (17-1) and general methodological notes
(mentioned above), for the following general form of homogeneous quadratic equations their equivalent
systems of linear equations are derived (uniquely):
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Q(e,, fo.8), fyne,, ) = Ze f.=0 (18)
Equation (18) for$=0,1,2,3,4,.. is represented by, respectlvely.

Zozei fi=e,f, =0, (19)
leg,f,—eof +e f, =0, (20)
Zzle:;i: f,+ef, +e,f,=0, (21)
Zslljof,_eof +ef +e,f,+e,f, =0, (22)
Zzlleli(f)I ofo+ef +e,f,+ef,+e,f,=0. (23)

It is necessary to note that quadratic equation (18) is isomorphic to the following ordinary representations
of homogeneous quadratic equations:

ZGU c.c; =0, (18-1)
i,j=0
ZG'J ivj ZGIJ iZj (18-2)
i,j=0 i,j=0
using the linear transformations:
_eo— —Goo Gor  Go GOS_—CO +do_ _fO_ _CO _dO_
€ Gy Gu Gy, Gy | ¢ +d, f, ¢, —d,
€; Gzo G21 Gzz o GZS C, +dz f3 C, _dz
= . ) , = ) (18-3)
& ] |Gy Gy G, . . . Gy +d | | fo] e, —d

where [G;]is a symmetric and invertible square matrix, i.e.: G; =G; and det[G; ] = O, and the quadratic

form ZG” iC; in equation (18-1) could be obtained via transformations (18-3), only by takingd; =0.
i,j=0

2-2-1. As it will be shown in Sec. 2-2-2, the reason for choosing equation (18) as the standard general

form for representing the homogeneous quadratic equations (that could be also transformed to the
ordinary representations of homogeneous quadratic equations (18-1) and (18-2), by linear transformations
(18-3)) is not only its very simple algebraic structure, but also the simple linear homogeneous forms of

the entries of square matrices A (expressed in terms of variables e,, f,) in the corresponding systems of

linear equations AxM =0 obtained as the equivalent form of quadratic equation (18) in various
number of unknown variables.
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Moreover, as it is shown in the following, we may also assume certain Hermiticity and anti-Hermiticity
conditions for the deriving square matrices A (in the corresponding systems of linear equations
Ax M =0equivalent to the quadratic equation (18)), without any restriction in the existence and
procedure of derivation of these matrices. By adding these particular conditions, for a specific number of
variables in equation (18), its equivalent matrix equation Ax M = 0could be determined uniquely. In
Sec. 3, where we use the algebraic results obtained in Sections 2-2 and 2-4 on the basis of axiomatic
relations (17) and (17-1), in fact, the assumption of these Hermiticity and anti-Hermiticity properties is a
necessary issue. These Hermiticity and anti-Hermiticity additional conditions are defined as follows:

“ First, by supposing: e, = f, and e, =—f, (for i =1,2,...,5), the quadratic equation (18) would be

S
represented as: e; —Zef =0, and consequently the corresponding square matrix A in the deriving
i=1

system of linear equations Ax M = 0 (which equivalently represent the quadratic equation (18), based on
the axiomatic relation (17-1)) could be also expressed by the homogeneous linear matrix form:

S
A= Zei E, , where the real matrices E, are generators of the corresponding Clifford algebra associated
i=0

S
with the standard quadratic form e) — > e’.
i=1
Now for defining the relevant Hermiticity and anti-Hermiticity conditions, we assume that any square
matrix A in the deriving matrix equation: AxM =0 (as the equivalent representation of quadratic

equation (18)), should also has this additional property that by supposing: e, = f, and e =—f. by

S
which the square matrix A could be represented as: A= ZeiEi , the matrix generator E, be Hermitian:
i=0

E, = E,, and matrix generators E, (for i =12,...,s) be anti-Hermitian: E, =-E, ”.

2-2-2. As noted and would be also shown below, by assuming the above additional Hermiticity and
anti-Hermiticity conditions, the system of linear equations Ax M = 0corresponding to quadratic
equation (18), is determined uniquely for any specific number of variables e,, f.. Hence, starting from
the simplest (or trivial) case of quadratic equation (18), i.e. equation (19), its equivalent system of linear
equations is given uniquely as follows:

Ax M =[0 e"}[mﬂ:o (24)
fo, O | m,
where it is assumed M = 0, and in agreement with (17-1) we also have:
0 e 0 e
A2 = 0 0 = (e f I 24'1
{fo O}{fo o} (& o)l (24-1)

For equation (20), the corresponding equivalent system of linear equations is determined as:
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A2

AxM — 0 A|M” _ 0 0 e —f,|m, _o (25)
A" 0

where we have:
0 0 e f 0 0 e f

M 0 0 e -—f 0 0 e -—f -
M = #0, A’ = X ° I . ° = (e fo +e ), (25-1)
M’ f, f, O 0 f, f, O 0

e —-¢ 0 O e —-¢ 0 O

Notice that matrix equation (25) could be represented by two matrix equations, as follows:

Axmi—|® T M| (25-2)
e, —f, [ m ’
” fo £ |m (25-3)
A"xM" = =0
€ —€ LM,

The matrix equations (25-2) and (25-3) are equivalent (due to the assumption of arbitrariness of
parameters m;, m,,m,,m), so we may choose the matrix equation (25-2) as the system of linear

equations equivalent to the quadratic equation (20) — where for simplicity in the indices of parametersm, ,
we may simply replace arbitrary parameter M, with arbitrary parameter m, , as follows (for [mlJ ~0)
m
Fo fllmﬂzo_ (26)
e, —f,m
The system of linear equations corresponding to the quadratic equation (21) is obtained as:

0 0 0 0 € 0 -e, f |m]
0 0 0 0] 0 e, —¢ —f,|Im,
0 0 0 o —f, —f —f, 0 |m, 27)
0 A M 0 0 0 0 e, —-e 0 —f,|m,
AxM = = =0,
[A" 0 }[M ’} fo 0 -—e f, 0 0 0 0 | mg
0o f, e, —f, O 0 0 0 | m,
—-f, —f, —e O 0 0 0 0 |m,
| & —& 0 —e 0 0] 0 (O Rull
where in agreement with (17) we have:
[0 0 0 0 g 0 -e f ][O 0 0 0 g 0 -e, f ]
0 0 0 0 0 e -—-¢ -—f, 0 0 0 0 0 e -6 —f,
o o o o -—-f, —f —f 0 o o o o -—-f, —f —f 0
0 0 0 0 e -e 0 —f 0 0 0 0 e -e 0 -—f
“|'f, 0o -e f, O o0 0 o0/f O -e f 0 0 o0 0|
o f, -¢ —-f, 0 0 0 0 o f, - —-f, 0 0 0 0
-f, -f, -, O 0O O 0 O -f, - f, -, O 0 0O 0 O
e -e 0 -—g 0 0 0 0 | |e -e 0 -g 0 0 0 0 |

=(e,f, +e,f, +e,f,)l,
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In addition, similar to equation (25), the obtained matrix equation (27) is equivalent to a system of two
matrix equations, as follows:

( € 0 -e, f |Im
0 e, - -—-f,Im
A'xM'= ° ! 21 =0, (27-2)
-f, -f, —=f, 0 |m,
< e, -6 0 —f,|m
fo 0 -e, f |m
0 f, —e —f,|m
A"xM" = ° ! 21 % (=0 (27-3)
-f, —-f, —¢ 0 |m,
e, —-e, 0 —eg|m,

The matrix equations (27-2) and (27-3) are equivalent (due to the assumption of arbitrariness of
parameters m;, m,,...,m,,m), so we may choose the equation (27-2) as the system of linear equations

corresponding to the quadratic equation (21) — where for simplicity in the indices of parametersm,, we
may simply replace the arbitrary parameters m,, mg, m, with parameters m,,m,, m,, as follows:

€, 0 -e f |m m,
0 e -e —-f,(m m

° ! 21 ?1=0, | *|=0. (28)
-f, -f -f, 0 |m m,
e, —-e 0 —f,|m m

Similarly, for the quadratic equations (22) the corresponding system of linear equations is obtained
uniquely as follows:

€ 0 0 0 0 -e & f,oqlm
0 e 0 0 g 0 -¢ f,|m,
0 0 g 0 -e, &g 0 f, |l m,
0 0 0 ¢ -—-f —-f, -f, 0 |m, o (29)
0 f, -f, - —-f, O 0 0 ||mg

-f, 0 ff, -, 0 —-f, O 0 | m
f, -f, 0 -e O o —-f, 0 |m,

e e e 0 0 0 —f,|m,

where the column parametric matrix M in (29) is non-zero M = 0.

In a similar manner, the uniquely obtained system of linear equations corresponding to the quadratic
equation (23), is given by:
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e, O 0 0 0O 0 0 O 0 0 0 -e 0 -e -e f [m]

0 & 0 0 0 0 O 0 0 0 ¢ 0 g 0 -e -—f,|m,

0 0 e 0 0 0 O 0 0 -e O 0 e ¢ 0 f, | m,

0 0 0 e 0 0 0 0 e 0 0 o -f f, —-f, 0 |m,

0 0 0 0 ¢ O 0 O 0 -e -e - O 0 0 —f,|m

0 0 0 0 0 e 0 0 g 0 f,f —-f, O 0 f, 0 | m

0 0 0 0 0O 0 ¢ O e -—-f O f, 0 -—-f, 0 0 | m,

0 0 0 0 0 0 0 e ¢ f, —-f, 0 f, O 0 0 || mg 0

0 0 o f, o f, f, f —-f, O 0 0 0 0 0 0 || m

0 o -f, 0 -f, 0 -¢ e 0 -—-f, O 0 0 0 0 0 |my

o f, O 0o -f, ¢ 0 -e O o -f, O 0 0 0 0 |m,
-f, 0 0 0 -f e e O 0 0 o -f, O 0 0 0 |m,

o f, f, - 0 0 0 e O 0 0 o -f, O 0 0 ||mg,
-f, 0 ff e 0 0 -e O 0 0 0 0 o -f, O 0 ||my,
-f, -f, 0 -e 0 e 0 0 0 0 0 0 0 —-f, 0 |mg,

e, —e & 0 -¢ O 0 0 0 0 0 0 0 0 —ff| m]

(30)

where we’ve assumed the parametric column matrix M in (30) is non-zero, M = 0.

In a similar manner, the systems of linear equations (written in matrix forms similar to the matrix
equations (24), (26), (28), (29) and (30)) with larger sizes are obtained for the quadratic equation (18) in

more variables (i.e. for S=6,7,8,...), where the size of the square matrices of the corresponding matrix
equations is 2° x2° (which could be reduced to 2°x 2% for s> 2). In general (as it has been also
mentioned in Sec. 2-1), the size of the Nx nsquare matrices A (with the minimum value for n) in the
matrix equations AxM =0 corresponding to the homogeneous polynomials F(b,,b,,b,,...,b;) of

degree r defined in axiom (17) is r® xr® (which for r = 2 this size, in particular, could be reduced to

2% 2°1). Moreover, based on the axiom (17), in fact, by solving the obtained system of linear
equations corresponding to a homogeneous equation of degree I, we may systematically show (and
decide) whether this equation has the integral solution.

2-3. Similar to the uniquely obtained systems of linear equations corresponding to the homogeneous
guadratic equations (in Sec. 2-2), in this section in agreement with the axiom (17), we present the
obtained systems of linear equations, i.e. AxM =0 (by assuming the minimum value for n, i.e. the

size of square matrix A, ), corresponding to some homogeneous equations of degrees 3, 4 and 5,

respectively. For the homogeneous equation of degree three of the type:
F(e,, f,.e,f.e, f,)=ef, —e,f; +e f, —e,f/ +e f g, =0, (31)

the corresponding system of linear equations is given as follows:

18



o o Al™
AxM=|A, 0 o™ (32)

0 0
A3 m27

where A is a 27x27 square matrix written in terms of the square 9x9 matrices A, A,and A,, given by:

[—e, + f, 0 0 0 0 0 -e,+f, ¢ 0 |
0 -e,+ 1, 0 0O O 0 0 € g,
0 0 -e,+f, 0 O 0 f, 0o —f,
- f, e 0 e, O 0 0 0 0
A = 0 —e, + T, g, 0 e 0 0 0 0 |
f, 0 e, 0 0 e, 0 0 0
0 0 0 e € 0 - f, 0 0
0 0 0 0 -f, g 0 -f, 0
| 0 0 0 f, 0 —e+f, 0 0 -1,
- f, 0 0 0 0 0 —e,+f, & 0]
0 - f, 0 0 0 0 0 & 0,
0 0 - f, 0 0 0 f, 0 -f,
- f, e 0 -e,+f, 0 0 0 0 O
A=l 0 —-e+f o0 0 —-e,+ f, 0 0 0 0 |
f, 0 €, 0 0 —-e,+ f, 0 0 O
0 0 0 € e 0 e, 0 O
0 0 0 0 - f, g, 0 e, O
| 0 0 0 f, 0 —e + f, 0 0 e |
e, 0 0 0 0 0 —e, + f, e 0 |
0 e, 0 0 0 0 0 € 9,
0 0 e, O 0 0 f, 0 - f,
- f, e, o —-f, O 0 0 0 0
A= 0 -e+f, g 0O -—f, 0 0 0 0 (33)
1 0 g O 0 - f, 0 0 0
0 0 0 g e 0 -e,+f, 0 0
0 0 o 0 -—f, g, 0 -e,+f, 0
| 0 0 0o f; 0 —e+f, 0 0 —e,+ T, |

The uniquely obtained system of linear equations (i.e. AxM =0, by assuming the minimum size for the
square matrix A ) corresponding to the well-known homogeneous equation of degree three:

F(a,b,c)=2(a®>-c®*+Bb%®) =0 (34)
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has the following form (in compatible with the new axiom (17)):

ml
0 0 A
_ m, | (35)
AxM=|A, 0 O] °|=0,
0 A O
m27
where A is a 27x27 square matrix written in terms of the 9x9 matrices A, A,and A, given by:
[« 0 0 0 0 0 -2¢ b 0] (24 0 0 0 0 0 -2¢ b
0O -a 0 0 O 0 0 c 2b 0 2a 0 0 O 0 0 c
0 o -a 0 0 0 b 0 ¢ 0 0 2a 0 O 0 b 0
c b 0 -a O 0 0 0 0 c b 0 -a O 0 0 0
A1= 0 -2¢c 2b 0 -a O 0 0 0 ,A2= 0 -2¢ 2b 0 -a O 0 0
b 0 c 0 0 -a O 0 0 b 0 c 0 -a O 0
0 o 0 c b 0 2a 0 O 0 0 0 c b 0 -a 0
0O O 0 0 ¢ 2b 0 2a O 0 0 0 2b 0 -a
0O o 0 b 0 -2¢ 0 0 2a 0 0 0 -2¢ O 0
-« 0 0 0 0 0 -2¢c b 0|
0 -a 0 0 O 0 0 c 2b
0 0 -a 0 0 O b 0 ¢
c b 0 2a O 0 0 0 0
(36)
4;=| 0 -2¢ 26 0 2a 0 0 0 0
b 0 c 0 0 2a O 0 0
0 0 0 ¢ b O -a 0 O
0 o0 0 0 ¢ 2b O -a 0
0 O 0 0 -2¢ 0 0 -a
For the 4" degree homogeneous equation of the type:
F(e,e,, f,, f,, f,, f,)=—eel+ele,+f f,f, f, =0 (37)
the corresponding system of linear equations is given as,
0 0 0 Alm
— 0O 0 Ofm
AXM — AQ 2 —O’
0O A 0 O0f: (38)

0 0 A 0]|m,
where A is a 16x16 square matrix represented in terms of the 4x4 matrices A, A,, A, A,
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In addition, the system of linear equations corresponding to 5" degree homogeneous equation of the type,

F(e.e,, f,, f,, f,, f,, f.) =¢'e, —e’e’ —e’eS +ee; + f, f, f, f, f. =0

is determined as:

AxM =

-hH g 0
0 f3 -e; te, 0
0 0 ]2
e + e, 0
) )

o o o P o

0
0
Ay
0
0

0 0 f1
1 + e, 0 0
o 0 ,

0 f4 -e, t+e

0 0 —f1
| + e, 0 0
5 e 0

0 f4 e +e,

0 0 A|m

0 0 O0|m,

0 0 O0|m|=
A, 0 O

0 A O [ Mps |

(39)

(40)

(41)

where A is a 25x25 square matrix expressed in terms of the following 5x5 matrices A, A,, A, A, A

.
5
0
0

0

2-4. In this Section by solving the derived systems of linear equations (26), (28), (29) and (30)
corresponding to the quadratic homogeneous equations (20) — (23) in Sec. 2-2, the general parametric

solutions of these equations are obtained for unknowns €,and f.. There are the standard methods for

—e, 00 0
e 0 0
fieg 0
0 f, ¢ te
00 Js
e, 0 0
S —e te 0
N
0 0 Ja
0 0 0

v
0
0 4,
0
e
0
0 0
e, 0 0
e, —e 0
fs e

-e

N
Il

y 0 00 f1
e —e, 00 0
f3 e 0 0

0 f4 e, 0

0 Of5 -e, te,

e, 0 0 0
f2 e, 0 0
0 f3 —e; te 0
00 f4 —e; — e,
00 0 /s
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0
e,
5

0

0

—e,

e

(42)

0
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00
e10
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obtaining the general solutions of the systems of homogeneous linear equations in integers [7, 8]. Using
these methods, for the system of linear equations (26) (and consequently, its corresponding quadratic

equation (20)) we get directly the following general parametric solutions for unknowns €,,€, and f,, f;:
g, =lk,m, f,=lkm, e =lkm, f =-lk,m (43)

where ko,kl,ml,m,l are arbitrary parameters. In the matrix representation the general parametric
solution (43) has the following form:

et T} e 3 o
e 0 1]k, f, -m 0 |k

where M, =ml,, K isa column parametric matrix and M  is also a parametric anti-symmetric matrix.

For the system of linear equations (28) (and, consequently, for its corresponding quadratic homogeneous
equation (21)), the following general parametric solution is obtained directly:

e, =lk,m, f,=I(km, —k,m,), e =lkm, f =Ik,m,—k,m,), e, =lk,m, f,=I(km,-km,) (44)

where Ky, k;,k,,m,m,,m,;,m,| are arbitrary parameters. In matrix representation the general parametric
solution (44) could be also written as follows:

€ 1 0 0]k f, 0 m  -m, ||k,
e, [=IM,K=Iml0 1 Ok, |, |f [=M,K=l|-m, 0 m, |k (44-1)
e, 0 0 1]k, f, m, -my 0 [Kk,

where M, =ml;, K'isa column parametric matrix and M, is also a parametric anti-symmetric matrix.

In addition, it could be simply shown that by adding two particular solutions of the types {e;, f,}and

{e/, f,} of homogeneous quadratic equation (18), the new solution {e, +e€/, f;}is also obtained, as
follows:

Qlefi=0, Delfi=0)=D(ef +ef)=0 = (e +&)f, =0 (44-2)

Using the general basic property (44-2) in addition to the general parametric solution (44) of quadratic
equation (21) (which has been obtained directly from the system of linear equations (28) corresponding to
guadratic equation (21)), exceptionally, the following equivalent general parametric solution is also
obtained for quadratic equation (21):

e, =l(kym—-kmy), f,=I1(k,m, —k,m,), e =I(k,m—-km,), (45)
f, =l(km; —k,my), e, =l(k;m—km,), f, =1(k,m, —km;)

where Ky, Kk, K,k , m, m,, m,, m, | are arbitrary parameters.

Moreover, the parametric solution (45) by the direct bijective replacements of six unknown variables
(e, f,)(where 1 = 0,1,2) with the six new variables of the type h given by:

uv?
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e, >hy, € >hy, €, >hy,, fo>h,, f,>h,, f, >hy,, in addition to the replacements of nine
arbitrary parameters U,,U;,U,,U;,V,,V,,V,,V;, W, with new nine parameters of the types U, U, U,,Us,
Vy,V;,V,, Vs, W, given as: K, > Uy K, = Uy, K, >u, kK—>u,, k—>u,, m —>v,m, ->v, m —v,,

m—V,, | — w, exceptionally, could be also represented as follows:

h,s = W(UgV, —U,V5), By =wW(UgVy —UVy), hyy =W(Ugv, —U,V,),

(45-1)
hgy = WUV, —Ugv), hy = WUy, —U,V;), hys = WUV, —UgVs);
where it could be expressed by a single uniform formula as well (for ¢, v =0,1,2,3):
h,,=w(,yv,—uyv,) (45-2)

A crucial and important issue concerning the algebraic representation (45-2) (as the differences of
products of two parametric variables U, andv, ) for the general parametric solution (45), is that it

generates a symmetric algebra Sym(V) on the vector spaceV, where (uﬂ,vv) eV [11]. This essential

property of the form (45-2) would be used for various purposes in the following and also in Sec. 3 (where
we show the applications of this axiomatic linearization-parameterization approach and the results
obtained in this Section and Sec. 2-4, in foundations of physics).

In addition, as it is also shown in the following, it should be mentioned again that the algebraic form
(45-2) (representing the symmetric algebra Sym(V)), exceptionally, is determined solely from the
parametric solution (44-1) (obtained from the system of equations (28)) by using the identity (44-2). In
fact, from the parametric solutions obtained directly from the subsequent systems of linear equations. i.e.
equations (29), (30) and so on (corresponding to the quadratic equations (22), (23),..., and subsequent

equations, i.e. iei f, =0 for s>3), the expanded parametric solutions of the type (45) (equivalent to
i=0
the algebraic form (45-2)) are not derived.

In the following (also see Ref. [76]), we present the parametric solutions that are obtained directly from
the systems of linear equations (29), (30) and so on, which also would be the parametric solutions of their
corresponding quadratic equations (18) in various number of unknowns (on the basis of axiom (17)).
Meanwhile, the following obtained parametric solutions for the systems of linear equations (29), (30) and
so on, similar to the parametric solutions (43) and (44), include one parametric term for each of

unknowns €, , and sum of S parametric terms for each of unknowns f. (where i=012,3,...,5).

Hence, the following parametric solution is derived directly from the system of linear equations (29) (that
would be also the solution of its corresponding quadratic equation (22)):

g, = lkom, f, =I(km, +k,m, +k,m,), e =lkm, f =I(—-km +k,m, —k,m,), (46)
e, =lk,m, f, =1(-k,m, —k,m, +km,), e, =lk,m, f, =I1(—k,m; +k,m; —km,).

where K,,K;,K,,K;,1 are arbitrary parameters. In the matrix representation, the parametric solution (46)
is represented as follows:
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€ 1 0 0 O}k, f, 0 m m, m; |k

e 0 1 0 0Kk f -m 0 -m my ||k
"=IM K =Im L =M Kk=1] T oot (46-1)

e, 0 0 1 O}k, f, -m, m, 0 -m Kk,

e, 0 0 0 1]k, f, -m, —-mg mg 0 |k,

where M, =ml,, K isa column parametric matrix and M { is also a parametric anti-symmetric matrix.
However, in solutions (46) or (46-1) the parameters m,,m,,m,,m,, M., m,, M., Mare not arbitrary, and in
fact, in the course of obtaining the solution (46) from the system of linear equations (29), a condition
appears for these parameters as follows:

m,m+m,m, +m,ms +m,m, =0 (47)
The condition (47) is also a homogeneous quadratic equation that should be solved first, in order to obtain
a general parametric solution for the system of linear equations (29). Since the parameter m,has not

appeared in the solution (46), it could be assumed thatm, =0, and the condition (47) is reduced to the

following homogeneous quadratic equation, which is equivalent to the quadratic equation (20)
(corresponding to the system of linear equations (28)):

m, =0, mm,+m,m; +mym, =0, (47-1)

where the parameter m would be arbitrary. The condition (47-1) is equivalent to the quadratic equation
(21). Hence by using the general parametric solution (45-1) (as the most symmetric solution obtained for
guadratic equation (21) by solving its corresponding system of linear equations (28)), the following
general parametric solution for the condition (47-1) is obtained:

m, = W(Uovl - ulvo)’ m, = W(uovz - quo)’ m; = W(Uovs - U3V0), (48)

Mg = W(U3V, —U,Vs), Mg =wW(UV; —UgVy), My =W(U,V, —UyV,)
where Ug,U;,U,,Us,V,,V;,V,,V,, W, M are arbitrary parameters. Now by replacing the solutions (48)
(obtained for m;,m,,m,,m;, Mg, m, in terms of the new parametersuy, U,,u,,Us,Vv,,v,,v,,V;,W) in the
relations (46), the general parametric solution of the system of linear equations (29) (and its
corresponding quadratic equation (22)) is obtained in terms of the arbitrary parameters K,,k;,K,,K;,

Ug, Uy, Uy, Us , Vo, Vp, Yy, Vg, W, M,
For the system of linear equations (30) (and its corresponding quadratic equation (23)), the following

parametric solution is obtained:

e, =lk,m, f,=I(km, —k,m,+k,m,—-k,m.), e =lkm, f, =I(-k,m, +k,m,,+k,m,,+k,m,.),
€, = Ikzmv fz = I(komz + k4m11 + k3m13 - klmls)' €; = Iksmv f3 = I(_koms + k4m10 - k2m13 - klm14)’ (49)
€, = Ik4m, f4 = I(koms _k3m10_k2mll_klm12)

whereK,,K;,K,,Ks,K,,| are arbitrary parameters. In the matrix representation the solution (49) could be
also written as follows:
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=M. K =Im

where M, =ml,,

1
0
0
0
0

K

o O O +— O

0 0 Offk, | [f, 0 m -m, m, -m
0 0 OfKk f, -m 0 ms m, m,
1 0 0|k, |, |f,|=IM(K=lf m, -m, O m, my,
0 1 Ofky| |f, -my -m, -m; O My,
0 0 1jk,| [f,] L ms -m, -m; -m, O

Ko
k

[

(49-1)

N

w

k
k
k

4

is a column parametric matrix and M , is also a parametric anti-symmetric matrix.

However, similar to the system of equations (29), in the course of obtaining the solutions (49) or (49-1)

from the system of

linear equations (30), the following conditions appear for

ml’mZ’m3’m5’mlO’mll’mIZ’ml3’ml4’m15:

m,m=—-mm,; —m,m,, —M;Mm,;,
mgm = m;m,,; +MmM,m,, — MM,
m,m=mm,, —msm,, —mym,,,
msm=m,m,, + m;m;; + m;m,,,
MyM = My ,Myg — My My, + My,M; 5.

parameters

(50)

that is similar to the condition (47). Here also by the same approach, since the parameters

m,, Mg, M, Mg, M,

have not appeared

in the solution (49), it

could be assumed

that

m,=mg=m, =my =my =0, and the set of conditions (50) are reduced to the following system of

homogeneous quadratic equations which are similar to the quadratic equation (20) (corresponding to the
system of linear equations (28)):

m,=mg=m, =mg =m, =0,
m;m,, —m;m,, —mgm,, =0,
m,m,, + m,m,, —msm,; =0,
m,m,, + m,m;, + mom;. =0,
m,My, + MsM, 3 + mym,,; =0,
MyoMys + My,M —mym,, =0;

(50-1)

The conditions (50-1) are also similar to the quadratic equation (21). Hence using again the general
parametric solution (45-1), the following general parametric solutions for the system of homogeneous
guadratic equations (50-1) are obtained directly:

m; = W(UgV; —UyVg), My = W(UpV —UgVy),
m, = W(U,V, —Uzv,), m, =0,

mg = w(u,Vv, —UyVv,), mg =0,

m, =0,m; =0,my =0,

My = W(UzV, —U,V;), My, =w(U,Vv, —U,v,),
m,, =w(u,v, —u,v,), m,=w(U,v, —Uu,v,),
My, = WUy —UgVv,), Mg =W(UyV, —U,V,).
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where Uy, U,,U,,Us,U,,Vo,V,,V,,V,,V, and W are arbitrary parameters. Now by replacing the solution
(51) (that have been obtained for m,m,,m, ,mg,m,m;,,m,,m;,m,,Mm; in terms of the new

parameters U, U,,U,,Us,U,,V,,V;,V,, V5, V,, W) in the relations (49), the general parametric solution of
the system of linear equations (30) (and its corresponding quadratic equation (23)) is obtained in terms of
the arbitrary parameters k,,k,,K,,Ky,K,,Ug, Uy, Uy, Us, Uy Vo, Vs Vy, Vg, Ve, W, M,

Meanwhile, similar to the relations (48) and (51), it should be noted that arbitrary parameter m, in the
general parametric solution (43) and arbitrary parameters m,, m,, m,in the general parametric solution
(44) (which have been obtained as the solutions of quadratic equations (20) and (21), respectively, by
solving their equivalent systems of linear equations (26) and (28)), by keeping their arbitrariness property,
could particularly be expressed in terms of new arbitrary parameters U,,U,,V,,V,and Ug,U,,U,,V,,V;,V,,
as follows, respectively:
m, = w(u,Vv, —U,V,); (43-2)
m, = W(uovl - ulVO)! m, = W(UOV2 - U2Vo)7 m; = W(UOV3 - usvo)- (44-3)

In fact, as a particular common algebraic property of both parametric relations (43-2) and (44-2), it could
be shown directly that by choosing appropriate integer values for parameters Ugy,U,V,,V,, W in the

relation (43-2), the parameter m, (defined in terms of arbitrary parameters U, U, V,, V;, W) could take any
given integer value, and similarly, by choosing appropriate integer values for parameters
U,,u,,U,,vy,V,,V,,W in the relation (43-2), the parametersm,;, m,,m, (defined in terms of arbitrary

parametersu,, u,, U,,V,,V;,V,, W) could also take any given integer values. Therefore, using this common
algebraic property of the parametric relations (43-2) and (44-2), the arbitrary parameter m, in general
parametric solutions (43), and arbitrary parameters m,, m,, m, in general parametric solutions (44), could

be equivalently replaced by new arbitrary parameters Ug,U;,Vy,V;, W and U,,U,,U,,Vo,V;,V,,W,

respectively. In addition, for the general quadratic homogeneous equation (18) with more number of
unknowns, the general parametric solutions could be obtained by the same approaches used above for
guadratic equations (20) — (23), i.e. by solving their corresponding systems of linear equations (defined on
the basis of axiom (17)). Moreover, using the isomorphic transformations (18-3) and the above general
parametric solutions obtained for quadratic equations (20) — (23),... (via solving their corresponding
systems of linear equations (26), (28), (29), (30),...), the general parametric solutions of quadratic
equations of the regular type (18-2) (in various number of unknown) are also obtained straightforwardly.
All the parametric solutions that are obtained by this new systematic matrix approach for the
homogeneous quadratic equations and also higher degree homogeneous equations of the type

F (X, X,, X5y, X ) =0 (defined in the axiom (17)), are fully compatible with the solutions and

conclusions that have been obtained previously for various homogeneous equations by different and
miscellaneous methods and approaches [6, 7, 8]. In Sec. 3, we’ve used the uniquely specified systems of
homogeneous linear equations (and also their general parametric solutions) corresponding to the
homogeneous quadratic equations — where, in particular, it has been assumed basically that the
components of the relativistic energy-momentum vector (as one of the most basic physical quantities) in
the Lorentz invariant energy-momentum (homogeneous) quadratic relation, can only take the rational
values.
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3. A Unique Mathematical Derivation of the Laws Governing the Fundamental
Forces of Nature: Based on a New Algebraic-Axiomatic (Matrix) Approach

In this Section, , as a new mathematical approach to origin of the laws of nature, using the new basic
algebraic axiomatic (matrix) formalism (presented in Sec.2), “it is shown that certain mathematical
forms of fundamental laws of nature, including laws governing the fundamental forces of nature
(represented by a set of two definite classes of general covariant massive field equations, with new
matrix formalisms), are derived uniquely from only a very few axioms”; where in agreement with the
rational Lorentz group, it is also basically assumed that the components of relativistic energy-
momentum can only take rational values. Concerning the basic assumption of rationality of
relativistic energy-momentum, it is necessary to note that the rational Lorentz symmetry group is not
only dense in the general form of Lorentz group, but also is compatible with the necessary conditions
required basically for the formalism of a consistent relativistic quantum theory [77]. In essence, the
main scheme of this new mathematical axiomatic approach to fundamental laws of nature is as
follows. First in Sec. 3-1-1, based on the assumption of rationality of D-momentum, by linearization
(along with a parameterization procedure) of the Lorentz invariant energy-momentum quadratic
relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix
formalisms compatible with certain Clifford, and symmetric algebras) is derived. Then in Sec. 3-4,
by first quantization (followed by a basic procedure of minimal coupling to space-time geometry) of
these determined systems of linear equations, a set of two classes of general covariant massive
(tensor) field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras)
is derived uniquely as well. Each class of the derived general covariant field equations also includes a
definite form of torsion field appeared as generator of the corresponding field’ invariant mass. In
addition, in Sections 3-4 — 3-5, it is shown that the (1+3)-dimensional cases of two classes of derived
field equations represent a new general covariant massive formalism of bispinor fields of spin-2, and
spin-1 particles, respectively. In fact, these uniquely determined bispinor fields represent a unique set
of new generalized massive forms of the laws governing the fundamental forces of nature, including
the Einstein (gravitational), Maxwell (electromagnetic) and Yang-Mills (nuclear) field equations.
Moreover, it is also shown that the (1+2)-dimensional cases of two classes of these field equations
represent (asymptotically) a new general covariant massive formalism of bispinor fields of spin-3/2
and spin-1/2 particles, respectively, corresponding to the Dirac and Rarita—Schwinger equations.

As a particular consequence, in Sec. 3-4-2, it is shown that a certain massive formalism of general
relativity — with a definite form of torsion field appeared originally as the generator of gravitational
field’s invariant mass — is obtained only by first quantization (followed by a basic procedure of
minimal coupling to space-time geometry) of a certain set of special relativistic algebraic matrix
equations. In Sec. 3-4-4, it has been also proved that Lagrangian densities specified for the originally
derived new massive forms of the Maxwell, Yang-Mills and Dirac field equations, are also gauge
invariant, where the invariant mass of each field is generated solely by the corresponding torsion
field. In addition, in Sec. 3-4-5, in agreement with recent astronomical data, a particular new form of
massive boson is identified (corresponding to U(1l) gauge group) with invariant mass:
m, = 4.90571x10°°kg, generated by a coupled torsion field of the background space-time geometry.

Moreover, in Sec. 3-5-2, based on the definite mathematical formalism of this axiomatic approach,
along with the C, P and T symmetries (represented basically by the corresponding quantum
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operators) of the fundamentally derived field equations, it has been concluded that the universe could
be realized solely with the (1+2) and (1+3)-dimensional space-times (where this conclusion, in
particular, is based on the time-reversal symmetry). In Sections 3-5-3 and 3-5-4, it is proved that
'‘CPT" is the only (unique) combination of C, P, and T symmetries that could be defined as a
symmetry for interacting fields. In addition, in Sec. 3-5-4, on the basis of these discrete symmetries
of derived field equations, it has been also shown that only left-handed particle fields (along with
their complementary right-handed fields) could be coupled to the corresponding (any) source
currents. Furthermore, in Sec. 3-6, it has been shown that metric of the background space-time is
diagonalized for the uniquely derived fermion field equations (defined and expressed solely in (1+2)-
dimensional space-time), where this property generates a certain set of additional symmetries
corresponding uniquely to the SU(2).®U(2)r symmetry group for spin-1/2 fermion fields
(representing “1+3” generations of four fermions, including a group of eight leptons and a group of
eight quarks), and also the SU(2), ®U(2)r and SU(3) gauge symmetry groups for spin-1 boson fields
coupled to the spin-1/2 fermionic source currents. Hence, along with the known elementary particles,
eight new elementary particles, including: four new charge-less right-handed spin-1/2 fermions (two
leptons and two quarks, represented by “z. , z, and z, , z4”), a spin-3/2 fermion, and also three new

spin-1 massive bosons (represented by "W*,W,Z ", where in particular, the new boson Z is

complementary right-handed particle of ordinary Z boson), are predicted uniquely by this new
mathematical axiomatic approach.

Furthermore, as a particular result, in Sec. 3-4-2, based on the definite and unique formulation of the
derived Maxwell’s equations (and also determined Yang-Mills equations, represented uniquely with
two specific forms of gauge symmetries, in 3-6-3-2), it is also concluded generally that magnetic
monopoles could not exist in nature.

3-1. As noted in Sec. 1-1, the main results obtained in this article are based on the following three
basic assumptions (as postulates):

(1)- “A new definite axiomatic generalization of the axiom of “no zero divisors” of integral
domains (including the integr ring Z) is assumed (represented by formula (17), in Sec. 2-1);”

This basic assumption (as a postulate) is a new mathematical concept. In Sec. 2-1, based on this
new axiom, a general algebraic axiomatic (matrix) approach (in the form of a basic linearization-
parameterization theory) to homogeneous equations of degree r > 2 (over the integer domain,
extendable to field of rational numbers), has been formulated. A summary of the main results
obtained from this axiomatic approach have been presented in Sec. 1-1. As particular outcome of this
new mathematical axiomatic formalism (based on the axiomatic relations (17) and (17-1), including
their basic algebraic properties presented in detail, in Sections 2-1 — 2-4), in Sec. 3-4, it is shown that
using, a unique set of general covariant massive (tensor) field equations (with new matrix formalism
compatible with Clifford, and Weyl algebras), corresponding to the fundamental field equations of
physics, are derived — where, in agreement with the rational Lorentz symmetry group, it has been
basically assumed that the components of relativistic energy-momentum can only take the rational
values. In Sections 3-2 — 3-6, we present in detail the main applications of this basic algebraic
assumption (along with the following basic assumptions (2) and (3)) in fundamental physics.
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(2)- “In agreement with the rational Lorentz symmetry group, we assume basically that the
components of relativistic energy-momentum (D-momentum) can only take the rational values;”

Concerning this assumption, it is necessary to note that the rational Lorentz symmetry group is
not only dense in the general form of Lorentz group, but also is compatible with the necessary
conditions required basically for the formalism of a consistent relativistic quantum theory [77].
Moreover, this assumption is clearly also compatible with any quantum circumstance in which the
energy-momentum of a relativistic particle is transferred as integer multiples of the quantum of

action “h” (Planck constant).

Before defining the next basic assumption, it should be noted that from the basic assumptions (1) and
(2), it follows directly that the Lorentz invariant energy-momentum quadratic relation (represented by
formula (52), in Sec. 3-1-1) is a particular form of homogeneous quadratic equation (18-2). Hence, using
the set of systems of linear equations that have been determined uniquely as equivalent algebraic
representations of the corresponding set of quadratic homogeneous equations (given by equation (18-2) in
various number of unknown variables, respectively), a unique set of the Lorentz invariant systems of
homogeneous linear equations (with matrix formalisms compatible with certain Clifford, and
symmetric algebras) are also determined, representing equivalent algebraic forms of the energy-
momentum quadratic relation in various space-time dimensions, respectively. Subsequently, we’ve shown
that by first quantization (followed by a basic procedure of minimal coupling to space-time
geometry) of these determined systems of linear equations, a unique set of two definite classes of
general covariant massive (tensor) field equations (with matrix formalisms compatible with certain
Clifford, and Weyl algebras) is also derived, corresponding to various space-time dimensions,
respectively. In addition, it is also shown that this derived set of two classes of general covariant field
equations represent new tensor massive (matrix) formalism of the fundamental field equations of physics,
corresponding to fundamental laws of nature (including the laws governing the fundamental forces of
nature). Following these essential results, in addition to the basic assumptions (1) and (2), it would be
also basically assumed that:

(3)- “We assume that the mathematical formalism of the fundamental laws of nature, are
defined solely by the axiomatic matrix constitution formulated uniquely on the basis of
postulates (1) and (2)”.

In addition to this basic assumption, in Sec. 3-5, the C, P and T symmetries of uniquely derived

general covariant field equations (that are equations (71) and (72), in Sec. 3-4), are also represented
basically by their corresponding quantum matrix operators.

3-1-1. Based on the basic assumption (2), i.e., the assumption of rationality of the relativistic energy-
momentum, the following Lorentz invariant quadratic relations (expressed in terms of the components of
D-momentums p,, , pll of a relativistic massive particle (given in two reference frames), and also

components of quantity pff =myk . » where Mo is the invariant mass of particle and k , I8 its covariant
velocity in the stationary reference frame):

9“"p,p, =9 p,p, (51)
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9“'p,p, =9 PP (52)
= guv (moky)(mokv) = (Eloo(moko)2 = (mOC)Z.

would be particular cases of homogeneous quadratic equation (18-2) in Sec. 2-2, and hence, they would
be necessarily subject to the process of linearization (along with a parameterization procedure), using the
systematic axiomatic approach presented Sections 2, 2-2 and 2-4 (formulated based on the basic
assumption (1)).

The Lorentz invariant relations (51) and (52) (as the norm of the relativistic energy-momentum) have
been defined in the D-dimensional space-time, where My is the invariant mass of the particle, p, and p;

are its relativistic energy-momentums (i.e. D-momentums) given respectively in two reference frames, k u

is a time-like covariant vector given by: k, = (k;.0,....0) = (c/\/W,O,...,O), “C” is the speed of light, and
the components of metric have the constant values. As noted in Sec. 1-2, in this article, the sign
conventions (2) (including the metric signature (+ ——...—)) and geometric units would be used (where in
particular “C = 1”). However, for the clarity, in some of relativistic formulas (such as the relativistic
matrix relations), the speed of light “C” is indicated formally.

As a crucial issue here, it should be noted that in the invariant quadratic relations (51) and (52), the
components of metric which have the constant values (as assumed), necessarily, have been written by
their general representations g“" (and not by the Minkowski metric »“", and so on). This follows from

the fact that by axiomatic approach of linearization-parameterization (presented in Sections 2-1 — 2-4) of
guadratic relations (51) and (52) (as particular forms of homogeneous quadratic equation (18-2) which
could be expressed equivalently by quadratic equations of the types (18) via the linear transformations
(18-3)), their corresponding algebraic equivalent systems of linear equations could be determined
uniquely. In fact, based on the formulations of systems of linear equations obtained uniquely for the
guadratic equations (18) in Sections 2-2 — 2-4, it is concluded directly that the algebraic equivalent
systems of linear equations corresponding to the relations (51) and (52), are determined uniquely if and
only if these quadratic relations be expressed in terms of the components g*"represented by their general
forms (and not in terms of any special presentation of the metric’s components, such as the Minkowski
metric, and so on). However, after the derivation of corresponding systems of linear equations
(representing uniquely the equivalent algebraic matrix forms of the quadratic relations (51) and (52) in
various space-time dimensions), the Minkowski metric could be used in these equations (and the
subsequent relativistic equations and relations as well).

Hence, using the systems of linear equations (24), (26), (28), (29), (30),..., obtained uniquely on the basis
of the axiom (17) by linearization (along with a parameterization procedure) of the homogeneous
quadratic equations (19) — (23),... (which could be transformed directly to the general quadratic equation
(18-2), by the isomorphic linear transformations (18-3)), and also using the parametric relations (43-2),
(44-3), (48) and (52) (expressed in terms of the arbitrary parameters u, and v, ), as the result of

linearization (along with a parameterization procedure) of the invariant quadratic relations (51) and (52),
the following systems of linear equations are also derived uniquely corresponding to various space-time
dimensions, respectively:
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- For (1+0)-dimensional case of the invariant relation (51), we obtain:

[9% (p, + p;)][s]1=0 (53)
where v = 0 and parameter s is arbitrary;
- For (1+1)-dimensional space-time we have:
[g::(pv wp) - pop }{(Uovl —“1"0)‘”} 0 (54)
g (pv+pv) _(pO_pO) S
where v=0,1and U,,U;, Vy,V,, W, S are arbitrary parameters;
- For (1+2)-dimensional space-time we have:
gov(pv+p‘£) 0 _gzv(pv‘*‘p\'/) pl_pl' (uovl_ulvo)w
0 g”(p,+p)) -9 (P +P) —(P=P)) | UVo —UpV )W | _ 5y
_(pz - p;) _(pl - p:[) _(po - p(,)) 0 (U1V2 _U2V1)W
9" (p,+p)) —9%(p, +P;) 0 =(Py — Po) s
where v =0,1,2 and Uy, U;,U,, V,,V;,V,, W, S are arbitrary parameters;
- For (1+3)-dimensional space-time we obtain:
e, 0 0 0 0 -e e f [(uv,-uvy)w]
0 & 0 0 & 0 —e f, | (upv, —uv)w
0 0 g 0 -e, ¢ 0 fo |l (Ugvy — Uy )W
0 0 0 e -f, -f, —f 0 0
0 1 2 3 — 0 (56)
0 f, -f, —¢ —-f, O 0 0 | (uv, —u,vy)w
-f, O ff - 0 -1, O 0 | (uv;—uyv)w
f, -f 0 -¢ O 0 —f, 0 | (uyv,—uv,)w
R e, €, 0 0 —f S |

where v=0,1,2,3and W, Uy, U,,U,,U,,V,,V,,V,,V;,S are arbitrary parameters, and we also having:

€ = gov(pv + pl’/): fo

€ = 93V(pv +p,) f

_(po_ pé)o’
€ = glv(pv + p;)' fl = _(pl - p]'_)l
e,=9”(p, +p.) f,=-(p,—p)),

=—(ps = P3) 5

(56-1)

- For (1+4)-dimensional case, the system of linear equations corresponding to the invariant quadratic

relation (51) is specified as follows:
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wherev=0,1,2,3,4, U,y,U;,U,,Us,U,,V,,V;,V,,V5,V,,W,S are arbitrary parameters, and we have:
&=9"(p, +p)) fo=po—Ps,
e=0"(p,+p) fi=p-p,
&=9"(p, +p,), f,=p,—p, (57-1)
& =9"(p, +p) fi=p;—ps,
&, =9"(p,+p) fu=p,—p;;
The systems of linear equations that are obtained for (1+5) and higher dimensional cases of the invariant

guadratic relation (51), have also the formulations similar to the obtained systems of linear equations

(53) — (57), and would be expressed by the matrix product of a 2" x2" square matrix and a 2" x1 column
matrix in (1+ N)-dimensional space-time. For (1+5)-dimensional case of the invariant relation (51), the
column matrix of the corresponding system of linear equations (expressed by the matrix product of a

32x32 square matrix and a 32x1 column matrix) is given by (where uyuj,u,,u,,U,,Us,

Vy,V;,V,,V3,V,, Ve, W, S are arbitrary parameters):
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e, 0 0 0o 0 0 0 0 0 0 -e 0 -e -6 f [(@Uv-uv)w]
0 ¢ O o 0 0 0 © 0 e 0 e 0 -—e —f |y, —uVv,)w
o 0 ¢ O O O O O 0 -e O e, e 0 fy |l (uv;—uv,)w
o 0 O e O O O O ¢ 0 O -f, f, -f, 0 0
o 0 O O ¢ O O O O -e -e -¢ O 0 0 —f, | (uyv,—u,v,)w
o 0 0 O 0 e O O e 0 f f, 0 0 f O 0
o o0 o0 o O O e O e -f 0 f 0 -f, 0 O 0
o o o o o o 0 e ¢ f, -f, 0 f 0 0 O 0
o o o f o f f f -f 0O O O O O 0O O 0
o o -f, 0 -f, 0 -¢ ¢ 0 -f, 0 O O O 0 0 [(uv,—uyvy)w
o f, 0 0 -f, ¢ 0 -e O 0 -f, 0 0 0 0 0 | (uv, —u,v,)w
-f, 0 0 O -f e € 0 O o 0 -f, O 0 0 0 | (uv,-u,v,)w
o f, f, -¢ 0 O O e O 0 0 o -f, O 0 0 | (U, —uyv,)w
-f, 0 f e O 0 -¢ 0 O 0 0 0 o -f, O 0 | (uvy—uyv)w
-f, -f, 0 -¢ 0 e O O O 0 0 0 0 0 —-f, 0 | (uv,-uv)w
' ¢ -¢ ¢ 0 - 0 O O O O O O O O 0 -—fy S

(57)



_(uovl _ulvo)W_ 0

(UgV, —u,v )W 0
(UgVs —Ugvo)W 0

0] (ugv, —u,v)w
(UoVv, —u,ve)W 0

0] (Usvg —ugvy)w

o

(U5V2 - u2V5)W
S :[S':|, s’ . S"— (U1V5_u5V1)W
S (UgVs —UugVvy)W (0]

(U4V3 - U3V4)W
(U2V4 - U4V2)W
(U4V1 - U1V4)W
(U2V3 - U3V2)W
(U3V1 - u1V3)W
(u1V2 - u2V1)W

s (57-2)

o

O 00000 Oo

In a similar manner, using the axiomatic approach presented in Sec. 2, the systems of linear equations
corresponding to the energy-momentum invariant relation (52) in various space-time dimensions are
obtained uniquely as follows, respectively (note that by using the geometric units, we would take ¢ =1):

- For (1+0)-dimensional space-time we obtain:

ovpy 400 MGC -0 (58)
[g P, —d \/W}[S]

where v = 0 and parameter s is arbitrary;

- For (1+1)-dimensional space-time we have:

m,c
9”p, —9”° (=) p
/g 00 1 |:(l,|0V:L — Ulvo)W:| _0 (59)
v 10, MyC m,C S
g p +4g (F) —(po"'(F))

where v =0,1and Ugy,U,, Vy,V,, W, S are arbitrary parameters;

- For (1+2) dimensions we have (where v = 0,1,2 and Uy, U, U,, Vy,V;,V,,W, S are arbitrary parameters):

, m,C y m,c
9% p, —9" (=) 0 -9%p, +0% (=) P,
Vg Vg )
0 o 00, MpC —a¥p +qg¥ m,C _ (UoVy — U Vo)W
g pv g ( goo ) g pv g (\/W) p2 (UZVO _ UOVZ )W _ 0 (60)
m,C —
-p, -p, = (P + (1) 0 (U ~ U)W
g N S
m,C , m,C m,C
g”pv+gl°(ﬁ) -9%p, - 0% (=) 0 = (P + ()
i 9 9 '
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- For (1+3)-dimensional space-time we obtain:

0

e3
—e,
—f,
—f,

—-e, e,
0 -—e
e 0

—-f, —f,
0 0

-f, O
0o —f,
0 0

—h
iy

—  —h
w N

o O O o

f

0

i (uovl - ulvo)W

(UOV2 - uzvo)W
(UgV3 —UgVo)W
0
(U3V2 - U2V3)W
(U1V3 - u3V1)W
(uzvl - U1V2)W
S

(61)

where v=0,1,2,3 and U,,U,;,U,,Us,V,,V,,V,,V,,W, S are arbitrary parameters, and we also having:

& =9 p, —9°(Mc/y/a%), fo =Py +(mec/\/a™),
e, =g"p, - 9°(mc/\/g%), f,=p,
e, =9%p, —9°°(m,c/g%). f,=p,.
e, =9"p, - 9°(mec/\g™), fy=p;;

(61-1)

- For (1+4)-dimensional space-time, the system of linear equations corresponding to the invariant

quadratic relation (52) is derived as follows:

e, 0 0
0 ¢ O
0 0 g
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
0 0 O
o 0 -f,
o f, O
-f, 0 0
o f, f
-f, 0 f]
-f, -f, 0
e -6 &

o O o

O 0o o™ 0o o o ot

o o o off oo o o
w

|
)

—

oo P P o o0 of oo o o o

@D
~

O O O O o o

O O O O O O o

—e,
e, 0
0 -e
€, 0
e, -1
e f,
f, O
0 —f,
0 O
0 O
0 0
0 0
0 0
0 0
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o

-e, 0 -—¢g
0 & 0
e, €

-f, f,

-e 0 0
-f, 0 0
f, 0 -f,
o f, 0
0 0 0
0 0 0
0 0 0
-f, 0 0
o -f, O
0 0 -f,
0 0 0
0 0

—h
N

—h
S

| o
O O O O O O O O™ O ., © @ o
w =N

|
o _,.
o

—h
o

—h
fiy

w

o .

O O O O O O o o o o

1 (Uovl — U,V )W_

(Uzvo _uovz)W
(U0V3 _U3V0)W
0
(U4V0 _U0V4)W

0
0
0
0
(U3V4 _U4V3)W
(U2V4 _U4V2)W
(U1V4 _U4V1)W
(U2V3 _U3V2)W

(AR TAL
(Ulvz - U2V1)W

(62)




where v =10,1,2,3,4 and Ugy,U,,U,,Us,U,,V,,V;,V,,V,,V,, W, S are arbitrary parameters, and we have:

e, =9%p, —9°(mye/g%),
e, =g"p, —g"°(mye/a™),
e, =9”p, -9 (me/\a™),
e;=9%p, —9%(me/g™),
e, =9"p, - 9°(me/\a™),

f, = p.
f, =P,
fy=ps,
f,=p,.

f0 =P+ (moc/m%

(62-1)

The systems of linear equations that are obtained for (1+5) and higher dimensional cases of the energy-
momentum quadratic relation (52), have also the formulations similar to the obtained systems of linear

equations (58) — (62), and would be expressed by the matrix product of a 2" x2" square matrix and a

2" x1 column matrix in (1+N)-dimensional space-time. For the (1+5)-dimensional case of energy-
momentum relation (52), the column matrix of the corresponding system of linear equations (expressed by
the matrix product of a 32x32 square matrix and a 32x1 column matrix, similar to (57-2)) is given by:

|:S':|
S=|_,| S
S

(Uovl —UuVy )W_

(uovz - uzvo)W
(UOV3 - U3VO)W
0
(ro4 - u4Vo)W
0

o O

(uovs - U5V0)W

O OO OO0 O0o0O0o

S":

0

o

0
A\
0
(Ugvs —Ugvy)W
(u5v2 - U2V5)W
(U1V5 - U5V1)W

(Usv,

0]
(U4V3 - U3V4)W
(u2V4 - U4V2)W

(U4V1 - L'|1V4)W

(Uyvs —uzv,)wW

(U3V1 - U1V3)W

(U1V2 - U2V1)W
S

where ug,u,,U,,U;,U,,Us, Vo, V;,V,, Vs, V,, Ve, W, S are arbitrary parameters.

(62-2)

3-2. From the derived systems of linear equations (54) — (57) corresponding to the (1+1) — (1+4)-
dimensional cases of the invariant relation (51), and also using the general parametric solutions (43) —
(51) (obtained for systems of linear equations (26) — (30)), the rational Lorentz transformations (which are
completely dense in the standard group of Lorentz transformations [77], as noted in Sec. 3-1) are derived

for momentums p,, and p;,. For instance, assuming the Minkowski metric, from the system of linear

equations (55), a parametric form of rational Lorentz transformations for three-momentums p,, and p;,

in (1+2)dimensional space-time, is derived as follows:
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1+zb+20+22  2z,+7,2,) —2(z, —2,2,) ]

1-22-20+25 1-70 -2t +22 1-70-127+22

Po Po
2 2 2
2(20 — 7 Zz) 1+ Zy—1; — 1, 2(22 B Zozl) _ ' 63
2 2 2 2 2 2 2 2 2 pl - pl ( )
1-z5-z; +z, 1-z5-27+z2;, 1-zi-7/+1, )
P, P2

-2(z, +2,2,)  2z,+2,2,) 1-2i+127-12
1-z5-20+2z; 1l-z5-z/+2; 1-25-17}+1; |

where the parameters s, in (63) are given by the formulas: z, = (UoV, —UVp)W, Z, = (U,V, —UgV, )W,
z, =(u,v, —Uu,V,)w, that are expressed in terms of the arbitrary parameters u,,u,,u,,V,,V,,V,,W. These

parameters would be also determined and expressed in terms of the initially given physical variables
(such as the relative velocity between the reference frames). However, as it has been also noted in Sec. 2-
4 concerning a particular common algebraic property of parametric relations (43-2) and (44-3) which are
equivalent to the above expressions, by choosing appropriate integer values for parameters

U,,u,,u,,vy,V,,V,, W, the parameters z,,z,,z, could take any given integer values. Thus, we may
directly determine the relevant expressions for parameters S, in terms of the initially given physical

values and variables. Hence, as a particular case, from the isomorphic transformations (63), in addition to
these determined expressions for the parameters s, (in terms of the relative velocity between the

reference frames in x-direction and the speed of light): z, =- g/(l+y), z,=2,=0, » =]/,/1—ﬂ2 , B=V/c,
we obtain the equivalent form of Lorentz transformations in the standard configuration [59]:

1+22 2z,

1-22 1-77 {PO}Z{V —ﬁq{po}:[pé} (63-1)
22, 1+z | ;] =By v ;] LR

1-22 1-2¢

Similar to the derived transformations (63-1), the Lorentz transformations (in standard configuration) are
derived by the same approach for higher-dimensional space-times.

3-3. The Lorentz invariant systems of linear equations (59) — (62),..., (obtained on the basis of the
axiom (17) and relevant general results obtained in Sections 2-2 and 2-4 for homogeneous quadratic
equations) as equivalent forms of the Lorentz invariant energy-momentum quadratic relation (52), could
be expressed generally by the following matrix formulation in (1+N)-dimensional space-time:

(a"p, —mya’k,)S =0, (64)
where a' =p*+p", at=p"-p*, (65)

M, is the invariant mass of a relativistic particle and k, :(C/ /goo 0,...,0) s its covariant velocity

(that is a time-like covariant vector) in the stationary reference frame, «*and «* are two contravariant

2" x2" square matrices (corresponding to the matrix representations of Clifford algebras Cly2, Cly3,
Cl14,..., Clyn (for N > 2) and their generalizations[1, 40, 46], see also Appendix A) that by the
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isomorphic linear relations (65) are expressed in terms of two corresponding contravariant 2" x 2"
matrices * and #'“, and S isa 2" x1 parametric column matrix. These matrices in (1+1), (1+2), (1+3),

(1+4) and (1+5) space-time dimensions are given uniquely as follows, respectively:

- For (1+1)-dimensional case we get:

, |0 0 10 , (01 , 100 | UV —uvp)w |
p {o }ﬂ‘) {o o}’ﬁ{o o} ﬂl_[l o}s{ s } (66)

where Uy, U, Vy,V;, W, S are arbitrary parameters.

- For (1+2)-dimensional case we obtain where U,,U,,U,, V,,V,,V,,W, S are arbitrary parameters):

0 0 oc’+o" 0 0 o° 0 o°
0 _ r_ 1_ e
p= {O —(c® +Gl):|, Py { 0 0} d {— o> 0 } A {— o> 0 }
, | 0 —ot , | 0 -o°
ﬁ - |:_ O'O O :|’ ﬂZ - |:_ 01 O 4
(UoV, —uvp)w o 1 0 n 00 2 0 1 3 0 O
(UzVe —UgV, )W o = O = ) = (67)
S = WY, —uv)w | 00 01 0 0f -1 0

S
- For (1+3)-dimensional case we obtain:

o_|0 0 S CAE S N U B A U U S
ﬂ{o - +71)}ﬁ { 0}[{ [—73 0} g {—72 0}

AT RS A LR

'B 1.5 ,,6' 7 v P3 = 6 )

y 0 -7 0 -y 0

[ (U, —uyvy)w] 1000 0 0 0 O 0 00 1 0 0
UV, —UV)w| , |01 0 0 0000 , |0 000 , |00 -1
(u0v3u3v0)wy0000]'7/ 0010’7oooo]’y01

s 0 0 000 0 0 01 -1 00 0 0 0
| (v, —uv)w | [0 0 00 00 -10 00 0 O 0 -1 0
(Uv,-uv)w| . |0 0 0 1| ., |0 0O O O , |00 O Of , |1 0 O
(U,V, — UV, )W 70000'7[1000'70001’7000
| s | 0 -1 0 0 00 0 0 00 -10 0 0 O

where U,,U;,U,,Us,V,,V,,V,,V;,W, S are arbitrary parameters. Moreover, the 4x4 matrices yi

the Lorentz Lie algebra in (1+3) dimensions.

- For (1+4)-dimensional case we have:

o_|0 0 @) O [0 p*] o |0 7’| |0 7
ﬂ{o —(770“71)} g { 0 O}ﬂ{nz 0} 1 Lf’ O}ﬁ [775 0}
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For (1+5)-dimensional case the size of matrices g+ and g’“is 32x32. S isalso a 32x1 column matrix
given by:

_(uovl _U1V0)W_ i 0
(uovz - uzvo)W 0
(UgVs — UgVp )W 0

0] (ugv, —u,vy)w
(u0V4 - u4V0)W 0

0 (ugvy —ugvy)w

0] (ugv, —u,vy)w

s Z[S'} s 0 g (U,Vg —UugV, )W .

S” (UgVs —ugvy)w 0

0 (u,v, —uLv,)w

0 (u2V4 - U4V2)W

0 (u4V1 - U1V4)W

0 (u,vy, —uLv,)wW

0 (ugv, —u,vy)w

0] (uv, —u,v,)w

i 0 | i s | (70)

where u,,u,,U,,U,,U,,Us, Vy,V,;,V,, V5, V,, Ve, W, S are arbitrary parameters.

Similar to the formulations (66) — (70), for the higher dimensional cases of invariant quadratic relation
(52), the column matrix S and square matrices S* and 8'* (defining the square matrices «*and c"*

that correspond to the matrix representations of Clifford algebras and their generalization, see Sec. 3-3 and
also Appendix A) are obtained with similar algebraic structures, where in (1+N) space-time dimensions the

size of square matrices B* and B'* is 2" x2" and the size of column matrix S is 2" x1.

3-3-1. General algebraic formulation of the column matrix S given in the matrix equation (64)

As noted in Sec. 3-3, the matrix equation (64) represents uniquely the equivalent form of the Lorentz
invariant energy-momentum quadratic relation (52) (as the norm of the D-momentum), based on the
axiomatic relations (17) and (17-1) and relevant general results obtained in Sections 2-2 and 2-4 for

homogeneous quadratic equations over the integral domain over Z. Hence (as it has been also mentioned
in Sec. 3-3), the general algebraic formulation of the entries of column matrices S obtaining in
subsequent higher space-time dimensions, are similar to formulations of the obtained matrices S (66) —
(70) corresponding, respectively, to the (1+0), (1+1), (1+2), (1+3), (1+4) and (1+5)-dimensional cases of
Lorentz invariant matrix equation (64). Hence, the algebraic formulation of column matrix S in (1+N)
space-time dimensions would be generally defined as follows: the last entry of S is represented solely by
the arbitrary parameter S, 2N entries are definitely zero (see Sec. 3-3-2 for detail) and all the other
2"71 1 entries of S could be represented uniformly by the following unique algebraic formulation
(expressing in terms of the arbitrary parameters: ug,u,,u,,U,,...,Uy , Vg, V;,V,, V...,V , W) given on the basis
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of a one-to-one correspondence between these (non-zero) entries of matrix S and the entries h ., (for u>

v) of a 2" x 2" square matrix H[h, ] defined in (1+N) dimensions, by:
h,, =@V, —u,y,)w (70-1)
where x,v=0,1,2,...,N, and hw =0 for u=v.

Note that the algebraic form (70-1) is equivalent to form (45-2) which, as it has been noted in Sec. 2-4,
generates a symmetric algebra Sym(V) on the vector space V , where (U ﬂ,vv) eV ”[11].

Hence, as a basic algebraic property of the form (70-1), a natural unique isomorphism is defined between
the underlying vector space V of the symmetric algebra Sym(V) (which is generated by algebraic form (70-
1)) and the Weyl algebra W(V). Moreover, based on this isomorphism, the Weyl algebra W(V) could be
defined as a (first) quantization of the symmetric algebra Sym(V), where the generators of the Weyl

algebra W(V) would be represented by the corresponding (covariant) differential operators (such as iV u

as per guantum mechanics usage).

In Sec. 3-4, we use these general and basic algebraic properties of the column matrix S , in particular, in
the procedure of quantization of the algebraic matrix equation (64).

3-3-2. In addition to the above algebraic properties of the parametric entries of column matrix S , that are
represented uniformly by the algebraic formula (70-1), in terms of the arbitrary parameters:
Ug, Uy, Uy, Ug e, Uy Vg, Vs Vs, Vg, Vg, W, the following basic properties hold as well:

Displaying the column matrix S by two half-sized 2" x1column matrices S’ and S” (containing

respectively the upper and lower entries of S, similar to the formulas (57-2) and (62-2) representing the

!

"

(1+5)-dimensional case of matrix S ) such that: S =[ } , then we have:

(1). The number of entries of the column matrix S’ that are zero, is exactly: (2" —N), and the other
N entries are represented solely either by the formulation:h, , =(uyv, —u,Vv, )W, or by its negative

form, ie. —h,=hy, =(u,v,—uUev, )w , where x=12,...,N, and h, denote the N entries (except
the first entry hy, that is zero) of the first column of square matrix H[h,,] (defined by the formula (70-1));

N(N —1)

(2). The number of entries of the column matrix S” that are zero, is exactly: (2" — -1), and

except the last entry (represented by arbitrary parameter S), all the other (M) entries are

represented solely either by the formulation: hﬂv :(uvv# —-u,v, )w, or by its negative form, i.e.:
-h,,=h,, =(uyv, —uyv, )w, where u>v, u, v= 1”,2,..., N, and h,, denote the components of square
matrix H[h, ], and the last entry of column matrix S" is also represented by the arbitrary parameter S .
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(3). If we exchange S"and S” in the column matrix S = S } , that could be shown by,

4

s(Ch):O IS=O IS :S (70-2)
I 0 I 0]S” S’
then based on the general formulation of matrix S (defined uniquely by formulas (66) — (70) for various
space-time dimensions) and its algebraic properties (1) and (2) (mentioned above), it is concluded directly

that the matrix equation (64) given with the new column matrix S (70-2), i.e. equation:
(a"p, —meak,)S™ =0, is which could be defined solely in (1+2) space-time dimensions for

s=0, u, =0, v, =0, in (1+3) space-time dimensions for s=0, and in (1+4) space-time dimensions for
s=0, u, =0, v, =0 (which is reduced and be equivalent to the (1+3)-dimensional case of matrix
equation (64)). In (1+1) and (1+5) and higher space-time dimensions, the matrix equation
(a"p, —meak,)S™ =0 would be which are defined if and only if all the entries of column matrix
S are zero. This means that the matrix equation (64): (a*p, —mya“k,)S =0, is symmetric in the

"

exchange of S’and S”(in the column matrixsz{S }), solely in (1+2)-dimensional space-time for

s=0,u;, =0,v, =0, and in (1+3)-dimensional space-time for s =0. In Sec. 3-5-2, this particular algebraic

property of the column matrix S would be used for concluding a new crucial and essential issue in
fundamental physics.

In the following Section, the natural isomorphism between the symmetric algebra Sym(V) (generated
uniquely by the algebraic form (70-1)) and the Weyl algebra W(V) mentioned in Sec. 3-3-1, in addition to

the general algebraic properties of column matrix S presented in Sec. 3-3-2, would be used and applied
directly in the procedure of first quantization of the Lorentz invariant system of linear equations (64).

3-4. A new unique mathematical derivation of the fundamental (massive) field
equations of physics (representing the laws governing the fundamental forces of nature):

By first quantization (followed by a basic procedure of minimal coupling to space-time geometry) of
the Lorentz invariant system of linear equation (64) (representing uniquely the equivalent form of
energy-momentum quadratic relation (52), see Sec. 3-3) expressed in terms of the Clifford algebraic
matrices (65) — (70),... , two classes of general covariant field equations are derived uniquely as
follows (given in (1+N) space-time dimensions):

(ina*v , —mPa*k,)¥; =0, (71)
(ina“D, —m{Pa*k,,)¥, =0 (72)
where i7V , and 7D, are the general relativistic forms of energy-momentum quantum operator

(where V , is the general covariant derivative, and D, is gauge covariant derivative, for detail see the
ordinary tensor formalisms of these equations, representing by formulas (78-1) — (79-3), in Sec. 3-4-1),
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m{® and m{™ are the fields’ invariant masses, K, =(C/ J9%.,0,...,0) is the general covariant

velocity in stationary reference frame (that is a time-like covariant vector), a“and «* are two
contravariant 2" x2" square matrices (compatible with the matrix representations of certain Clifford
algebras, see Sec. 3-3 and also Appendix A) defined by formulas (65) — (70) in Sec 3-3. In the field
equation (72), Wy is a column matrix as a (first) quantized form of the algebraic column matrix S
(defined by relations (64) — (70-1) in Sections 3-3, 3-3-1 and 3-3-2), determined and represented uniquely
by formulas (73) — (77),..., in various space-time dimensions. The column matrix Wy contains the

components of field strength tensor R, (equivalent to the Riemann curvature tensor), and also the

components of covariant quantity go/(f,’ that defines the corresponding source current tensor by relation:
i (R)
J;R) =—(V + Mo )(pf)R) (which appears in the course of the derivation of field equation (71), see Sec.
oV 14 h v log

3-4-2 for details). In a similar manner, in the tensor field equation (72), ‘P is also a column matrix as a
(first) quantized form of the algebraic column matrix S (defined by relations (64) — (70-1) in Sections 3-3,
3-3-1 and 3-3-2), determined and represented uniquely by formulas (73) — (77),..., in to various space-time
dimensions. The column matrix ‘P contains both the components of tensor field F,, (defined as the

gauge field strength tensor), and also the components of covariant quantity @™ that defines the

im®
corresponding source current vector by relation: relation: 3 = (D +'m70kv)¢<F> (which appears in the

4

course of the derivation of field equation (72), see Sec. 3-4-2 for details). Moreover, the general covariance
formalism of the field equations (71) and (72), would be also shown in Sec. 3-4-1.

In addition, in Sec. 3-5, based on a basic class of discrete symmetries for the field equations (71) and (72),
along with definite mathematical axiomatic formalism of the derivation of these equations, it is shown that
these equations could be defined solely in (1+2) and (1+3) space-time dimensions. It is shown that (1+3)
dimensional cases of these equations represent uniquely a new formalism of bispinor fields of spin-2 and
spin-1 particles, respectively. It is also shown that the (1+2)-dimensional cases of these equations,
represent asymptotically new massive forms of bispinor fields of spin-3/2 and spin-1/2 particles,
respectively.

Moreover, in Sec. 3-5-2, based on the definite mathematical formalism of this axiomatic derivation
approach, the basic assumption (3) in Sec. 3-1, along with the C, P and T symmetries (represented
basically by their corresponding quantum matrix operators) of the fundamentally derived general
covariant field equations (71) and (72), it is concluded that the universe could be realized solely with the
(1+2) and (1+3)-dimensional space-times (where this conclusion, in particular, is based on the T-
symmetry). In Sections 3-5-3 and 3-5-4, it is proved that 'CPT' is the only (unique) combination of C, P,
and T symmetries that could be defined as a symmetry for interacting fields. In addition, in Sec. 3-5-4, on
the basis of these discrete symmetries of the field equations (71) and (72), it is shown that only left-
handed particle fields (along with their complementary right-handed fields) could be coupled to the
corresponding (any) source currents.

Furthermore, in Sec. 3-6, it is argued that the metric of background curved space-time is diagonalized for
the spin-1/2 fermion field equations (defined by the field equation (110) as a generalized form of (1+2)-
dimensional case of equation (72)), where this property generates a certain set of additional symmetries
corresponding uniquely to the SU(2) . ®U(2)r symmetry group for spin-1/2 fermion fields (represented by
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two main groups of “1+3” generations, corresponding respectively to two subgroups of leptons and two
subgroups of quarks), in addition to the SU(2),®U(2)r and SU(3) gauge symmetry groups for spin-1
boson fields coupled to the spin-1/2 fermionic source currents. Moreover, based on these uniquely
determined gauge symmetries, four new charge-less spin-1/2 fermions (representing by “ze , z, ; Zy , Z4”,
where two right-handed charhe-less quarks z, and zq4 emerge specifically in two subgroups with anti-

quarks such that: (§,U,5, Z,) and (E,a,f , Zg)), and also three new massive spin-1 bosons (representing

by "VV*,VV‘,Z ", where in particular Z is the complementary right-handed particle of ordinary Z

boson), are predicted by this new mathematical axiomaticapproach.

As a particular result, in Sec. 3-4-2, based on the definite and unique formulation of the derived
Maxwell‘s equations (and also Yang-Mills equations, defined by the (1+3)-dimensional case of the field
equation (72), compatible with specific gauge symmetry groups as shown in Sec. 3-6-1-2 and 3-6-3-2), it
is also concluded that magnetic monopoles could not exist in nature.

3-4-1. Axiomatic Derivation of General Covariant Massive Field Equations (71) and (72):

First it should be noted that via first quantization (followed by a basic procedure of minimal coupling to
space-time geometry) of the algebraic systems of linear equations (64) (as a matrix equation given by the
Clifford algebraic matrices (65) — (70),..., in various space-time dimensions), two categories of general
covariant field equations (with a definite matrix formalism compatible with the Clifford algebras and their
generalizations, see Sec 3-3 and also Appendix A) are derived solely, representing by the tensor equations
(71) and (72) in terms two tensor fields R _ and F, , respectively. In fact, as it has been mentioned in

Sections 3-3-1 and 3-3-2, there is a natural isomorphism between the Weyl algebra and the symmetric
algebra generated by the algebraic form (70-1) which represents the general formulation of the entries of
algebraic column matrix S in the matrix equation (64). In addition, the procedure of minimal coupling to
space-time geometry would be simply defined as a procedure which, starting from a theory in flat space-
time, substitutes all partial derivatives by corresponding covariant derivatives and the flat space-time
metric by the curved space-time (pseudo-Riemannian) metric. Moreover, as mentioned in Sec. 3-3-1, on
the basis of this natural isomorphism, the Weyl algebra could be also represented as a quantization of the
symmetric algebra generated by the algebraic form (70-1)). Hence, using this natural isomorphism, by first
guantization (followed by a basic procedure of minimal coupling to space-time geometry) of matrix
equation (64), two definite classes of general covariant massive (tensor) field equations are determined

uniquely, expressed in terms of two basic connection forms (denoting by two derivatives V  ,and D,

POoUV v

corresponding respectively to the diffeomorphism (or metric) invariance and gauge invariance), along with
their corresponding curvature forms, denoting respectively by R__  (as the gravitational field strength

tensor, equivalent to Riemann curvature tensor) and F, (as the gauge field strength tensor). This natural

isomorphism could be represented by the following mappings (corresponding to the curvature formsR__,,

and F,,, respectively):

uy, -uv we (V,V, -V V Jo, =R(u,v)o; = R (71-1)

pouv !

(uyv,-uv,)we (D,D,-DD, o — (ige)F, - (72-1)

u=v
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where R”  =( I, +T7,T" )-(@,1I", +T"T" ) F,=DA, -D,A and g., A, are respectively the
corresponding coupling constant and gauge field (that is defined generally as a Lie algebra-valued 1-form
representing by a unique vector field [58]). Based on this natural unique isomorphism represented by the
mappings (71-1) and (72-1), the column matrices Wg and g (in the expressions of field equations (71)

and (72), respectively) would be determined uniquely various dimensional space-times, represented by
formulas (73) — (77),... .

In addition, as mentioned in Sec. 3-4 in detail, the last entry of algebraic column matrix S in matrix
equation (64) (as it has been shown in the relations (64) — (70)), is represented by the arbitrary algebraic
parameter S . In the course of the derivation of field equations (71) and (72) (via the first quantization
procedure mentioned above, and the mappings (71-1) and (72-1)), the arbitrary parameter S could be

substituted solely by two covariant quantities ¢ and @7 that define the corresponding covariant

source currents (p(R’ and J; (F) (given in the field equations (71) and (72), respectively) by the conditional

: im{® |m(F)
relations: J% =—(v +-—2-k,)e'? and 3 =—(D, + —2—k,)p'".
pov v
h h
In addition, as another basic issue concerning the general covariance formulation of tensor field equations

(71) and (72), we should note that each of these equations (as a system of equations) includes also an
equation corresponding to the 2" Bianchi identity, as follows, respectively:

(R) (R) (R)
v, + Moy R (v, +'m KR o+ (V, +'m k)R

(F) (F) (F)
Mo F..,+(D, +'m K,)F,, +(D, +'m K,)F, (72-2)

pouv = O y (71'2)

poiu

(D, +

However, the tensor field R, as the Riemann curvature tensor, obeys the relation (71-2) tensor, if and

only if a torsion tensor is defined in as: T _,, = = (im{® /2n) (9..k, k ,), and subsequently the

‘rv y7
relation (71-2) be equivalent to the 2™ Bianchi identity of the Riemann tensor. Consequently, the
covariant derivative V , should be also defined with this torsion, that we may show it by ?V . Moreover, as
it has been also shown in Sec. 3-4-2, concerning the relation (72-2), we may also define a torsion field as:
Z.,,=(m{ /2n)(g,k, —9,k,), and write the relations (71-2) and (72-2) (representing the 2" Bianchi

identities) as follows:

\% Rpaﬂv +V Rpm +VVRM# _wa Rpm +TT#VR,W1 +T szpm , (71-2-a)
DAFW+DMFM+DVFM =0 (72-2-a)

where the general relativistic form of gauge derivative [V)# has been defined with torsion field Z_,, . We
use the derivatives V , and D ., 1n the ordinary tensor representations (i.e. the formulas (78-1) — (79-3))
of the field equations (71) and (72) in Sec. 3-4-2. In addition, based on the formulations of torsions T_,,

and Z_  (that have appeared naturally in the course of derivation of the field equations (71) and (72))

v

and general properties of torsion tensors (in particular, this property that a torsion tensor can always be
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treated as an independent tensor field, or equivalently, as part of the space-time geometry [72 - 74]), it
could be concluded directly that torsion field T_ generates the invariant mass of corresponding

wv
gravitational field, and torsion field Zw generates the invariant mass of corresponding gauge field,

respectively. Hence, based on our axiomatic derivation approach including the mappings (71-1) and (72-
1) (mentioned above), the (1+1), (1+2), (1+3), (1+4), (1+5),..., dimensional cases of column matrices Wr
and g in the specific expressions of general covariant massive (tensor) field equations (71) and (72), are
determined uniquely as follows, respectively; For (1+1)- dimensional space-time we have:

I® — (v, Im k (R).
w =[Rpﬂ ¥ { Fm} S T (73
R (R) | F ) | g im(F) )
oo @ JIEF) =—(D, + 0 kv)qo(F)

- For (1+2)-dimensional space-time we obtain:

R

F
pol0 10 Im(R)
R o» F,, | oo =—(V, +——2—k)p, (74)
Y, = . Y. = , .
Rooar Pl 30— (B +L"' k)™
oL o] o

- For (1+3)-dimensional space-time we have:

Rpglo FlO

RPO'20 on

R F. i (R

pc30 30 m 75
v 0 w 0 J/()R)_ (V +—0 - k)(pl()i), ( )
® I Rooaa | : Fos | 1 — (D, + im§™ K )P

Rpo‘31 F31 h

RpalZ F12

| 25 | Lo ]

- For (1+4)-dimensional space-time we get,

pol0 FlO
po02 F02
RpaBO I:30
0 0
Rpo‘04 F04
0 0
0 0 .
= |m
R — ' F = ) . (
0 0
3P = (D, +—'m k) ®);
Rpo‘43 F43 h
Rpc742 F42
Rpcr4l F41
Rp632 F32
RpU31 F31
R F
(s (76)
o) | K2
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- For (1+5)-dimensional space-time we obtain:

pol0

R
R

pc20

po30

0
R

yole 0]

By

Py

o 8 O O O O O O o o o o 8 o O O
IS a
(%)) o

po53

X

po25
pob5l
0
po34
pod?2
pold
po32

pol3

U X0V XV OV OV XD

po2l
(R)

P |

;n o ;n n?j n
S S & o

o O O

oooooooooog'”

i 031 R :jj 031 o 031 nj1 031 o ij
N N N N [N ol w o

3
21

S T

(F)

im (R)
30—, My @
v h 14

pov po !

1P (D, + im{" )t
v v h

Vv

(77)

where in the relations (73) — (77), J ® and J ﬁF) are the source currents expressed, necessarily, in terms of

vpo

the covariant quantities ¢'>) and @™ (as the initially given quantities), respectively. For higher-
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dimensional space-times, the column matrices W;and W (with similar formulations) are determined
uniquely as well.

3-4-2. From the field equations (71) and (72) (derived uniquely with certain matrix formalisms
compatible with the Clifford and Weyl algebras), the following general covariant field equations, with
ordinary tensor formalisms, are obtained (but not vice versa), respectively:

VARMW+V#RPM+VVRPW :T%Rpm +TT,prm +TTW1R,,W, , (78-1)
VR = (im® /m)k R ==30 (78-2)
W—(a | +rf;v ) — (0,7, +T7,T7 ),

(®) S (R) m(R)

J o =—(V, + k ) T (gw , Wkﬂ). (78-3)
and
D,F, +D,F,,+DF , =0, (79-1)
B v _ v(F) .
D,F* =-3"%; (79-2)
Fﬂv = DVAu — D,,A» ,

— Im(F) Im(F)

‘]EF) = _(Dv +Tokv)¢(':)' Zr,uv = 2;’ (gwkv - grvk,u)' (79_3)

where I'”_ is the affine connection: I'”, =T/ —K”  T”

ou
free connection), K”_, is the contorsion tensor defined by: K = (im® /2h)g Kk, (that is anti-

symmetric in the first and last indices), T, is the torsion given by T =K .o =K, (that generates

the invariant mass of the gravitational fleld), k,= (c/,/ 0,...,0) (Where we supposed c=1)isthe

covariant velocity of particle (or the static observer) in the stationary reference frame, and A is the gauge
potential vector field. Moreover, in general covariant field equations (79-1) — (79-3), the covariant
derivative D has been defined specifically with the torsion field Z_,, (generating the invariant mass of

gauge field strength tensor F ).

is the Christoffel symbol (or the torsion-

It should be emphasized again that the tensor field equations (78-1) — (78-3) and (79-1) — (79-3) (which
are obtained respectively from the original equations (71) and (72), but not vice versa) show merely the

general covariance formalism (including torsions fields T’Wand Z’#V) of the axiomatically derived field

equations (71) and (72). The crucial issue here is that the original field equations (71) and (72) could not
be obtained from the tensor equations (78-1) — (78-3) and (79-1) — (79-3). In fact, the tensor equations
(78-1) — (78-3) and (79-1) — (79-3) don’t represent completely the definite matrix formalism (compatible
with certain Clifford and Weyl algebras) of the axiomatic field equations (71) and (72). Hence, based on
this mathematical axiomatic formalism and derivation approach of equations (71) and (72) (presented in
Sections 3-3 — 3-4-1), it is concluded that the fundamental force fields of physics cannot be described
completely via the ordinary tensor representations of these fields (in the current standard classic and
guantum relativistic field theoretic formalism of physics), such as the representations (78-1) — (78-3) and
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(79-1) — (79-3); and as shown in Sections 3-3 — 3-4-1, on the basis of this new mathematical formalism,
all the fundamental force fields of physics could be represented (and described) solely by the
axiomatically determined and formulated field equations (71) and (72) with their definite covariant matrix
formalisms (given and specified by formulas (65) — (70) for various space-time dimensions, compatible
with certain Clifford and Weyl algebras).

3-4-2-1. Derivation of the Einstein field Equations

Along with the massive gravitational field equations (78-1) — (78-3) (obtained uniquely from the

originally derived field equations (71)) that are expressed solely in terms of R, as the field strength

tensor and also torsion’s depended terms, we also assume the following relation as basic definition for the
Ricci tensor (where the Riemann curvature tensor and Ricci tensor don’t obey the interchange

symmetries: R, ., #R ..., R,, #R,,, because of the torsion [28]):
(R) (R) i (R)
_ |m - |m ~ im,
vV, + Kk )pr =(V,+——Kk )Rﬂp % u —kﬂ)Rvp (78-4)
where the relation (78-4) particularly remains unchanged by the transformation:
R, 2R, +Ag,, (78-5)

(where as would be shown, A is equivalent to the cosmological constant). It should be noted that by
taking A =0, from the 2™ Bianchi identity of the Riemann curvature tensor and relation (78-4) it could

be shown that the Ricci tensor is also the contraction of the Riemann tensor, i.e. R, =R 5 (which is

ne
equivalent to the ordinary definition of the Ricci tensor). However, this ordinary definition for the Ricci
tensor, necessarily, doesn’t imply the above transformation. In fact, in the following, we show that this
basic transformation is necessary for having the cosmological constant in the gravitational field equations
(including the Einstein field equations which could be derived from the above equations and relations)
expressed in terms of the Ricci and stress-energy tensors. As a direct result, a unique equivalent

expression of gravitational field equations, in terms of the Ricci tensor R, and stress-energy tensor Tﬂv :
could be also determined from the basic definition (78-4) (for Ricci curvature tensor, based on this
axiomatic formalism), and field equations (78-1) — (78-3), along with the following expression for current

J( (defined in terms of the stress-energy tensorT,,, T(=T*.), and metric g,,,, in D-dimensional

uvr
space-tlme):
(R) (R) im (R) i (R)
00 =BV, + T, (7, + Tk )T, T8V, ek )T, ~(, + k)T, 1, (766

where T, =T, for m® 20, B=0 for D=1,2, and B=1/(D-2) forD=>3., the Einstein field
equations (as the massless case) are determined directly as follows:

R,uv :_87T(Tyv_ BTg,uv)_Agyv (78-7)

3-4-3. Showing that magnetic monopoles could not exist in nature. As a direct consequence of the
uniquely derived general covariant field equations (72) that are specified by the matrices (73) — (77) and
(65) — (70) (or the general covariant field equations (79-1) — (79-3) obtained from the original equation
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(72)), which , in fact, represent the electromagnetic fields equivalent to a generalized massive form of the
Maxwell’s equations (as well as a generalized massive form of the Yang-Mills fields corresponding to
certain gauge symmetry groups, see Sec. 3-6), it is concluded straightforwardly that magnetic
monopoles could not exist in nature.

3-4-4. On the local gauge invariance of uniquely derived new general covariant massive (matrix)
forms of the Maxwell’s (and Yang-Mills) and Dirac equations.

The Lagrangian density specified for the tensor field F, in the field equations (79-1) — (79-3) is
(supposing g — o)[58]:

L® =—(1/4J-9)F'F,, (80)
where g is the metric's determinant. Moreover, the trace part of torsion field Z_,,in (79-3) is obtained as:
z*,,=2Z,=N(im{P /2n)k, = Nek, (81)
im{"

where (1+N) is the number of space-time dimensions and ¢ = . Now based on the definition of

covariant vector k , (as a time-like covariant vector), we simply get: 3¢ k, =0,¢. This basic property,
along with and formula (81), imply the general covariant massive field equations (79-1) — (79-3)
(formulated originally with the torsion field (79-3) generating the invariant mass méF)of fieldF, ), and
the corresponding Lagrangian density (80), be invariant under the U(1) Abelian gauge group [9, 58, 60-
63]. However, in Sec. 3-6, we show that assuming the spin-1/2 fermion fields (describing generally by the
field equation (110-9) compatible with specific gauge symmetry group (110-12), as shown in Sec. 3-6-1-
2) and their compositions as the source currents of the (1+3)-dimensional cases of general covariant
massive field equation (72) (describing the spin-1 boson field), then this field equation would be invariant
under two types of gauge symmetry groups, including: SU(2)_ ®U(2)r and SU(3), corresponding with a
group of seven bosons and a groups of eight bosons (as shown in Sec. 3-6-3-2).

3-4-5. Identifying a new particular massive gauge boson.

According to Refs. [60 — 63], in agreement with the recent astronomical data, we can directly establish a

i (F)
lower bound for a constant quantity which is equivalent to the constant o = "20 (defined by the
V)

relation (80)) as: |a| > 21. Hence, a new massive particle (corresponding to the U(1) symmetry group)
would be identified with the invariant mass:

m, = 4.90571x10*kg (82)

that is generated by a coupling torsion field of the type (79-3) of the background curved space-time.
In addition, it should be noted that, in general, based on the covariant massive field equations (71) and
(72) derived by our axiomatic approach (or field equations (78-1) — (78-3) and (79-1) — (79-3) obtained
from (71) and (72)), the invariant masses of the elementary particles are generated by torsion fields of the
types (78-3) (for spin-3/2 and spin-2 particles) and (79-3) (for spin-1/2 and spin-1 particles, see Sec. 3-6).
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Hence, this approach could be also applied for massive neutrinos concluding that their masses are
generated by the coupling torsion fields (of the type (79-3)). Such massive particle fields coupled to the
torsions (of the type (79-3)) of the background space-time geometry could be completely responsible for
the mysteries of dark energy and dark matter [75].

3-5. Quantum Representations of C, P and T Symmetries of the Axiomatically Derived
General Covariant Massive (tensor) Field Equations (71) and (72):

As it has been shown in Sections 3-3, 3-3-1, 3-3-2, 3-4 and 3-4-1, the general covariant massive
(tensor) field equations (71) and (72) as the unique axiomatically determined equations (representing
the fundamental field of physics, as assumed in Sec. 3-1), are represented originally with definite
matrix formalisms constructed from the combination of two specific matrix classes including the
column matrices (73) — (77),... compatible with the Weyl algebras (based on the isomorphism (71-1)
— (72-1)), and the square matrices (65) — (70),... that are compatible with the Clifford algebras and
their generalizations; see Sections 3-3, 3-3-1, 3-3-2 and 3-4-1 and also Appendix A for detail).

In agreement with the principles of relativistic quantum theory [35], and also as another primary
assumption in addition to the basic assumption (3) defined in Sec. 3-1, we basically represent the C,
P and T symmetries of the source-free cases of by the following quantum matrix operators (with the
same forms in both flat and curved space-time), respectively:

(Note: In Sec. 3-5-3, we show that only a certain simultaneous combination of the C, P and T
transformations could be defined for the field equations (71) and (72) with non-zero source currents.)

(1)- Parity Symmetry (P-Symmetry):

. . [-10
P=y {0 J (83)

where | is the identity matrix, and the size of matrix ;/P in (1+N)-dimensional space-time is 2" x2" .

The operator P obeys the relations:
det(P)=-1, P?=1 P=P'=P =P’ (83-1)

(2)- Time-Reversal Symmetry (T-Symmetry):
T :'fo K = inyChK (84)
where the operator K denotes complex conjugation, the operator }/P defined by formula (83) and the

operator ;/Ch in (1+1) and (1+2) space-time dimensions, is given by:

0 1
Ch
= : 84-1
Y L o} (84-1)
and in (1+3) and higher space-time dimensions, ;/Ch is denoted by:
0 il
Ch
= 84-2
4 Lil o} (842
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where the size of matrix y/Ch in (1+N)-dimensional space-time is: 2" x2" . Moreover, in (1+1) and (1+2)

space-time dimensions, the time reversal operator T (84) and the Hermitian operator fo =iyPye"

(specified in the formula (84)) obey the relations:

T2o 7, =7, 0 =7, =T, (84-3)

and in (1+3) and higher space-time dimensions, T and 'fo obey the relations:
T2=1T,=T,"=T,"=1, (84-4)

Concerning the time reversal symmetry, it should be noted that the relations (84-3) are solely compatible

with the fermionic fields, and relations (84-4) are solely compatible with the bosonic fields. In addition, it
should be noted that these basic quantum mechanical properties (i.e. the relations (84-3) and (84-4)) of the

time reversal symmetry (84), are fully compatible with corresponding properties of the field tensors F,,

and R, presented in Sec. 3-6, where the tensor field F, (describing by general covariant field

equation (72)) represents (asymptotically) solely a massive bispinor field of spin-1/2 particles (as a
new general covariant massive formulation of the Dirac equation) in (1+2) space-time dimensions,
and also represents a massive bispinor field of spin-1 — as new massive general covariant (matrix)
formulations of both Maxwell and Yang-Mills field equations compatible with specified gauge
symmetry groups — in (1+3) space-time dimensions; and tensor field R, (describing by general
covariant field equation (71)) represents (asymptotically) solely a bispinor field of spin-3/2 particles
(as a new massive general covariant form of the Rarita—Schwinger equation) in (1+2) space-time
dimensions , and also represents a massive bispinor field spin-2 particles (equivalent to a generalized
massive form of the Einstein equations) in (1+3) space-time dimensions.

(3)- Charge Conjugation Symmetry (C-Symmetry):

(Wy)e =CW, =ilK¥,, (¥.). ==CW¥, =ilK¥, (85)
where C = iIK, | is the identity matrix, the operator K denotes complex conjugation, and the charge
conjugation operator C defined by: (¥5)e =C(¥,)", (¥:). =C(¥.)"- The charge conjugation operator

C obeys the following relations:
CC'=1, C=-C*'=-C"=C" (85-1)

As a basic additional issue, it is worth to note that the time-reversal operator (84) could be also expressed
basically in terms of the parity matrix operator »" (83), matrix operator C = iIK given in the definition

of charge-conjugated transformation (85), and matrix 7Chdefined by formulas (84-1) and (84-2), as
follows:

}/PyChé =T (85-2)
where we have: 5Py " = "y P,

3-5-1. Basic Properties of Matrix (operator) »" (defined by formulas (84-1) and (84-2)):
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In this Section, the main properties of matrix operator »“" (defined by unitary matrices (84-1) and

(84-2)) hav been presented. Each of general covariant (tensor) field equations (71) and (72) (including
their source-free and non source-free cases), as a system of differential equations, is symmetric and

has the same spectrum by multiplying by matrix »". The multiplied column matrices P = Sy
and wm —,"p_ then obey the equations (71) and (72), respectively, but with opposite sign in

mass term such that: (iza“V,, +mPa’k )P =0, (iha”V , +mPa’k,) ¥ =0.

As a general additional issue concerning the column matrices W = y“"¥,, and W{" = y“"p,,

should be also added that the sign change of the mass terms introduced in the field equations (71) and
(72) is immaterial (the same property also hold for the ordinary formulation of Dirac equation, and so

on [32]). In other words, the field equations (71) of the form (iha”VﬂJ_rméR)&"’kﬂ)‘PR =0 are
equivalent, and similarly the field equations (72) of the form (i2a“V , + mép)&"kﬂ)TF =0 would be
equivalent as well. However, since the algebraic column matrix S in the matrix equation (64)
(derived and represented uniquely in terms of the matrices (66) — (70),... corresponding to various
space-time dimensions), is not symmetric by multiplying by matrix " (84-1) and (84-2) (except for
(1+2) and (1+3)-dimensional cases of column matrix S, based on the definite algebraic properties of
matrix S presented in Sections 3-3, 3-3-1, 3-3-2), it is concluded that except the (1+2) and (1+3)-

dimensional cases of the fundamental field equations (71) and (72), these field equations could not be
defined with the column matrices of the types w(" (= »“"w,) and ¥ (=", ) (if assuming

that the column matrices ¥, and w_ are defined with field equations (71) and (72), i.e. they have
the formulations similar to the formulations of originally derived column matrices (73) — (77),...
corresponding to various space-time dimensions). This conclusion follows from this fact that the
filed equations (71) and (72) have been derived (and defined) uniquely from the matrix equation (64)
via the axiomatic derivation approach (including the first quantization procedure) presented in
Sections 3-4, 3-4-1. In Sec. 3-5-2, using this property (i.e. multiplication of column matrices w,_ and
. defined in the fundamental field equations (71) and (72), by matrix 7" (84-1) and (84-2) from

the left), this crucial and essential issue would be concluded directly that by assuming the time-
reversal invariance of the general covariant filed equations (71) and (72) (represented by the

transformations 'f‘PR and 'f\PF , where the quantum operator T is given uniquely by formula (84),
ie: T=T,K=iy"y"K), these fundamental field equations could be defined solely in (1+2) and

(1+3) space-time dimensions (with the column matrices of the forms (96-1) and (98-2), respectively).
Subsequently, in Sec. 3-5-3, , it would be also shown that only a definite simultaneous combination

of all the transformations C, P, T and also matrix 7" (given by quantum operators (83) — (87))
could be defined for the field equations (71) and (72) with non-zero source currents. In addition, the
matrix operator »°" in (1+1) and (1+2) space-time dimensions obeys the relations:

" =L =) =0T =0, (86)
and in the (1+3) and higher dimensions obeys the following relations as well:
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"= y =0 ="y =" (87)
Furthermore, in Sec. 3-5-4, the matrix »“" would be also used basically for defining and representing

the left-handed and right handed components of the column field matrices ¥, and ‘Y. defined
originally in the field equations (71) and (72).

3-5-2. Showing that the universe could be realized solely with the (1+2) and (1+3)-dimensional
space-times:

The proof of this essential property of nature within the new mathematical axiomatic formalism presented
in this article, is mainly based on the T-symmetry (represented basically by quantum matrix operators
(84)) of the fundamentally derive general covariant field equations (71) and (72). As shown in Sec. 3-5,
the source-free cases (as basic cases) of field equations (71) and (72) are invariant under the time-reversal

transformation defined by matrix operator (84). Moreover, in Sec. 3-5-3, it would be also shown that
these field equations with non-zero source currents are solely invariant under the simultaneous

transformations of all the C, P, and T (83) — (85), multiplied by matrix " (given by formulas

(84-1) and (84-2)). Now, following the definite mathematical formalism of the axiomatic derivation
approach of fundamental field equations (71) and (72), assuming that any column matrix X ., or Y.,

expressible in the tensor formulation of general covariant field equation (71) or (72), is basically
definable, if and only if, it could be also derived originally as a column matrix via the axiomatic
derivation approach presented in Sections 3-4 and 3-4-1.

On this basis, it could be shown that the time-reversal transformed forms of the column matrices w,
and w_ given in the expressions of source-free cases of field equations (71) and (72), are definable

solely in (1+2) and (1+3)-dimensional space-times. Based on this result, along with the basic
assumption (3) in Sec. 3-1, it is concluded directly that the universe could be realized solely with the
(1+2) and (1+3)-dimensional space-times. We show this in the following in detail.

As noted, in fact, the above conclusion follows directly from the formulations of uniquely determined
time-reversal transformed forms of column matrices w, and w_ given in the expressions of source-

free cases of field equations (71) and (72). Denoting these column matrices by K, =Tw, and
XK. =Tw,., where the time-reversal operator (84) is defined by:'f :fo K = inyC“K , they would be
determined as follows in various dimensions:

- For (1+1)-dimensional space-time we have:

}KR(x,t):'I:‘PR(x,t):'I:O‘P;(x,t):LR* O(X t)} }KF(x,t):'I:‘}’F(x,t):'fo‘l’;(x,t):[ (88)

O .
iF,(x,t) |

- For (1+2)-dimensional space-time it is obtained:
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Ko (X)) =TW(X,1) =T, Wa(x,t) =

=R’ (Xt)

IR0 Xt)
iR;aOZ( X,t )

- For (1+3)-dimensional space-time we get:

Ko (X)) =TW(x,t)=T,Wa(x,t) =

—iRY (X1)]

—iR;M(X,t)
_iR;ﬂz( Xt)
0
IR} o( X.0)
iR;aZO( x.t)
IR X,1)
0

- For (1+4)-dimensional space-time we have:

W (X)) =TW(x,t) =T, Wa(x,t) =

KOG =T (X)) =T, Wi (x,t) =

K () =T () =T, Wi (x,t)=

—iF,(x,t)
U

iFL(x.t) |

iIFp,(X,t)

iR (x|

—iF;(xt)

—iFg(x1)
0

iFo(x.t) |

iF(x,t)

iF(X,t)
0

C K (X ) =TW (X)) =T, Wi (x,t)=

0
—iF5(x,t)
—iF,,(x,t)
—iF,(x,t)
—iF5,(X,t)
—iF;(x,t)
—iF,(x,t)

0

iFo(x,t)
iFg,(X,t)
iF,(x,t)

0

iFy,(x,t)

(89)

(90)

(91)




- For (1+5)-dimensional space-time we obtain:

Ko (X ) =T (x,t) =T, W (x,t)=

0

0

0
_iR;—45( X,'[)

0
=R, 55(X,1)
- iR;o'ZS( X.t)
_iR;m( X.t)

0
_iR:;O'34( X't)
—iR;“(X,t)
_iR;o'14(X1t)
=R, »(X.t)
_iR:ms(X:t)
- iR;o’Zl( x.t)

0
IR0 X,1)
iR 2o X.)
iR, s0(X,t)

0
iR;Mo( X.t)

0

0

0

iR so(X,t)

O OO O O O

VK () =T (X)) =T, P (x,t) =

0

0

0
_iF4*5( X,t)

0
—iF,(Xxt)
—iF5(x,t)
—iF;(xt)

0
_iF;t( x.t)
_iF4*2(X:t)
—iFfZ( X’t)
—iF,(xt)
—iF5(X,t)
—iF;(xt)

0
iIFL(x,t)
iF,(X,t)
iF5(X,t)

0
iF,(xt)

0

0

0
iF5,(X,t)

O OO O O O

(92)

Now based on the formulations of the derived time-reversal transformed column matrices X and 2K

(88) — (92), although they could be expressed merely in the tensor formulations of field equations (71)
and (72), however, except the (1+2) and (1+3)-dimensional cases of these transformed column matrices,
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all the other cases cannot be derived originally as a column matrix via the axiomatic derivation approach
presented in Sections 3-4 and 3-4-1 (following the formulation of originally derived column matrices (73)
—(77)). Below this conclusion (and subsequent remarkable results) is discussed in more detail.

R R R R T R S S R R e S R R R R S R R e S e e

In addition, it is also worth to note that on the basis of our derivation approach, since there are not the
corresponding isomorphism (that could be represented by the unique mappings (71-1) and (72-1), in Sec.

3-4-1) between the entries of column matrices 2K and 2K (88), (91), (92),... and the entries (with the
exactly same indices) of column matrix S (in the algebraic matrix equation (64), where its last entry, i.e.
arbitrary parameter “S” is zero compatible with the source-free cases of the field equations (71) and

(72)) that are given uniquely as follows in (1+1) and (1+4), (1+5),... and higher space-time dimensions,
respectively, using the definitions (66) — (70),... (in Sec. 3-3), and also the algebraic properties of

column matrix S (presented in Sections 3-3-1 and 3-3-2) representing in terms of two half-sized 2Nt %1

!

"

. S .
column matricesS’ and S”such that: S :{ (where u,,u,,U,,Us,..,Uy , Vg, V;,Vy, V..,V , W are arbitrary

parameters):
S' (uovl - ulvo)W )
- For (1+1)-dimensional space-time we have: S = g |~ 0 ' (93)
- For (1+4), (1+5)-dimensional space-times we get, respectively:
(UgVy — UV )W [ (UgVv, — UV )W ] [ 0 ]
(UzVo —UoVz )W (UgV, — U,V )W 0
(UoVs —UsVo)W (UgVs — UgVy )W 0
S’ = 0 0 (ugv, —u,vy)w
(U,Vo —UgV, )W (ugv, —u,vy)w 0
0 0 (ugvg —ugvy)w
0 0 (usvz - U2V5)W
S’ 0 ' —
= [S"} L o 2 s S" 5 0 g (uvs —ugv,)w ;
S (UgVs —ugVvy)w 0

(uzv, —u,vs)w

0] (U4V3 - U3V4)W
(u2v4 - U4V2)W 0 (U2V4 - u4V2)W
S — (U1V4 - U4V1)W (0] (l,I4V1 — U1V4)W
(UzVs —Ugvy)W 0 (U,V; — UgVv, )W
(U —Ugv )W 0 (UyV; — U V)W
(uv, —uv)w 0] (uv, —u,v,)w (94)
0 0 0

it would be directly concluded that in (1+1) and (1+4), (1+5),... and higher space-time dimensions, the
column matrices XK and K could not be defined as the column matrices in unique formulations of the

axiomatically derived general covariant field equations (71) and (72). In other words, for the (1+2)-
dimensional cases of the transformed column matrices . and X, (89), the corresponding isomorphism

(represented uniquely by the mappings (71-1) and (72-1)) could be defined between the components of
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these matrices and the entries of column matrix S (67), for s = 0 (compatible with ¢® =0, '™ =0), if
and only if: iR’_,(x,t) =0and iFg,(x,t) = 0. This could be shown as follows:

(uovl — UV, )W - iR;oZl(XYt) - iFZ*l(Xlt)
Derivation Procedure
_ (uzvo — UV, )W (First Quantizaton) . 0 K - 0 - U,Vy —UpV, = 0, (95)
UV, — UV, )W LR [T iR iR" ,,(X,1) =0, iFgy(x,t)=0,
0 iR;—;Oz(Xit) iFo*z(X:t)

where for appeared parametric condition: u,v, —u,V, =0, as it would be shown in Sec. 3-5-2-1, it could
be supposed solely: u, =V,, V, =U, , implying conditions: R ,, =0and F;, =0, which could be
assumed for the field strength tensors R, and F, in (1+2)-dimensional space-time (without vanishing
these tensor fields), based on their basic definitions given by formulas (71-1) and (72-1).

Hence, definite mathematical framework of our axiomatic derivation approach (presented in Sec. 3-4), in
addition to the time-reversal invariance (represented by the quantum operator (84)) of source-free cases of
general covariant field equations (71) and (72), imply the (1+2)-dimensional case of column matrices Wr

and Wr given by relations (74) (where we assumed ¢ =0, ¢ =0), could be given solely as follows,

to be compatible with the above assumed conditions (i.e. being compatible with the mathematical
framework of axiomatic derivation of field equations (71) and (72), and also the time-reversal invariance
defined by quantum operator (84)), and consequently, as the column matrices could be defined in the
formulations of the fundamental tensor field equations (71) and (72), respectively:

leo FlO

0 0 96
A A (96)

po 21 21

0 0

The formulations (96) that are represented the column matrices Wg and g in the field equations (71) and
(72) compatible with the above basic conditions, are also represented these matrices in the field equations
(71) and (72) with non-zero source currents compatible with two basic conditions (similar to above
conditions) including a unique combination of the C, P and T symmetries (that have been represented by
guantum operators (83) — (85)) for these cases of field equations (71) and (72), and also the mathematical
framework of axiomatic derivation of equations (71) and (72). In fact, as it has been shown in Sec. 3-5-1,
the field equations (71) and (72) with non-zero source currents could have solely a certain combination
(given by formulas (86) and (87)) of the C, P and T symmetries (that are represented by the operators
(83), (84) and (85)). This unique combined symmetry in addition to the unique formulations (96) of
source-free cases of column matrices Wg and Wr in (1+2)-dimensional space-time, implies these matrices
could take solely the following forms to be defined in the formulations of the fundamental tensor field
equations (71) and (72) (with non-zero source currents):
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E .
pol0 10 Im(R)
- 0 | IR =V, + kDot (96-1)
Y, = R A I = | im$"
s B30 =D, + ok, )p
P ¢ ’

In the same manner, concerning the (1+4)-dimensional cases of column matrices <, and X (91), there
would be a mapping between the entries of these matrices and entries (with the same indices) of algebraic
column matrix S (69), where s = 0 (compatible with ¢ =0, ' =0), if and only if: iR’ ,,(x,t) =0,

iR” ,,(xt)=0,iR"_,,(x,1)=0,iR’_,,(x,t)=0,iF(x,t) =0, iIF,;,(x,t) =0, iF;(x,t) =0, iIF,;(x,t) =0,i.e.

po 3l po 21

[ (UgVv, — U,V )w | 0 0
(Uzvo _Uovz)W - iR;o'43(X’t) - iFA*s(X’t)
(U0V3 —U3VO)W _iR:U42(Xat) - iF4*2(th)
0 —iR (1) —iF, (x,t)
(U4V0 _ro4)W - iR;sz(th) - iFa*z(Xat)
0 —iR” t —iF (Xt
0 - :Rfﬁlg( t; - :Filg t; 1 =0 v =0
o | G s "0 SN R =0, F () =0
S = - Ky=| ., K =, = iR, (xt)=0, iF;(x,t) =0,
0 |me(x,t) iF,(X,t) L I
L L IR ,5.(%,1) =0, iF;(x,t) =0,
(U3V4 _U4V3)W 'Rmoz(x«t) 'Foz(xyt) ok e
A o IR, ., (x,t)=0, iF;(xt)=0.
(u2V4 _U4V2)W IRmm(X,t) 'Fso(xnt)
(uv, —u,v,)w 0 0
(U2V3 _usvz)W iR;m(th) iFO*Al(th)
(U vy —uzv )w 0 0
(uv, —u,v, )w 0 0
L 0 | | 0 | L 0 |

97)

This means that in (1+4) space-time dimensions, the mathematical framework of our axiomatic derivation
approach (described in Sec. 3-4) in addition to the time reversal invariance (defined by the quantum
operator (84)) of the source-free case of the derived general covariant fundamental field equations (71)

and (72) imply the column matrices Wg and We (76) (for @'F =0, ™) =0) could take solely the
following forms (in general) to be defined in the formulations of the field equations (71) and (72):
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po 30

which are equivalent to the (1+3)-dimensional source-free cases of column matrices Wr and Yg

(represented uniquely by formulas (75))

In addition, similar to the formulations (96-1), as it has been shown in Sec. 3-5-1, the field equations (71)
and (72) with non-zero source currents have a certain (and unique) combination of the C, P and T
symmetries (that have been defined by the operators (83), (84) and (85)). This combined symmetry in
addition to the forms (98), imply also the (1+4)-dimensional cases of column matrices Wgr and Wg
represented by formula (76) could take solely the following forms (in general) to be defined in the

T o

o
N

T

w
o

N o

o
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o O O o
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J o

w
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o O O

formulations of fundamental field equations (71) and (72):

0 0
RpcrOZ FOZ
Rpo‘30 F30

0 0
R/)(704 F04

0 0

0 0

0 0

o=l o | ¥ =] o
Rpo‘43 F43
Rpo‘42 Fa

0 0
Rpo‘32 F32

0 0

0 0

o o
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(R) _
J o = —(V, +

JF) = (D, +

(98)

im{®

(R)
T kv )(ppo' 1

im (F)
im, E
k ;9( )

/) 2

(98-1)



Consequently, the (1+4)-dimensional cases of column matrices Wg and g that are originally given by
formulations (76), are reduced to formulas (98-1) which are equivalent to the (1+3)-dimensional cases of
these matrices (given originally by column matrices of the forms (75)), i.e.:

Rpo‘lO FlO
po20 I:20
R F F O (R)
po30 30 im
w | © w | © oo ==V, + ==k,
" Rpo—zs ’ i Fas ’ J =—(D, + im(gF) k )w(F)_
Rpcr31 F31
RpcrlZ F12
(R) (F)
L Pro ] L (98-2)
Moreover, as it would be also noted in Sec. 3-6, it is noteworthy to add that the tensor field R in

pouv
column matrix Wg (98-2) (expressing the general representation of column matrices definable in the
formulation of (1+3)-dimensional case of general covariant field equation (71)), in fact, equivalently
represents a massive bispinor field of spin-2 particles in (1+3) space-time dimensions (which could be
identified as a definite generalized massive matrix formulation of the Einstein gravitational field, as it has

been also shown in Sec. 3-4-2), and the tensor field F,, in the column matrix Wr (98-2) (expressing the
general representation of column matrices definable in the formulation of (1+3)-dimensional case of
general covariant field equation (72)), in fact, equivalently represents a massive bispinor field of spin-1
particles in (1+3) space-time dimensions (which could be identified as definite generalized massive
formulation of the Maxwell electromagnetic field, as it has been also shown in Sections 3-4-2 and 3-4-4;
and also Yang-Mills fields compatible with specific gauge groups, as it would be shown in Sec. 3-6).

Summing up, in this Section (Sec. 3-5-2) we showed that the axiomatic approach of derivation of the
field equations (71) and (72) (described in Sections 3-1, 3-3 and 3-4) in addition to their time reversal
invariance (represented basically by the quantum operator (84)), imply these fundamentally derived
equations could be solely defined in (1+2) and (1+3) space-time dimensions. “Hence, based on the
later conclusion and also the basic assumption (3) (defined in Sec. 3-1), we may conclude
directly that the universe could be realized solely with the (1+2) and (1+3)-dimensional
space-times, and cannot have more than four space-time dimensions.”

Based on the axiomatic arguments and relevant results presented and obtained in this Section, in the
following Sections we consider solely the (1+2) and (1+3)-dimensional cases of general covariant field
equations (71) and (72) that are defined solely with the column matrices of the forms (96-1) and (98-2).

3-5-2-1. Equivalent (asymptotically) representations of the bispinor fields of spin-3/2 and
spin-1/2 particles, respectively, by general covariant field equations (71) and (72) (formulated
solely with column matrices of the types (96-1)) in (1+2) space-time dimensions:

It is noteworthy that according to the Ref. [29] and also based on the basic properties of the Riemann

curvature tensor R, in (1+2) space-time dimensions [64] (in particular the identity:
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. F I oo : L
Rov =€ €,,G",» Where G’ is the Einstein tensor and ), it would be concluded that R _,, which is

defined by (1+2)-dimensional case of the general covariant massive field equation (71) (which could be
defined solely with a column matrix of the type Wr (96-1)), represents asymptotically a general
covariant bispinor field of spin-3/2 particles (that would be asymptotically equivalent to the Rarita—
Schwinger equation). In a similar manner, according to the Ref. [29], and also following the basic
properties of field strength tensor F,, in (1+2) space-time dimensions (that as a rank two anti-symmetric

with three independent components holding, in particular, the identities:F =& T, T“=(1/2)¢"'F,,,
showing that F, could be represented equivalently by a vector T “ with three independent components as

well) it would be concluded that F, which is defined by (1+2)-dimensional case of the general

covariant massive (tensor) field equation (72) (which could be defined solely with a column matrix of the
type W (96-1)), represents asymptotically a general covariant bispinor field of spin-1/2 particles (that
would be asymptotically equivalent to the Dirac equation [29]). Furthermore, as it would be shown in
Sec. 3-6, the general covariant field equations (72) (representing asymptotically the spin-1/2 fermion
fields) is also compatible with the SU(2) ®U(2)r symmetry group (representing “1+3” generations for
both lepton and quark fields including a new charge-less fermion).

3-5-2-2. Equivalent representations of the bispinor fields of spin-2 and spin-1 particles,
respectively, by general covariant field equations (71) and (72) (defined solely with column
matrices of the types (98-2)) in (1+3) space-time dimensions:

It should be also note that according to the Refs. [31 — 36], the basic properties of the Riemann curvature
tensor including the relevant results presented in Sec. 3-4-2 , it would be concluded that the field strength

tensor R, ,, (i.e. the Riemann tensor) the in (1+3) space-time dimensions by general covariant

massive (tensor) field equation (71) (formulated solely with a column matrix of the type Wr (98-2)),
represents a general covariant bispinor field of spin-2 particles (as a generalized massive formulation
of the Einstein gravitational field equation). In a similar manner, according to the Refs. [31 — 36], the
field strength tensor F,, which is defined in (1+3) space-time dimensions by the general covariant
massive (tensor) field equation (72) (formulated solely with a column matrix of the type Wg (98-2)),
represents a general covariant bispinor field of spin-1 particles (representing new generalized
massive formulations of the Maxwell’s equations, and also Yang-Mills field equations). Furthermore,
as it would be shown in Sec. 3-6, the general covariant field equations (72) (representing the spin-1
boson fields coupling to the spin-1/2 fermionic currents) is also compatible with the SU(2) ®U(2)r
and SU(3) symmetry groups.

Moreover, based on these determined gauge symmetries for the derived fermion and boson field
equations, four new charge-less spin-1/2 fermions (representing by “z. , z, ; Zy, Z4”, where two right-
handed charhe-less quarks z, and z; emerge specifically in two subgroups with anti-quarks such that:

(5,U,b, z) and (T,d,t, zy), and also three new massive spin-1 bosons (representing by

"VV*,VV’,Z ", where in particular Z is the complementary right-handed particle of ordinary Z
boson), are predicted uniquely by this new mathematical axiomatic approach.
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3-5-3. Showing that only a definite simultaneous combination of the quantum mechanical

transformations C, P, T and 7" (given uniquely by the matrix operators (83) — (87)) could be

defined for the general covariant massive (tensor) field equations (71) and (72) with non-zero
source currents:

As it has been shown in Sections 3-5-1 and 3-5-2, since the algebraic column matrix S in the matrix
equation (64) (derived and represented uniquely in terms of the matrices (66) — (70),...
corresponding to various space-time dimensions), is not symmetric by multiplying by matrix " (84-
1) and (84-2) (except for (1+2) and (1+3)-dimensional cases of column matrixS, based on the
definite algebraic properties of matrix S presented in Sections 3-3, 3-3-1, 3-3-2), it is concluded that
except the (1+2) and (1+3)-dimensional cases of the fundamental field equations (71) and (72), these
field equations could not be defined with column matrices of the type w{"(=,°"w,) and
WM (= M) (if assuming that the column matrices w, and w_ are defined with field equations

(71) and (72), i.e. they have the formulations similar to the formulations of originally derived column
matrices (73) — (77),... corresponding to various space-time dimensions). This conclusion follows
from this fact that the filed equations (71) and (72) have been derived (and defined) uniquely from
the matrix equation (64) via the axiomatic derivation approach (including the first quantization
procedure) presented in Sections 3-4, 3-4-1. As it has been shown in Sec. 3-5-2, using this property
(i.e. multiplication of column matrices ¥, and w_, defined in the unique expressions of

R

fundamental field equations (71) and (72), by matrix »“"from the left), this crucial and essential
issue is concluded directly that by assuming the time-reversal invariance of the general covariant
filed equations (71) and (72) (represented by the transformations f‘PR and f‘{'F, where the

quantum operator T is given uniquely by formula (84), ie: T =T,K =iy"y°"K), these

fundamental field equations could be defined solely in (1+2) and (1+3) space-time dimensions (with
the column matrices of the forms (96-1) and (98-2), respectively).

Hence, the definite mathematical formalism of the axiomatic approach of derivation of fundamental
field equations (71) and (72), along with the C, P and T symmetries (represented by the quantum matrix
operators (83) — (87), in Sec. 3-5) of source-free cases (as basic cases) of these equations, in fact, imply
these equations with non-zero source currents, would be invariant solely under the simultaneous
combination of all the transformations C, P, and T (83) — (85), multiplied by matrix <" (defined
by formulas (84-1) and (84-2)). This unique combined transformation could be expressed uniquely as
follows, respectively, for the particle fields (representing by column matrices W (-F,t), Ve (-T,t))
and their corresponding antiparticle fields (representing by column matrices g (F,—t), P¢ (F,—t) given
solely with reversed signs of the temporal and spatial coordinates):

7. W (—F 1) =—y"TPC W, (-F, 1),
{ comB R( ) 7 R( ) (99)

ZACOMB\PF (_r’ t) = _}/Ch'ﬂﬁé \PF (_rvt)a
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1

W (F,—t) = y"TPC WL (F ),
{ comB R( ) 7/ R( ) (100)

YL (F—t) = 7S TPC WL (F,—1).

N))

A

(100), where Z_ =—2_,.) is

comMB

The unique combined form of transformation 7 (99) (and also z

based on the following two basic issues:

comB comB

Firstly, it follows from the definite formulations of uniquely determined column matrices (73) —
(77),... (corresponding to various space-time dimensions, however, as noted above, based on the
arguments presented in Sec. 3-5-2, the only definable column matrices in the formulations of field
equations (71) and (72), are of the types Wr and W represented by formulas (96-1) and (98-2), in (1+2)

and (1+3) space-time dimensions, respectively), where the source currents Jgji and J) should be

expressible by these conditional relations (in terms of the arbitrary covariant quantities gogj) and "),
) _ im(R) - im(F)
respectively: J® =—(v +7°kv)(/)(R) I =—(v, +=2

, N k,)o. In other words, the unique formulation

of derived combined symmetries Z and ZmM represented by the quantum operatorsZ (99) and

ComMB B CcomB

S

Z_,. (100), in particular, is a direct consequent of the above conditional expressions for source currents

ng) and JﬁF’. As noted in Sec. 3-4-1, these relations appear as necessary conditions in the course of

the axiomatic derivation of general covariant field equations (71) and (72). In fact, in the field equations
(71) and (72) the uniquely derived column matrices Wg and Wg (73) — (77)...., not only contain all the

components of tensor fieldsR,,, and F, , but also contain the components of arbitrary covariant

v
quantities ¢'> and @™ (as the initially given quantities) which define the source currents J (%) and
) i (F)
(F) ; ; P Y B ® 10 _ o M (F)
J,”’ by the above expressions, respectively, i.e.. J =—(V, + . K)oy, 3,7 ==V, + ; k,)o".

Now based on these conditional expressions in addition to this natural and basic circumstance that the
source currents ijv) and JiF) should be also transferred respectively as a rank three tensor and a vector,

under the parity, time-reversal and charge conjugation transformations (defined by formulas (83) — (85))
of the field equations (71) and (72), it would be concluded directly that the transformations (99) and

(100) are the only simultaneous combinations of transformations C,P, T (also including the matrix

7", necessarily, as it would be shown in the following paragraph), which could be defined for the
field equations (71) and (72) with “non-zero” source currents.

Secondly, appearing the matrix operator »" in simultaneous combinations — »“"TPC and »“"TPC

in the combined transformations (99) and (100), follows simply from the basic arguments presented in
Sec. 3-5-2. In fact, in these uniquely determined combinations, the simultaneous multiplication by matrix

;/Ch (from the left) is a necessary condition for that the transformed column matrices:ZwMB‘PR (—F,t),

A
~

Z, . Ya(r-t), ZwMB‘{’F (-T,1), ZCOMB‘P; (r,—t) (given in the transformations (99) and (100)) could be

also defined in the field equations (71) and (72), based on the formulations of column matrices (96-1) and
(98-2), as mentioned in Sec. 3-5-2) (however, it is worth to note that this argument is not merely limited
to the definability of column matrices of the types (96-1) and (98-2), and it could be also represented on
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the basis of unique formulations of all the originally derived column matrices (73) — (77),...
corresponding to various space-time dimensions).

In the next Section, we show how the 'CPT' theorem in addition to the unique formulations of the
combined transformations (99) and (100) (representing the only definable transformation forms, including
C, P and T quantum mechanical transformations, for the field equations (71) and (72) with “non-zero”
source currents), imply only the left-handed particle fields (along with their complementary right-handed
fields) could be coupled to the corresponding (any) source currents.

3-5-4. Showing that only the left-handed particle (along with their complementary right-
handed antiparticle) fields could be coupled to the corresponding source currents:

On the basis of the 'CPT' theorem [35, 36], it would be concluded directly that the unique combined forms
of transformations (99) and (100) (representing the only combination of C, F3, and T transformations
multiplied by matrix »", that could be defined as a symmetry for general covariant field equations (71)
and (72) with non-zero source currents), should be equivalent only to simultaneous combination of é, P ,

and T transformations (that have been defined uniquely by formulas (83) — (85)). Moreover, based on
the 'CPT' theorem, the simultaneous combination of transformations (f, P,and T should: “interchange

the particle field and its corresponding antiparticle field; inverts the spatial coordinates ¥ — —r ; reverse
the spin of all particle fields; leave the direction of the momentum invariant; and, therefore, should
interchange the left-handed and right-handed components of both particle field and its corresponding
antiparticle field”. Hence, we should have:

Z s [ P2 ()] iy = =7 "TPC [P (-F)] tery = —7 " T5 (M) migny = [P (M) rigny

Z e[ Pe (PN ey = =7 “TPC [We (-P)]ceny = 7 "I (M wigny = [PE (A rugno aen
Zeoo ¥ )] qany = =7 TPC [¥a (Dgwgny = =7 ¥ (D =¥ Dy 599
Z e [P (M) igigny = =7 TPC [¥e (-1 migny = =7 [P (M iy = [PE (D] eeny

Z cne D28 ()]s = 7 TPC T2 (s = 7" T F)]quigny = [P (P )iy (103)
Z o PE (M ey = 7" TPC [P () ceny = 7" [P (P irugny = [P ()] crugny

Am [ (N gigny =7 TP [¥ (M]wigny =7 "I (-1]ery = [¥a (-] wery (104)

ZCOMB [‘P; (F)](Right) = VChﬂsé [\P;: (F)](Right) = 7/Ch [\PF (_F)](Left) = [\PF (_F)](Leﬁ)'
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where the column matrices W, (—F) and W (—T) represent the particle field and W; () and V[ ()

denote the transformed forms of column matrices of W;(—F) and W (-T), respectively, under the

simultaneous combination of transformations é, If’, and T (83) — (85). Furthermore, in agreement and

based on the definitions and properties of quantum operators C, P, T and matrix 7" given by

formulas (83) — (87), the left-handed and right-handed components of column matrices of the types (96-
1) and (98-2) (representing the unique formulations of column matrices that could be defined in the field
equations (71) and (72), as mentioned in Sec. 3-5-2) are defined solely as follows for the column matrices

Y, (-T), We(-T) and also Wi (), WL (T) (as the transformed forms of column matrices Wy (—F) and

We (—F) under the CPT transformation, respectively):

[\PR (_F)](Left) = %[TR (_F) + VCh\PR (_F)]! [\PR (_F)](Right) = %[\PR (_F) - VCh\PR (_F)]:

[\PF (_F)](Left) = %[LPF (—f) + VChlPF (—F)], [LPF (_F)](Right) = %[\PF (_F) - VChlPF (_F)];
' (¥ 1 '(¥ '(v¥ (¥ ! (¥ ' (v

[‘PR (r)](Left) = E [\PR (I’) + yCh\PR (I’)], [\PR (r)](Right) = %[\PR (I’) - VChLPR (I’)],

¥ (V) =5 L9 )+ 7L O, 9 (g =5 19 () =5 P (P

where we have:
Ve (=) = [V (]iery T [V (Nirigny,  Pr(=T) =[¥r (=] (Lerry + [Fr (1) righy
Ye (-r)= [\PF (_F)](Leﬂ) + [lPF (_F)](Right)’ lPé (-r)= [\Pé (_F)](Left) + [\Pé (_F)](Right)'

Now using the definitions (105) and (106) in the formulas (101) — (104), we obtain:
PPy =7 T (7 + 7 W ()] = 21 () + Wi (P =¥ (P
P Py =5 7T (F) 47 (N =2 [ (F) 4 e (P =[P (P

T P gy = 3 7T (F) =¥ ()] = 2 (F) = P (0 [ (P

7T (P gy = 5 7T (1) =/ (N = [ (F) = e ()] 2 [ Py

R S (0) TPy VA R PR A () B S A (s BT () B A o)

T Py =5 7T () 7P ()] =5 W ()= Wi ()] # 9% (P

=¥ gy =5 7 TR () =1 ()] = 21 Wi () + Wi )] = 94 (O

=T (P =~ 7 T¥ (F) =W (O] =2 [ () + P2 )] = [ (O,
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Based on the relations (101-1) — (104-1), it would be concluded directly that only the left-handed
components of particle fields representing by [Wq(=F)] ey, [Wr (=F)](Lery, and the right-handed

components of their corresponding antiparticle fields representing by [ ()] gigny » [¥r (F)] rigny (@S the

transformed forms of column matrices [Wy(=T)] e, and [Wg (=T)] ) under the CPT transformation,

respectively), obey the transformations (101-1) and (104-1) (as the necessary conditions given
respectively by relations (101) and (104)). On the other hand, the right-handed components of particle

fields representing by [Wg(—1)lwigny» [We (—T)]migny » and the left-handed components of their

corresponding antiparticle fields representing by [W(F)] ey, [ (F)] ey (as the transformed forms of

column matrices [Wg (=F)] gigny @Nd [ (=7)] gigny Under the CPT transformation, respectively), don’t

obey the transformations (102-1) and (103-1) (as the necessary conditions given respectively by relations
(102) and (103)). Hence (and also following the basic assumption (3) defined in Sec. 3-1), it is
concluded directly that only the left-handed particle fields (along with their complementary
right-handed fields) could be coupled to the corresponding (any) source currents. This means
that only left-handed bosonic fields (along with their complementary right-handed fields) could
be coupled to the corresponding fermionic source currents; which also means that only left-
handed fermions (along with their complementary right-handed fermions) can participate in any
interaction with the bosons (which consequently would be only left-handed bosons or their
complementary right-handed bosons).

3-6. Showing the gauge invariance of axiomatically derived general covariant (tensor) field
equation (72) in (1+2)-dimensional space-time (definable with column matrices of the type W (96-
1), representing the spin-1/2 fermion fields) under the SU(2) ®U(2)r symmetry group, and also
invariance of this equation in (1+3)-dimensional space-time (definable column matrices of the type
YE (98-2), representing the spin-1 boson fields coupled to the fermionic source currents) under the
SU(2).®U(2)r and SU(3) symmetry group:

One of the natural and basic properties of the (1+2)-dimensional space-time geometry is that the metric
tensor can be “diagonalized” [78]. Using this basic property, the invariant energy-momentum quadratic
relation (52) (in Sec. 3-1-1) would be expressed as follows:

9”°(Po)* —9”(p5)* + 9" (p)* +9%(p,)* =0 (108)
that is equivalent to: g*(p,)* +9"(p,)* +9*(p,)* =(m,c)*, where (as defined in Sec. 3-1-1) m, and p,

are the particle’s rest mass and momentum (3-momentum), pff:mok#, and K, :(kO,O,O)z(c/ 9% ,0,0)
denotes the covariant form of the 3-velocity of particle in stationary reference frame. As it would be
shown in the following, a crucial and essential property of the quadratic relation (108) is its invariance
under a certain set of sign inversions of the components of particle’s momentum: (p,, p;, p,), along with
similar inversions for the components: (p;', p;', P5 ), Where ps' =mgk,, p* = ps' =0. This set includes

seven different types of the sign inversions (in total), which could be represented simply by the following
symmetric group of transformations (based on the formalism of the corresponding Lorentz symmetry
group of invariant relation (108)), respectively:
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(Pos BS' Py P2) > (Pos P —Pu P2) = (RS, pe ™, p?, ps?) (108-1)
(Po. PS' Pur P2) > (o, BS PL—P,) = (P, pe @, pi?, pi?) (108-2)
P2, pPY) (108-3)

st(3)

(Pos PS' Pur P2) > (Pos P —Pu—P,) = (RS, s
(Pos PS' Pus P2) > (= Po—Pg = Py—P,) = (P, e, pP, pi¥)  (108-4)
(Po. B Pu P2) = (—Po—P5' PL—P,) = (P, pe'®, p?, psY) (108-5)

(Pos PS' Pus P2) = (—Po—Ps =Py, P,) = (pSY, p5, p®, p?) (108-6)

(Po, PS5 Pus P2) B> (=P, — P Puy P,) = (P, P, pi”, p3”) (108-7)

Moreover, although, following noncomplex- algebraic values of momentum’s components p,, (P, = p,),

the corresponding complex representations of transformations (108-1) — (108-7) is not a necessary issue
in general, however, if the invariant relation (108) is represented formally by equivalent complex form:

®(poPs) — 9% (ps ps™) + 9" (p,py) + 9%(p,p;) =0, (108-8)

then, along with the set seven real-valued transformations (108-1) — (108-7), this relation would be also
invariant under these corresponding sets of complex transformations (fora=1,2,3,...,7):
ipg @ ™" +ip{™), (pg, p5”, by, P;) = (Fips? Fipg® Fip® Fip{”)  (108-9)

(a)*

(Pos Po+ Py+ P,) — (ipg

In Sec. 3-6-1-1, using the transformations (108-1) — (108-7) (along with their corresponding complex
forms (108-9)), a certain set of seven simultaneous (different) general covariant field equations
(corresponding to a group of seven bispinor fields of spin-1/2 particles) would be determined as particular
cases of the (1+2)-dimensional form of general covariant field equation (72) (defined with a column
matrix of the type (96-1)).

3-6-1. Following the definite formulation of (1+2)-dimensional case of system of linear equation (64)
(formulated in terms of the matrices (67)), for the energy-momentum relation (108) (along with the
transformations (108-1) — (108-7)), the following set of seven systems of linear equations (with different
parametric formalisms) is determined uniquely. The general parametric solution of each of these systems
of linear equations, obeys also the quadratic relation (108) (representing a set of seven forms, with
different parametric formulations, of the general parametric solutions of quadratic relation (108)). This set
of the seven systems of linear equations could be represented uniformly by a matrix equation as follows:

(@ p® -mPa*k,)S® =0 (109)

where a=123,...,7, p, m(a’kﬂ, a’and a* are two contravariant 4x4 real matrices (compatible
with matrix representations of the Clifford algebra Ct;7) defined solely by formulas (65) and (67), and
parametric column matrix S® js also given uniquely as follows (formulated on the basis of definite

parametric formulation of column matrix S (67) in (1+2) space-time dimensions):

st(a) __

UEOVE @@ )w

s@ _| UV —ugvi)w (109-1)
(UPveY —ufvi®)w
S
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which includes seven cases with specific parametric formulations expressed respectively in terms of
seven groups of independent arbitrary parameters: u$®,u®,u{® v® v® v and two common arbitrary

parameters s and w (i.e. having the same forms in all of the seven cases of column matrix S(a)). In

addition, concerning the specific parametric expression (109-1) of column matrix S@ in the formulation
of matrix equation (109), it is necessary to add that this parametric expression has been determined
specifically by assuming (as a basic assumption in addition to the systematic natural approach of
formulating the matrix equation (109), based on the definite formulation of axiomatically determined
matrix equation (64)) the minimum value for total number of the arbitrary parameters in all of seven cases

of column matrix S® , which implies equivalently the minimum value for total number of the arbitrary
parameters in all of seven simultaneous (different) cases of matrix equation (109) (necessarily with seven
independent parametric solutions representing a certain set of seven different equivalent forms of the
general parametric solution of quadratic relation (108), based on the general conditions of basic definition
of the systems of linear equations corresponding to homogeneous quadratic and higher degree equations,
presented in Sec. 2, and Sections 2-2 — 2-4, 3-1-1 concerning the homogenous quadratic equations).

In the following, in the derivation of the corresponding field equations (from matrix equation (109)), we
will also use the above particular algebraic property of parameters s which has been expressed
commonly in the expressions of all of seven simultaneous cases of matrix equation (109) (and also in Sec.
3-6-2, concerning the (1+3)-dimensional corresponding form of matrix equation (109), which holds the
similar property).

3-6-1-1. In addition, along with the transformations (108-1) — (108-7) and algebraic matrix equation
(109), using the corresponding complex transformations (108-9), we may also formally have the
following equivalent matrix equation (with the complex expression):

(ia"p" —imPa*k,)S® =0 (109-2)

(@)

where a=123,...,7, and p5® =m{’k,. Although, based on the real value of momentum p

(p® = p3!¥), the complex expression of each of the seven cases of algebraic matrix equation (109),
definitely, is not a necessary issue at the present stage. However, since the corresponding momentum
operator P'” has a complex value (where P = p**), in the following, using this basic property of the

momentum operator, we derive a certain set of seven different simultaneous general covariant field
equations from the matrix equations (109) and (109-2) (based on the general axiomatic approach of
derivation of general covariant massive field equation (72), presented in Sections 3-4 — 3-4-5, in addition
to certain forms of quantum representations of the C, P and T symmetries of this field equation, presented
in Sections 3-5 — 3-5-4). Furthermore, in Sec. 3-6-1-2, it would be also shown that the uniform
representation of this determined set of seven simultaneous field equations, describe a certain group of
seven simultaneous bispinor fields of spin-1/2 particles (corresponding, respectively, to a new right-
handed charge-less fermion in addition to three right-handed anti-fermions, along with their three
complementary left-handed fermions).

Furthermore, concerning the gravitational field equation (71), it should be noted that following from the
fact that the general covariant field equation (71) should describe, uniquely and uniformly, the
background space-time geometry via a certain form of the Riemann curvature tensor (which should be
determined from the tensor field equation (71)), the matrix equation (109) could not be used for the
derivation of a set of simultaneous different spin-3/2 fermion fields in (1+2) dimensions (there would be
the same condition for the field equation (71) in higher-dimensional space-times).
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Hence, based on the axiomatic approach of derivation of (1+2)-dimensional case of field equation (72)
(defined solely by a column matrix of the form (96-1) in (1+2) space-time dimensions, as shown in Sec.
3-5-2), from the matrix equation (109) and (109-2) (defined solely by column matrix (109-1)), and also

taking into account the momentum operator’s property: f)ﬂ #* f);, the following group of seven
simultaneous (different) general covariant field equations could be determined:

(iha*D) —m{Na k)¢ =0 (110)

specifying by the following group of transformations (based on the corresponding group of
transformations (108-1) — (108-7) and (108-9)), for f =1,2,3,...,7, respectively

(D(l) (1)’ Dl(l)’ Dél)) =(D,,m,,—D,,D,) (110-1)
(DéZ)! m(gZ)l Dl(Z)) D§2)) = (DO ! mO' Dl ’_DZ) (110-2)
(D(s) (3), Dl(a)’ Df’) = (D,,m,,—D, ,~D,) (110-3)

(DWW, mé“), D1<4)’ D§4)) = (-iD§ ,—im, ,—iD; ,—iD;) (110-4)
(D, m®, DO, D) = (~iD; ,—im,,iD; ,—iD;) (110-5)
(D, m, D, D) = (-iD; ~im, —D],iD;)  (110-60
(Dé”, mé”, Dlm’ D§7)) = (-iD;,—im,,iD; ,iD;) (110-7)

where the column matrix ‘Péf) would be also given as follows (based on the definite formulation of

column matrix W¢ (96-1) in Sec. 3-5-2, expressing the general representation of column matrices
definable in the formulation of (1+2)-dimensional case of general covariant field equation (72)):

(N
FlO

0
FAD

|m“> (110-8)

Wi = 30 = (D" + Mk ),

Pe

where in all of the seven simultaneous cases of field equation (110) defined respectively by the column
matrices W{" (110-8) (for f =1,2,3,...,7), the scalar quantity @, (that as a given initial quantity,
defines the source currents JV(” (110-8)), necessarily, has the same value, based on the definite

parametric formulation of the algebraic column matrix (109-1) (in particular, the common form of the
corresponding arbitrary parameter S in the expressions of all of the seven simultaneous cases of matrix
equation (109)).

3-6-1-2. Following the definite formulations of set of seven general covariant (massive) field equations
(110) (specified, respectively, by the group of seven transformations (110-1) — (110-7)), the set of these
could be represented uniformly by the following general covariant field equation as well (defined solely
in (1+2) space-time dimensions):

(ina”D, —mya“k,)¥e =0 (110-9)
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where the column matrix ‘W given by:
FlO
w.=| % 3, =<0, + 'm° K, )@
F21
Pr
and the field strength tensor FW, scalar ¢ , along with the source current Jﬂ are defined as follows:

7
_ (f)
F#v - ZF/IV Ty

f=1

~1,(D, + My k) Pr 27: (D<”+ k) ?r ZJ‘” =J,. (110-11)

f=1

(110-10)

I
where | is the 2x 2 identity matrix, and 7, = Ef (for f =1,2,3,...,7) are a set of seven 2x 2 complex

matrices given by,
0 -—i 0 1 -i 0
-i 0] |-1 o [0 i

AR D l,,t = o o -1 0_, (110-12)
0 -1

0 1 0 -—i 1 0
1 0| [i o |0 -
which as would be shown in the following, represents uniformly a combined gauge symmetry group of
the form: SU(2) ®U(2)r , where the sub-set of three matrices “7;,7,,7,” corresponds to SU(2), group,

and subset of four matrices “7,, 7, 75, 7, ” corresponds to U(2)r group.

Now based on the matrix formulation of field strength tensor F,, (defined by the general covariant field

equation (110-9)), and on the basis of C, P and T symmetries of this field equation (as a particular form
of the (1+2)-dimensional case of field equation (72)) that have been represented basically by their
corresponding quantum operators (in Sections 3-5 — 3-5-4), it would be concluded that the general
covariant field equation (110-9) describes uniformly a group of seven spin-1/2 fermion fields

corresponding to, respectively: “three left-handed fermions (for f =1,2,3), in addition to their three
complementary right-handed anti-fermions (for f =5,6,7), and also a new single charge-less right-
handed spin-1/2 fermion (for f =4)”. Hence, following the basic algebraic properties of seven matrices
7 (110-12), and the gauge symmetry group of the type: SU(2) ®U(2)r generated by these matrices, the

three matrices 7,,7,,7; (corresponding with SU(2).) represent respectively “three left-handed

fermions”, and four matrices 7,, 75, 74, 7; (corresponding with U(2)r) represent respectively: “a new
single right-handed charge-less spin-1/2 fermion, and three right-handed spin-1/2 fermions as the
complementary particles of the three left-handed spin-1/2 fermions represented by matricesz,,7,,7;” .
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Furthermore, as it would be shown in Sections 3-6-3 — 3-6-3-2, as a natural assumption, by assuming the
seven types of spin-1/2 fermion fields that are described by general covariant field equation (110-9), as
the source currents of spin-1 boson fields (that will be represented by two determined unique groups
describing respectively by general covariant field equations (114-4) and (114-5), in Sec. 3-6-3-2), it
would be concluded that there should be, in total, four specific groups of seven spin-1/2 fermion fields
(each) with certain properties, corresponding to “1+3” generations of four fermions, including two groups
of four leptons each, and two groups of four quarks each. Moreover, based on this basic circumstances,

two groups of leptons would be represented uniquely by: “[(v,, e ,v.), (V, &', ¥, ZJ] and [(,V,, 1),
(u+, Ve, T , Zn)], respectively, where each group includes a new single right-handed charge-less lepton,
representing by: z. and z,”; and two groups of quarks would be also represented uniquely by: “[(S,U,b)
,(5,U,b, zy]and [(c,d,t), (T, d, 1, zq)], respectively, where similar to leptons, each group includes a
new single right-handed charge-less quark, representing by: z, and z4”. In addition, emerging two right-
handed charhe-less quarks z, and z4 specifically in two subgroups with anti-quarks (§,U,5, Z,) and

(T, dt, Z4), could explain the baryon asymmetry, and subsequently, the asymmetry between matter and
antimatter in the universe.

3-6-2. Assuming the spin-1/2 fermion fields describing by general covariant massive field equations
(110-9) (defined by column matrix (110-10) in (1+2) space-time dimensions with a digonalized metric),
as the coupling source currents of spin-1 boson fields (describing generally by (1+3)-dimensional case of
general covariant field equation (72) formulated with a column matrix of the type Wr (98-2)), it is
concluded that the (1+3)-dimensional metric could be also diagonalized for corresponding spin-1 boson
fields. This conclusion follows directly from the above assumption that the (1+3)-dimensional metric of
spin-1 boson fields (coupled to the corresponding fermionic source currents) would be also partially

diagonalized such that: g, =0 (for x = 012 and x # v), which subsequently impliy

Jo3 = 055 = 0,5 = 0. Hence, the invariant energy-momentum relation (52) will be expressed as follows in
(1+3)-dimensional space-time with diagonalized metric:

9™(Po)* = 9%(ps)* + 9" (p)* +9%(p)* +97(p;)* =0 (111)
that is equivalent to: g% (p,)* +9"(p,)? +9%(p,)* +9%(p,)* =(m,c)’, where (similar to the (1+2)-
dimensional case in Sec. 3-1-1) myand p ,are the particle’s rest mass and momentum (4-momentum),

pZ‘ =myk,, and K, :(k0,0,0,0)=(c/ \/W ,0,0,0) denotes the covariant form of the 4-velocity of particle in

stationary reference frame. Now similar to the transformations (108-1) — (108-7), as it would be shown in
the following, a crucial property of the quadratic relation (111) would be also its invariance under two

certain sets of sign inversions of the components of particle’s momentum:: (p,, p;, P,, P;), along with
similar inversions for the components: (pg,p;, Ps. P;') (as particular cases), where p5' = mgK,,
P =p; = p3St =0. The first set of these includes seven different odd types of the sign inversions (i.e.

with odd inversions), and the second set includes eight different even types of the sign inversions (i.e.
with even inversions), which could be represented simply by the following two symmetric groups of
transformations (based on the formalism of the Lorentz symmetry group of invariant relation (111)),
respectively:

The first group includes,
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(Pos P3's Pis P2y Ps) = (Pos P s—Pu—P2, P3) = (5, P pi, pf, ps5”) (111-1)
(Po» PS5’ Py Pas Ps) 5 (o, P55 Pu—Poi—Ps) = (RS, o ®, P2, P52, p§?) (111-2)
(Po» PS5’ Py Do Ps) > (o, P5— D1 Poi—Ps) = (RS, Pe @, p2, P52, ps?) (111-3)
(Po» B Pus Py Bs) > (—Pou— B3 = Pri— P —B) = (S, P, pi¥, ¥, %) (111-4)
(Po» 5" Pus oy P3) > (=P =P8y Pus Poi—Ps) = (PSY, e, p™, pP, p§¥)  (111-5)

(Pos BS' Pus P2y P3) > (—Po—Ps =Py Poy Ps) = (PSY, P, P, pP, p?) (111-6)

(Po, P3Py, Pz P3) > (= Po—Pg's PL—P2: P3) = (pS”, o, b, ps”, pi”) (111-7)
And the second group is given by, respectively:
(Pos PS' Pus P2y P3) = (Pos P =Py, Poy P) = (S, B3, p®, p&, p?) (111-8)

(Po: Pa's Py Pay P3) > (P, PS Py— P P3) = (RS, pe'®, p2, pi”, pi*) (111-9)
(Pos BS' Py P2y Ps) > (P, PSPy, Poi—Ps) = (PS, p5?, pi2, pit?, ps (111-10)

(Po, B3’ Pus P2y P3) > (Pos P —Pr—Po—Ps) = (P52, po?, pit?, pit, p§?)  (111-11)

st12) ~(12)

(Po, PS's Pus P2y P3) > (= Pos— P Pus Py, Bs) = (P52, g2, p?, pi?, ps? (111-12)

(Po, P Pus Pay Pa) 2 (= Por— PG5 Pr—Pa—P3) = (P52, pgt™?, p?, pid, pid)  (111-13)
(Pos Ps's Py, Pas Ps) > (—Po,— P =Py, Po—P3) = (P57, per?, pi™¥, pi?, p{®)  (111-14)

(Po: o'+ Pus P2y P3) > (= Pos=Po = Pr=Pa. P3) = (P, P2 P P Ps ) (111-15)
where, similar to the transformations (108-9) (as equivalent complex representations of the determined
group of transformations (108-1) — (108-7), in (1+2)-dimensional space-time), following noncomplex-
algebraic values of momentum’s components p,, ( p; =p,), the corresponding complex representations of

transformations (111-1) — (111-15) is not a necessary issue in general, however, if the invariant relation
(111) is represented formally by equivalent complex form:

9%(PoPy) — 9% (ps s + 9 (Pupy) + 9% (P, Py) + 9%(Psp;) =0 (111-16)

then, along with the set fifteen real-valued transformations (111-1) — (111-15), this relation would be also
invariant under these corresponding sets of complex transformations (forb=1,2,3,...,15):

(Po. PS5’ Py P2, Py) = (DS Hipg®” 4ip®™” ipP” +ip{™),

(Ps. P, Pr P3. P3) — (Fipd” Fips® Fip® Fipy Fip{”) (111-17)

In Sec. 3-6-3, using the transformations (111-1) — (111-15) (along with their corresponding complex
forms (111-17)), a set of fifteen different general covariant field equations would be determined,
including two certain groups of simultaneous field equations (corresponding, respectively, to a group of
seven bispinor fields and a group of eight bispinor fields of spin-1 particles) as the particular cases of the
(1+3)-dimensional form of general covariant field equation (72) (defined with a column matrix of the type
(98-2)).
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3-6-3. Similar to the set of seven algebraic matrix equations (109) (determined uniquely as the algebraic
equivalent matrix representation of the energy-momentum relation (108)), based on the definite
formulation of the system of linear equation (64) in (1+3) space-time dimensions (formulated in terms of
the matrices (68)), for the energy-momentum relation (111) (along with the transformations (111-1) —
(111-15)) the following two sets of systems of linear equations are also determined uniquely, including
respectively a set of seven and a set of eight systems of equations (with different parametric formalisms).
The general parametric solution of each of these systems of linear equations, obeys also the quadratic
relation (111) (representing a set of fifteen forms, with different parametric formulations, of the general
parametric solutions of quadratic relation (111)). Each of these sets of the systems of linear equations
could be represented uniformly by a matrix equation as follows, respectively:

(a@“p® —mPark )S™ =0, (112-1)
(a“pt? —mPak,)S®™ =0 (112-2)

where b, =123,..7, b,=89,..15, p;‘(bl) = m(()bl)kﬂ, p;t(bZ) = mébZ)ku, atand a“are two

contravariant 8x8 real matrices (compatible with matrix representations of the Clifford algebra Ct;3)
defined solely by formulas (65) and (68), and parametric column matrices S® and S®’ are also given

uniquely as follows by two distinct expressions (formulated on the basis of definite parametric
formulation of column matrix S (68) in (1+3) space-time dimensions):

OO —uP ] PN N
OOV U OO N
(uébl)v?(’bl) _ u:gbl)vt()bl))w (UébZ)ngZ) _ UébZ)VébZ))W
gy _ 0 g 0 (113)
(u:gbl)vgbl) _ u;bl)v:gbl))w (UébZ)ngZ) _ UébZ)VébZ))W
(@ ) PN N
@B U UENE) —uPNE
L S _ L S' .

which column matrix S®includes seven cases with specific parametric formulations expressed

respectively in terms of seven groups of independent arbitrary parameters: ul™,u™,uf® v{® v® v
and two common arbitrary parameters s and w (i.e. having the same forms in all of the seven cases of
column matrix S®), and column matrix S®™also includes eight cases with specific parametric
formulations expressed respectively in terms of eight groups of independent arbitrary parameters:

ul® u® uf? v v v and two common arbitrary parameters s’ and w (with the same forms in

all of seven cases of the column matrix S®). In addition, similar to the column matrix S® represented

soley by formula (109-1), the specific parametric expressions (113) of column matrices S® and S® in

the formulation of matrix equations (112-1) and (112-2), have been determined specifically by assuming
(as a basic assumption in addition to the systematic natural approach of formulating the matrix equations
(112-1) and (112-2), based on the definite formulation of axiomatically determined matrix equation (64))

the minimum value for total number of arbitrary parameters in both column matrices S® and S®,
which implies equivalently the minimum value for total number of arbitrary parameters in all of the

73



fifteen simultaneous (different) cases of matrix equations (112-1) and (112-2) (necessarily with fifteen
independent parametric solutions representing totally a certain set of fifteen different equivalent forms of
the general parametric solution of quadratic relation (111), based on the general conditions of basic
definition of the systems of linear equations corresponding to homogeneous quadratic and higher degree
equations, presented in Sec. 2, and Sections 2-2 — 2-4, 3-1-1 concerning the homogenous quadratic
equations).In the following, similar to the fundamental general covariant field equation (109-2) derived in
Sec. 3-6-1-1, in the derivation of the corresponding field equations (from matrix equations (112-1) and
(112-2), respectively), we will also use the above particular algebraic properties of parameters s and s’
which, respectively, have been expressed commonly in the expressions of all of seven simultaneous cases
of matrix equation (112-1), and in the expressions of all of eight cases of matrix equation (112-1).

3-6-3-1. Moreover, similar to the invariant relation (108) and derived matrix equation (109), along with
the transformations (111-1) — (111-15) and algebraic matrix equations (112-1) and (112-2), using the
corresponding complex transformations (111-17), we may also formally have the following equivalent

matrix equations (with the complex expression), respectively (for b, =1,2.3,...,7, b, =839,...,15):
(ia"p™ —imPark,)s®™ =0, (112-3)

(ia“pt?" —imPa 'k )S® =0 (112-4)

st(by)

where p*® =m{k,,, p® =m{*k,. Similar to the matrix equation (109-2), although, based on the

real value of momentum p, (p, = p,), the complex expression of each of the seven cases of algebraic

matrix equation (112-1), and also each of the eight cases of algebraic matrix equation (112-2), definitely,
IS not a necessary issue at the present stage. However, since the corresponding momentum operator

p, has a complex value (where p, = p;), in the following, using this basic property of the operator f)ﬂ,

we derive, distinctly, two certain groups of the general covariant field equations, including a group of
seven different simultaneous field equations from the matrix equations (112-1) and (112-3), and a group
of eight different simultaneous field equations from the matrix equations (112-2) and (112-4) (based on
the general axiomatic approach of derivation of general covariant massive field equations (72) presented
in Sections 3-4 — 3-4-5, and the quantum representations of C, P and T symmetries of this equation,
presented in Sections 3-5 — 3-5-4). Furthermore, in Sec. 3-6-3-2, it would be also shown that each of these
determined two sets of seven and eight simultaneous field equations describe, respectively, a uniform
group of seven spin-1boson fields (corresponding to two left-handed massive charged bosons, along with
their two complementary right-handed bosons; a left-handed massive charge-less boson, along with its
complementary right-handed boson; and a single right-handed massless and charge-less boson), and a
uniform group of eight spin-1 boson field (corresponding to eight massless charged bosons).

Hence, similar to the (1+2)-dimensional general covariant field equation (114) derived in Sec. 3-6-1-1,
based on the axiomatic approach of derivation of the (1+3)-dimensional case of field equation (72)
(defined solely by a column matrix of the form (98-2) in (1+3) space-time dimensions, as shown in Sec.
3-5-2), from the matrix equations (112-1), (112-3) and (112-2), (112-4) (defined solely by column

matrices (113)), also taking into account this basic momentum operator’s property: ﬁ;;t p,, the

following two unique groups of seven and eight simultaneous general covariant field equations are
determined solely, respectively:

(ina“ D —m™a’k,)d¥ =0 (114-1)
(ihe" D™ —m™ gk JdE) =0 (114-2)

74



specifying by the following two groups of transformations (based on their two corresponding groups of
(sign) transformations (111-1) — (111-7), (111-8) — (111-15) and (111-17)), for b, =123,...,7 and
b, =123,...,8, respectively:

The first group includes,

(o, m, P, D, DY) = (D,,m,,~D,,~D,,D,) (114-1-1)
(D, m?, D?, D, D) = (D,, m,, D,,~D,,~D,) (114-1-2)
(0P, m®, D, DY, DY) = (D,, m,,~D,,D,,~D5) (114-1-3)
(D, m?, D, DY, D{Y) = (-iD; ,—im, ,—iD; ,—iD; ,—iD;)  (114-1-4)
(D, m, D, DY, D) = (-iD;,—im,,iD;,iD, ,—iD;) (114-1-5)
(D, m{, D, D?, D?) = (~iD; ,—im,,—iD; ,iD; ,iD;) (114-1-6)
(D§”,m{?, D", D, D{") = (—iD; ,—im,, iD; ,—iD;,iD;) (114-1-7)
and the second group is given as follows, respectively:
(O, m®, D%, DY, D) = (D,,m,,~D,,D,,D;) (114-2-1)
(D), m®,D;®,D)?, D)) =(D,,m,, D, ,~D,, D;) (114-2-2)
(0;®,m®,D;®, D;®,D;®) =(D,,m,,D, ,D,,~D;) (114-2-3)
(D), m¥, D/ D), D)) = (D,,m,,~D,,~D,,~D5) (114-2-4)

(D™, m®, D/ D®, D) = (-iD;,~im,,iD; ,iD;,iD;) (114-2-5)
(D, m®, D@, D), Dy®) = (-iD;,—im,, iD; ,—iD,,—iD;)  (114-2-6)
(O, mi" D/, D), DI = (—iD; ,—im,,—iD;,iD; ,—iD;)  (114-2-7)
(D;®, m®, 0;®, D, D;®) = (-iD;,—im,,—iD; ,—iD,,iD;)  (114-2-8)

where the column matrices (D(Zbl) and CDf;bl) are also given as follows, written on the basis of definite

formulations of algebraic column matrices (113), in addition to the unique formulation of column matrix
(98-2) (expressing the general representation of column matrices definable in the formulation of (1+3)-
dimensional case of general covariant field equation (72)):

(7 (k)] ft) ]
ZlO GlO2
(b)) (b)
ZZO G202
2ty ol e
0 im® 0 im’®) -
) _ ®) _ _(p 0 (b) _ () _ (b) 0
@7 = 7)) [ 3,0 =D+ 5 K)oz, ©c* = G® | I ==(D + 5 K, )Pe
23 23
(b) (b,)
Z3l G312
(b) (b,)
Z3t:|:.‘l G312
L Pz | L P |
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where in all of the seven simultaneous (different) field equations (112-1) formulated with column matrix
@™ (for b, =1,2,3,...,7), and also in all of the eight simultaneous (different) field equations (112-2)

formulated with column matrix CDg’Z) (for b, =1,2,3,...,.8), the scalar quantity ¢, (as initially given
guantity) defines commonly set of seven source currents J/(lbl) , and scalar quantity ¢ also defines

commonly set of eight source currents J .

3-6-3-2. Following the definite formulations of set of seven field equations (114-1), and set of eight
field equations (114-2 ) specified, respectively, by the transformations (114-1-1) — (114-1-7) and (114-2-
1) — (114-2-8), these two sets of the field equations could be represented uniformly by the following
general covariant field equations as well (defined solely in (1+3) space-time dimensions), respectively:

(ina*D, —mya*k )@, =0 (114-4)
(ina*D, —mya’k,)Pg =0 (114-5)

where the column matrices @, and @ given by:

ZlO GlO
ZZO GZO
Z3O GSO
o, - 0| =D, +" °k/,) 5 o = 0| 3, =~(D, +'m° K)o (114-6)
ZZ3 GZ3
Z3l GSl
ZSl GSl
Kz | @6 |

and the field strength tensors Z ,,, G, and scalars @, and ¢, along with the source currents J  and

uv?
J; are defined as follows:

7

:Z (bl),z-bl , ZG(bz)

by=1 b2—1
,
~1,(D, +—k B (D(b1’+ k P, = ZJ“&’%:J#,
by=L
b |m(b) b
~1,(D, ;! °k @ G: (D(2)+ K,)ps = ZJ"%) : (114-7)
b,= b,=1

|
where 1,, I, are 2x2 and 3x 3 identity matrices, andrbl :% (for b, =1,2,3,...,7) are the following
set of seven 2 x 2 complex matrices:
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o o , (114-8)

0 1 0 —i 1 0
1 o |i o |0 -
which similar to the set of matrices (110-12) in Sec. 3-6-1-1, represents uniformly a combined gauge
symmetry group of the form: SU(2) ®U(2)r , where the subset of three matrices “7,,7,,7,” corresponds

to SU(2), group, and subset of four matrices “7,, 7, 74, 7, ” corresponds to U(2)r group.

The matrices sz :(]/2)/1bz (for b,=123,...,8) are also the following set of eight 3x3complex
matrices equivalent to the Gell-Mann matrices (representing the SU(3) gauge symmetry group):

1 0] [0 —-i O 1 0 0

1 0 O i 0 o0 0 -1 0},

0 0 0] [0 0 O] 0 0 0
. Ay Ay A 0 0 1] [0 0 —i]

ﬂbzzz/ibz, Ay A o =10 0 0| |0 0 0] ° (114-9)

Adov Ay Ay 1 0 0| |i 0 0

o 0 0] [o 0 O] 10 0

0 0 1| |0 0 —il, %o 1 0

0 1 0] [0 i O] 0 0 -2

Now based on the definite matrix formalisms of the field strength tensorsZ,, and GW (114-7)

(described respectively by general covariant massive field equations (114-4) and (114-5)), and on the
basis of C, P and T symmetries of these field equations (as two particular forms of the (1+3)-dimensional
case of tensor field equation (72)), represented by their corresponding quantum operators (defined in
Sections 3-5 — 3-5-4), it would be concluded that the field equation (114-4) describes uniformly a
definite group of seven simultaneous bispinor fields of spin-1 particles (corresponding to seven matrices

71,75, T3, T4, Ts, Tgr T (114-8)), including, respectively: “three left-handed massive bosons that could be

denoted by "W’,VV*,Z"(represented respectively by three matrices 7,,7,,7,, corresponding with
SU(2),), a right-handed charge-less spin-1 boson and also three right-handed spin-1 (massive) bosons
denoted by "w,W*,VV’, Z"(represented respectively by four matrices z,, 7., 75, 7;, corresponding with
U(2)r), as the complementary particles of three left-handed bosons represented by the matricesz,,7,,7,”.

In addition, following the definite representations of these determined seven bosons, it could be

concluded that four bosons (l//,W’,W*,Z ) correspond to the known bosons including respectively
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photon (determined as a right-handed charge-less boson, compatible with the positive-frequency
corresponding to the right-handed circular polarization state of photon), and W~,W™,Z bosons. Hence,

particles VVﬂVV‘,Z represent three new massive spin-1 bosons (where, in particular, Z is the

complementary right-handed particle of ordinary Z boson), predicted uniquely by this new mathematical
axiomatic approach. Furthermore, the field equation (114-5) also would describe uniformly a definite
group of eight spin-1 boson fields (corresponding respectively to the eight matrices

11,12,13,14,15,16,/77,2;, representing SU(3) gauge group).

Furthermore, as noted in Sec. 3-6-1-1, by assuming the group of seven spin-1/2 fermion fields
(described by field equations (110-9) — (110-12)) as the source currents of spin-1 boson fields, it would be

also concluded that the group of seven uniform spin-1 boson fields Z{ representing by [
W W*,Z ),(w,W*W",Z )] (describing by the general covariant field equation (114-4)), and the group
of eight uniform spin-1 boson fields G (describing by general covariant field equations (114-5)), hold
certain properties (including the electrical and color charges, so on) compatible with the known properties
of ordinary bosons W~ ,W™*,Z and photon, and also eight gluon fields (with their known definite
properties, including the color charges represented by ‘color octet’ [35, 36]). In addition, based on the
group representation of three additional new bosons that are predicted uniquely by this new mathematical
axiomatic approach, denoting by:"VV*,VV‘,Z ", these new bosons could have properties similar to the

ordinary bosons W~ ,W™,Z; where in particular new boson Z (as the complementary right-handed
particle of ordinary Z boson), can mix with Z boson.

Moreover, as mentioned in Sec. 3-6-1-1, by assuming (as a basic natural assumption) the seven types of
spin-1/2 fermion fields describing by general covariant field equation (110-9), as the source currents of
the uniquely determined two groups of seven and eight spin-1 boson fields (describing respectively by
general covariant field equations (114-4) and (114-5)), it would be concluded that there should be, in
total, four specific groups of seven spin-1/2 fermion fields (each) with certain properties, corresponding to
“1+3” generations of four fermions, including two groups of four leptons each, and two groups of four
guarks each. Moreover, based on this basic circumstances, two groups of leptons would be represented

uniquely by: “[(v,, e ,v.), (V.6 ¥, Z)]and [(,V,, ), (W, V,, T , Zs)], respectively, where each
group includes a new single right-handed charge-less lepton, representing by: z. and z,”; and two groups
of quarks would be also represented uniquely by: “[(S,U,b), (5,T, b, zy)] and [(c,d,t), (C, d,t, Zy)],

respectively, where similar to leptons, each group includes a new single right-handed charge-less quark,
representing by: z, and zy”. In addition, emerging two right-handed charhe-less quarks z, and z4

specifically in two subgroups with anti-quarks (§,U,B, Z,) and (E,a,f, Z,), could explain the baryon
asymmetry, and subsequently, the asymmetry between matter and antimatter in the universe.
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4. Conclusion

The main results obtained in this article, are mainly, the outcomes of the new algebraic axiom (17)
(along with the basic assumptions (2) — (3) defined in Sec. 3-1). This new axiom as a definite
generalized form of the ordinary axiom of “no zero divisors” of integral domains (including the
domain of integers), has been formulated soley in terms of square matrices (with integer entries,
appeared as primary objects for representing the integer elements in their corresponding algebraic
axiomatic formalism). In Sec. 3 of this article, as a new mathematical approach to origin of the laws
of nature, using a new basic algebraic axiomatic (matrix) formalism based on the ring theory and
Clifford algebras (presented in Sec.2), “it is shown that certain mathematical forms of fundamental
laws of nature, including laws governing the fundamental forces of nature (represented by a set of
two definite classes of general covariant massive field equations, with new matrix formalisms), are
derived uniquely from only a very few axioms™; where as a basic additional assumption (that is the
assumption (2) in Sec. 3-1), in agreement with the rational Lorentz symmetry group, it has been also
assumed that the components of relativistic energy-momentum (D-momentum) can only take the
rational values. Concerning the basic assumption of rationality of relativistic energy-momentum, it is
necessary to add (as mentioned in Sec. 3-1) that the rational Lorentz symmetry group is not only
dense in the general form of Lorentz group, but also is compatible with the necessary conditions
required basically for the formalism of a consistent relativistic quantum theory [77]. In essence, the
main scheme of the new mathematical axiomatic approach to fundamental laws of nature presented
in Sec. 3, is as follows. First in Sec. 3-1-1, based on the assumption of rationality of D-momentum,
by linearization (along with a parameterization procedure) of the Lorentz invariant energy-
momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear
equations (with matrix formalisms compatible with certain Clifford, and symmetric algebras) has
been derived. Then in Sec. 3-4, by first quantization (followed by a basic procedure of minimal
coupling to space-time geometry) of these determined systems of linear equations, a set of two
classes of general covariant massive (tensor) field equations (with matrix formalisms compatible
with certain Clifford, and Weyl algebras) has been derived uniquely as well. Each class of the
derived general covariant field equations also includes a definite form of torsion field appeared as
generator of the corresponding field’ invariant mass. In addition, in Sections 3-4 — 3-5, it has been
shown that the (1+3)-dimensional cases of two classes of derived field equations represent a new
general covariant massive formalism of bispinor fields of spin-2, and spin-1 particles, respectively. In
fact, these uniquely determined bispinor fields represent a unique set of new generalized massive forms of
the laws governing the fundamental forces of nature, including the Einstein (gravitational), Maxwell
(electromagnetic) and Yang-Mills (nuclear) field equations. Moreover, it has been also shown that the
(1+2)-dimensional cases of two classes of these field equations represent (asymptotically) a new general
covariant massive formalism of bispinor fields of spin-3/2 and spin-1/2 particles, respectively,
corresponding to the Dirac and Rarita—Schwinger equations.

As a particular consequence, in Sec. 3-4-2, it has been shown that a certain massive formalism of general
relativity — with a definite form of torsion field appeared originally as the generator of gravitational
field’s invariant mass — is obtained only by first quantization (followed by a basic procedure of minimal
coupling to space-time geometry) of a certain set of special relativistic algebraic matrix equations. In Sec.
3-4-4, it has been also proved that Lagrangian densities specified for the originally derived new massive
forms of the Maxwell, Yang-Mills and Dirac field equations, are also gauge invariant, where the invariant
mass of each field is generated solely by the corresponding torsion field. In addition, in Sec. 3-4-5, in
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agreement with recent astronomical data, a new particular form of massive boson has been identified
(corresponding to U(1) gauge group) with invariant mass: m, = 4.90571x10°°%kg, which is specially
generated by a coupled torsion field of the background space-time geometry.

Moreover, in Sec. 3-5-2, based on the definite mathematical formalism of this new axiomatic
approach, along with the C, P and T symmetries (represented basically by the corresponding
quantum matrix operators) of uniquely derived two fundamental classes of general covariant field
equations, it has been concluded that the universe could be realized solely with the (1+2) and (1+3)-
dimensional space-times (where this conclusion, in particular, is based on the time-reversal
symmetry). In Sections 3-5-3 and 3-5-4, it has been proved that 'CPT' is the only (unique)
combination of C, P, and T symmetries that could be defined as a symmetry for interacting fields.. In
addition, in Sec. 3-5-4, on the basis of these discrete symmetries of derived field equations, it has
been also shown that only left-handed particle fields (along with their complementary right-handed
fields) could be coupled to the corresponding (any) source currents. Furthermore, in Sec. 3-6, it has
been shown that metric of the background space-time is diagonalized for the uniquely derived
fermion field equations (defined and expressed solely in (1+2)-dimensional space-time), where this
property generates a certain set of additional symmetries corresponding uniquely to the
SU(2).®U(2)r symmetry group for spin-1/2 fermion fields (representing “1+3” generations of four
fermions, including a group of eight leptons and a group of eight quarks), and also the SU(2), ®U(2)r
and SU(3) gauge symmetry groups for spin-1 boson fields coupled to the spin-1/2 fermionic source
currents. Hence, along with the known elementary particles, eight new elementary particles,
including: four new charge-less right-handed spin-1/2 fermions (two leptons and two quarks,
represented by “z , z, and z, , z4”), a spin-3/2 fermion, and also three new spin-1 massive bosons

(represented by "W W, Z ", where in particular, the new boson Z is complementary right-

handed particle of ordinary Z boson), have been predicted uniquely by this fundamental axiomatic
approach. As a particular result, in Sec. 3-4-2, based on the definite and unique formulation of the
derived Maxwell’s equations (and also determined Yang-Mills equations, represented uniquely with
two specific forms of gauge symmetries, in 3-6-3-2), it has been also concluded generally that
magnetic monopoles could not exist in nature.

The new results obtained in this article, which are connecting with a number of longstanding
essential issues in science and philosophy, demonstrate the wide efficiency of a new fundamental
algebraic-axiomatic formalism presented in Sec. 2 of this article.
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Appendix A.

The matrix equation (64) in Minkowski flat space-time (with metric signature (+ — —...—)) would be
represented simply by:

(a”p, —mel)S =0 (A)

where | is the identity matrix, and column matrix S is defined uniquely by formulas (66) — (70),... in
(1+1), (1+2), (1+3), (1+4), (1+5),... space-time dimensions. The general contravariant forms of real

matrices & that generate the Clifford algebra Clyn (for N > 2) in (1+N)-dimensional space-time, are
(as mentioned in Sec. 3-3), are expressed by formulas (66) — (70),... in various space-times dimensions.
Moreover, following the axiomatic approach of derivation of matrix equation (64), matrices a”in
Minkowski flat space-time also hold the Hermiticity and anti-Hermiticity properties such that:
a’ =(a®)" (compatible with (a°)’ =1), and a* =—(a")" (compatible with (a*)* =-1, for u
=1,2,3,...).

These matrices in the (1+1), (1+2), (1+3) and (1+4)-dimensional Minkowski space-time (as special cases
of their general contravariant forms (65) — (69),...), have the following representations, respectively:

- For (1+1)-dimensional space-time we have:

6 {1 o} . {0 1}
a’ = . at= (A-1)
0 -1 -1 0

- For (1+2)-dimensional case we get:

10 0 O
aoz[a°+al 0 }: 01 0 O
0 —(c°+o?)] [0 0 -1 O
00 0 -1
[0 0 0 1]

a1=[ > 62_03} 00 (a-2)
-0 +0 0 0 -100
1.0 00
[0 0 1 0]
2 0 -ot+co° 0 00 -1
“ :Lfl—o—O 0 }: 100 0f
0 10 0]

85



- In (1+3) dimensions, we have:
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- In (1+4) dimensions, these matrices given by:
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(A-4).
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