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On the Logical Origin of the Laws Governing the Fundamental Forces    
of Nature: A New Algebraic-Axiomatic (Matrix) Approach 

by: Ramin Zahedi 
* 

 

Logic and Philosophy of Science Research Group**, Hokkaido University, Japan 
 

28 Jan 2015 
The main idea and arguments of this article are based on my earlier publications (Refs. [1]-[4], Springer, 
1996-1998). In this article, as a new mathematical approach to origin of the laws of nature, using a new basic 
algebraic axiomatic (matrix) formalism based on the ring theory and Clifford algebras (presented in Sec.2), 
“it is shown that certain mathematical forms of fundamental laws of nature, including laws governing the 
fundamental forces of nature (represented by a set of two definite classes of general covariant massive field 
equations, with new matrix formalisms), are derived uniquely from only a very few axioms”; where in 
agreement with the rational Lorentz group, it is also basically assumed that the components of relativistic 
energy-momentum can only take rational values. In essence, the main scheme of this new mathematical 
axiomatic approach to fundamental laws of nature is as follows. First based on the assumption of rationality 
of D-momentum, by linearization (along with a parameterization procedure) of the Lorentz invariant energy-
momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear equations 
(with matrix formalisms compatible with certain Clifford, and symmetric algebras) is derived. Then by first 
quantization (followed by a basic procedure of minimal coupling to space-time geometry) of these 
determined systems of linear equations, a set of two classes of general covariant massive (tensor) field 
equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras) is derived uniquely 
as well. Each class of the derived general covariant field equations also includes a definite form of torsion 
field appeared as generator of the corresponding field‘ invariant mass. In addition, it is shown that the (1+3)-
dimensional cases of two classes of derived field equations represent a new general covariant massive 
formalism of bispinor fields of spin-2, and spin-1 particles, respectively. In fact, these uniquely determined 
bispinor fields represent a unique set of new generalized massive forms of the laws governing the 
fundamental forces of nature, including the Einstein (gravitational), Maxwell (electromagnetic) and Yang-
Mills (nuclear) field equations. Moreover, it is also shown that the (1+2)-dimensional cases of two classes of 
these field equations represent (asymptotically) a new general covariant massive formalism of bispinor fields 
of spin-3/2 and spin-1/2 particles, corresponding to the Dirac and Rarita–Schwinger equations. 
     As a particular consequence, it is shown that a certain massive formalism of general relativity – with a 
definite  form of torsion field appeared originally as the generator of gravitational field‘s invariant mass – is 
obtained only by first quantization (followed by a basic procedure of minimal coupling to space-time 
geometry) of a certain set of special relativistic algebraic matrix equations. It has been also proved that 
Lagrangian densities specified for the originally derived new massive forms of the Maxwell, Yang-Mills and 
Dirac field equations, are also gauge invariant, where the invariant mass of each field is generated solely by 
the corresponding torsion field. In addition, in agreement with recent astronomical data, a new particular 
form of massive boson is identified (corresponding to the U(1) gauge symmetry group) with invariant mass:                       
mγ ≈ 4.90571×10-50 kg, generated by a coupled torsion field of the background space-time geometry. 
    Moreover, based on the definite mathematical formalism of this axiomatic approach, along with the C, P 
and T symmetries (represented basically by the corresponding quantum operators) of the fundamentally 
derived field equations, it is concluded that the universe could be realized solely with the (1+2) and (1+3)-
dimensional space-times (where this conclusion, in particular, is based on the T-symmetry). It is proved that 
'CPT' is the only (unique) combination of C, P, and T symmetries that could be defined as a symmetry for 
interacting fields. In addition, on the basis of these discrete symmetries of derived field equations, it has been 
also shown that only left-handed particle fields (along with their complementary right-handed fields) could be 
coupled to the corresponding (any) source currents. Furthermore, it has been shown that the metric of 
background space-time is diagonalized for the uniquely derived fermion field equations (defined and 
expressed solely in (1+2)-dimensional space-time), where this property generates a certain set of additional 
symmetries corresponding uniquely to the SU(2)LU(2)R symmetry group for spin-1/2 fermion fields 
(representing ―1+3‖ generations of four fermions, including a group of eight leptons and a group of eight 
quarks), and also the SU(2)LU(2)R and SU(3) gauge symmetry groups for spin-1 boson fields coupled to the 
spin-1/2 fermionic source currents. Hence, along with the known elementary particles, eight new elementary 
particles, including four new charge-less right-handed spin-1/2 fermions (two leptons and two quarks), a 
spin-3/2 fermion, and also three new spin-1 (massive) bosons, are predicted uniquely by this mathematical 
axiomatic approach. As a particular result, based on the definite formulation of derived Maxwell (and Yang-
Mills) field equations, it has been also concluded that magnetic monopoles could not exist in nature.1    

       

1.  Introduction and Summary 
Why do the fundamental forces of nature (i.e., the forces that appear to cause all the movements and 

interactions in the universe) manifest in the way, shape, and form that they do? This is one of the 

greatest ontological questions that science can investigate. In this article, we‘ll consider this basic and 
 

* Email: zahedi@let.hokudai.ac.jp,  zahedi.r@gmail.com .  **(This work has been done and published during my research fellowship, 2007–2016).                                                                                                                                                              
1. https://indico.CERN.ch/event/344173/contribution/1740565/attachments/1140145/1646101/R.A.Zahedi--Forces.of.Nature.Laws-Jan.2015-signed.pdf  , 

https://eprints.lib.Hokudai.ac.jp/dspace/handle/2115/59279, https://cds.CERN.ch/record/1980381, https://hal-Paris1.archives-ouvertes.fr/hal-01476703,   
https://ui.adsabs.harvard.edu/#abs/2015arXiv150101373Z,  https://Dumas.CCSD.CNRS.fr/TDS-MACS/hal-01476703, https://InspireHep.net/record/1387680                                                                            
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and crucial question (and a number of relevant issues) via a new axiomatic mathematical formalism. 

By definition, a basic law of physics (or a scientific law in general) is: ―A theoretical principle 

deduced from particular facts, applicable to a defined group or class of phenomena, and expressible 

by the statement that a particular phenomenon always occurs if certain conditions be present‖ [55]. 

Eugene Wigner's foundational paper, ―On the Unreasonable Effectiveness of Mathematics in the 

Natural Sciences‖, famously observed that purely mathematical structures and formalisms often lead 

to deep physical insights, in turn serving as the basis of highly successful physical theories [50]. 

However, all the known fundamental laws of physics (and corresponding mathematical formalisms 

which are used for their representations), are generally the conclusions of a number of repeated 

experiments and observations over years and have become accepted universally within the scientific 

communities [56, 57].  
 

This article is based on my earlier publications (Refs. [1]–[4], Springer, 1996-1998). In this article, as 

a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic 

(matrix) formalism based on the ring theory and Clifford algebras (presented in Sec.2), “it is shown 

that certain mathematical forms of fundamental laws of nature, including laws governing the 

fundamental forces of nature (represented by a set of two definite classes of general covariant 

massive field equations, with new matrix formalisms), are derived uniquely from only a very few 

axioms”; where in agreement with the rational Lorentz group, it is also basically assumed that the 

components of relativistic energy-momentum can only take rational values.. Concerning the basic 

assumption of rationality of relativistic energy-momentum, it is necessary to note that the rational 

Lorentz symmetry group is not only dense in the general form of Lorentz group, but also is 

compatible with the necessary conditions required basically for the formalism of a consistent 

relativistic quantum theory [77].  In essence, the main scheme of this new mathematical axiomatic 

approach to fundamental laws of nature is as follows. First based on the assumption of rationality of 

D-momentum, by linearization (along with a parameterization procedure) of the Lorentz invariant 

energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous 

linear equations (with matrix formalisms compatible with certain Clifford, and symmetric algebras) 

is derived. Then by first quantization (followed by a basic procedure of minimal coupling to space-

time geometry) of these determined systems of linear equations, a set of two classes of general 

covariant massive (tensor) field equations (with matrix formalisms compatible with certain Clifford, 

and Weyl algebras) is derived uniquely as well. Each class of the derived general covariant field 

equations also includes a definite form of torsion field appeared as generator of the corresponding 

field‘ invariant mass. In addition, it is shown that the (1+3)-dimensional cases of two classes of 

derived field equations represent a new general covariant massive formalism of bispinor fields of 

spin-2, and spin-1 particles, respectively. In fact, these uniquely determined bispinor fields represent 

a unique set of new generalized massive forms of the laws governing the fundamental forces of 

nature, including the Einstein (gravitational), Maxwell (electromagnetic) and Yang-Mills (nuclear) 

field equations. Moreover, it is also shown that the (1+2)-dimensional cases of two classes of these 

field equations represent (asymptotically) a new general covariant massive formalism of bispinor 

fields of spin-3/2 and spin-1/2 particles, respectively, corresponding to the Dirac and Rarita–

Schwinger equations.   
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As a particular consequence, it is shown that a certain massive formalism of general relativity – with 

a definite  form of torsion field appeared originally as the generator of gravitational field‘s invariant 

mass – is obtained only by first quantization (followed by a basic procedure of minimal coupling to 

space-time geometry) of a certain set of special relativistic algebraic matrix equations. It has been 

also proved that Lagrangian densities specified for the originally derived new massive forms of the 

Maxwell, Yang-Mills and Dirac field equations, are also gauge invariant, where the invariant mass of 

each field is generated solely by the corresponding torsion field. In addition, in agreement with recent 

astronomical data, a new particular form of massive boson is identified (corresponding to U(1) gauge 

group) with invariant mass: mγ ≈ 4.90571×10-50kg, generated by a coupled torsion field of the 

background space-time geometry.     

    Moreover, based on the definite mathematical formalism of this axiomatic approach, along with 

the C, P and T symmetries (represented basically by the corresponding quantum operators) of the 

fundamentally derived field equations, it has been concluded that the universe could be realized 

solely with the (1+2) and (1+3)-dimensional space-times (where this conclusion, in particular, is 

based on the T-symmetry). It is proved that 'CPT' is the only (unique) combination of C, P, and T 

symmetries that could be defined as a symmetry for interacting fields. In addition, on the basis of 

these discrete symmetries of derived field equations, it has been also shown that only left-handed 

particle fields (along with their complementary right-handed fields) could be coupled to the 

corresponding (any) source currents. Furthermore, it has been shown that the metric of background 

space-time is diagonalized for the uniquely derived fermion field equations (defined and expressed 

solely in (1+2)-dimensional space-time), where this property generates a certain set of additional 

symmetries corresponding uniquely to the SU(2)LU(2)R symmetry group for spin-1/2 fermion fields 

(representing ―1+3‖ generations of four fermions, including a group of eight leptons and a group of 

eight quarks), and also the SU(2)LU(2)R and SU(3) gauge symmetry groups for spin-1 boson fields 

coupled to the spin-1/2 fermionic source currents. Hence, along with the known elementary particles, 

eight new elementary particles, including: four new charge-less right-handed spin-1/2 fermions (two 

leptons and two quarks, represented by ―ze , zn and zu , zd‖), a spin-3/2 fermion, and also three new 

spin-1 massive bosons (represented by ",
~

,
~

" ZWW



, where in particular, the new boson Z


is 

complementary right-handed particle of ordinary Z boson), have been predicted uniquely and 

expressly by this new mathematical axiomatic approach.  
 

As a particular result, in Sec. 3-4-2, based on the definite and unique formulation of the derived 

Maxwell‘s equations (and also determined Yang-Mills equations, represented uniquely with two 

specific forms of gauge symmetries, in 3-6-3-2), it has been also concluded generally that magnetic 

monopoles could not exist in nature. 
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1-1. The main results obtained in this article are based on the following three basic assumptions 

(as postulates):  

(1)- “A new definite axiomatic generalization of the axiom of ―no zero divisors‖ of integral 

domains (including the ring of integers ℤ);” 
 
    This algebraic postulate (as a new mathematical concept) is formulated as follows: 

      “Let ][ ijaA   be a nn  matrix with entries expressed by the following linear homogeneous 

polynomials in s variables over the integral domain ℤ: ;),...,,,(
1

321 



s

k

kijksijij bHbbbbaa  suppose 

also ― r ℕ: ns IbbbbF Ar ),...,,,( 321 ‖, where ),...,,,( 321 sbbbbF is a homogeneous polynomial of 

degree r ≥ 2, and nI
 
is nn  identity matrix.  Then the following axiom is assumed (as a new 

axiomatic generalization of the ordinary axiom of ―no zero divisors‖ of integral domain ℤ): 

                                                  )0,0()0(  MMAAr
                                (1) 

where M is a non-zero arbitrary 1n  column matrix”.  

The axiomatic relation (1) is a logical biconditional, where )0( rA  and )0,0(  MMA  are 

respectively the antecedent and consequent of this biconditional. In addition, based on the initial 

assumption r ℕ: ns IbbbbF Ar ),...,,,( 321 , the axiomatic biconditional (1) could be also 

represented as follows: 

                                        )0,0(]0),...,,,([ 321  MMAbbbbF s                          (1-1) 

where the homogeneous equation 0),...,,,( 321 sbbbbF , and system of linear equations 

)0,0(  MMA are respectively the antecedent and consequent of biconditional (1-1). The 

axiomatic biconditional (1-1), defines a system of linear equations of the type 0MA  )0( M , 

as the algebraic equivalent representation of 
thr  degree homogeneous equation 0),...,,,( 321 sbbbbF  

(over the integral domain ℤ). In addition, according to the Ref. [6], since 0),...,,,( 321 sbbbbF  is a 

homogeneous equation over ℤ, it is also concluded that homogeneous equations defined over the 

field of rational numbers ℚ,
 

obey the axiomatic relations (1) and (1-1) as well. As particular outcome 

of this new mathematical axiomatic formalism (based on the axiomatic relations (1) and (1-1), 

including their basic algebraic properties), in Sec. 3-4, it is shown that using, a unique set of general 

covariant massive (tensor) field equations (with new matrix formalism compatible with Clifford, and 

Weyl algebras), corresponding to the fundamental field equations of physics, are derived – where, in 

agreement with the rational Lorentz symmetry group, it has been basically assumed that the 

components of relativistic energy-momentum can only take the rational values. In Sections 3-2 – 3-6, 

we present in detail the main applications of this basic algebraic assumption (along with the 

following basic assumptions (2) and (3)) in fundamental physics. 
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(2)- “In agreement with the rational Lorentz symmetry group, we assume basically that the 

components of relativistic energy-momentum (D-momentum) can only take the rational values;”  
                                              
     Concerning this assumption, it is necessary to note that the rational Lorentz symmetry group is not 

only dense in the general form of Lorentz group, but also is compatible with the necessary conditions 

required basically for the formalism of a consistent relativistic quantum theory [77]. Moreover, this 

assumption is clearly also compatible with any quantum circumstance in which the energy-

momentum of a relativistic particle is transferred as integer multiples of the quantum of action ―h‖ 

(Planck constant). 

 
Before defining the next basic assumption, it should be noted that from the basic assumptions (1) and 

(2), it follows directly that the Lorentz invariant energy-momentum quadratic relation (represented by 

formula (52), in Sec. 3-1-1) is a particular form of homogeneous quadratic equation (represented by 

formula (18-2) in Sec. 2-2). Hence, using the set of systems of linear equations that are determined 

uniquely as equivalent algebraic representations of the corresponding set of quadratic homogeneous 

equations (given by equation (18-2) in various number of unknown variables, respectively), a unique set 

of the Lorentz invariant systems of homogeneous linear equations (with matrix formalisms compatible 

with certain Clifford, and symmetric algebras) are also determined, representing equivalent algebraic 

forms of the energy-momentum quadratic relation in various space-time dimensions, respectively. 

Subsequently, we‘ve shown that by first quantization (followed by a basic procedure of minimal 

coupling to space-time geometry) of these determined systems of linear equations, a unique set of 

two definite classes of general covariant massive (tensor) field equations (with matrix formalisms 

compatible with certain Clifford, and Weyl algebras) is also derived, corresponding to various space-

time dimensions, respectively. In addition, it is also shown that this derived set of two classes of general 

covariant field equations represent new tensor massive (matrix) formalism of the fundamental field 

equations of physics, corresponding to fundamental laws of nature (including the laws governing the 

fundamental forces of nature). Following these essential results, in addition to the basic assumptions (1) 

and (2), it would be also basically assumed that: 
 

(3)- “We assume that the mathematical formalism of the fundamental laws of nature, are 

defined solely by the axiomatic matrix constitution formulated uniquely on the basis of 

postulates (1) and (2)”. 

    In addition to this basic assumption, in Sec. 3-5,  the C, P and T symmetries of the uniquely derived 

general covariant field equations (that are field equations (3) and (4) in Sec. 1-2-1), would be represented 

basically by their corresponding quantum matrix operators. 

1-2. In the following, we present a summary description of the main consequences of basic 

assumptions (1) – (3) (mentioned in Sec. 1-1) in fundamental physics. In this article, the metric 

signature (+ − ... −), the geometrized units [9] and also the following sign conventions have been 

used in the representations of the Riemann curvature tensor 

R , Ricci tensor R  and Einstein 

tensor 
G :

                                       
                                      ....8,),()(  























 GRRRR   (2)
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1-2-1. On the basis of assumptions (1) – (3), two sets of the general covariant field equations 

(compatible with the Clifford algebras) are derived solely as follows: 
 

                                                     
0)~( )(

0  R

R kmi 



                                          (3)

 

                                                    
0)~( )(

0  F

F kmDi 





                                              (4)      

 where 

                                                   
   ~,                                       (5) 

i  and Di  are the general relativistic forms of energy-momentum quantum operator (where 

 is the general covariant derivative and  D
 
is gauge covariant derivative, defining in Sections 3-

4, 3-4-1 and 3-4-2), 
)(

0

Rm  and 
)(

0

Fm  are the fields‘ invariant masses, )0,...,0,( 00gck 
 is the general 

covariant velocity in stationary reference frame (that is a time-like covariant vector), 
 and    are 

two contravariant square matrices (given by formulas (6) and (7)), R  is a column matrix given by 

formulas (6) and (7), which contains the components of field strength tensor R (equivalent to the 

Riemann curvature tensor), and also the components of a covariant quantity which defines the 

corresponding source current (by relations (6) and (7)), F  is also a column matrix given by 

formulas (6) and (7), which contains the components of  tensor field F
 
(defined as the gauge field 

strength tensor), and also the components of a covariant quantity which defines the corresponding 

source current (by relations (6) and (7)). In Sec. 3-5, based on a basic class of discrete symmetries of 

general covariant field equations (3) and (4), it would be concluded that these equations could be 

defined solely in (1+2) and (1+3) space-time dimensions, where the (1+2) and (1+3)-dimensional 

cases these field equations are given uniquely as follows (in terms of the above mentioned 

quantities), respectively: 
 

- For (1+2)-dimensional space-time we have: 

,
0

0
,

0

0
,

00

0
,
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
                                       (6) 

 
- For (1+3)-dimensional space-time of we get: 
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                                     (7) 

 

In formulas (6) and (7), 
)(RJ  and )(FJ  are the covariant source currents expressed necessarily in 

terms of the covariant quantities
 

)(R

  and 
)(F  (as initially given quantities). Moreover, in Sections 

3-4 – 3-6, it has been also shown that the field equations in (1+2) dimensions,  are compatible with 

the matrix representation of Clifford algebra Cℓ1,2, and represent (asymptotically)  new general 

covariant massive formalism of bispinor fields of spin-3/2 and spin-1/2 particles, respectively. It has 

been also shown that these field equations in (1+3) dimensions are compatible with the matrix 

representation of Clifford algebra Cℓ1,3, and represent solely new general covariant massive 

formalism of bispinor fields of spin-2 and spin-1 particles, respectively.  

1-2-2. In addition, from the field equations (3) and (4), the following field equations (with ordinary 

tensor formulations) could be also obtained, respectively: 

                       

,







 RTRTRTRRR 


             (3-1) 

                                                 










)()(

0 )( RR JRkimR  


 ;                                 (3-2) 
 

                                            
),()( 


















 R

                                

                                     

)(
)(

0)( )( R
R

R k
im

J  



 , ).(

2

)(

0
 kgkg

im
T

R




                  
      

(3-3) 
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and

    

 

                                                      

,0  FDFDFD


                                           (4-1) 

                                                                 

)(FJFD 
 


 ;                                                       (4-2) 

                                                              
 ADADF


  ,  

                                 )(
)(

0)( )( F
F

F k
im

DJ 



 , ).(

2

)(

0
 kgkg

im
Z

F




                      (4-3) 

where in equations (3-1) – (3-2), 

  is the affine connection given by: 








 K ,  


  is 

the Christoffel symbol (or the torsion-free connection), 

K  is a contorsion tensor defined by: 

 kgimK R )2( )(

0   (that is anti-symmetric in the first and last indices), T is its corresponding 

torsion tensor given by:  KKT   (as the generator of the gravitational field‘s invariant mass), 




 is general covariant derivative defined with torsion T . In equations (4-1) – (4-3), D


is the 

general relativistic form of gauge covariant derivative defined with torsion field Z (which generates 

the gauge field‘s invariant mass), and A  denotes the corresponding gauge (potential) field.  

1-2-3. In Sec. 3-5, on the basis of definite mathematical formalism of this axiomatic approach, 

along with the C, P and T symmetries (represented basically by the corresponding quantum 

operators, in Sec. 3-5) of the fundamentally derived field equations, it has been concluded that the 

universe could be realized solely with the (1+2) and (1+3)-dimensional space-times (where this 

conclusion, in particular, is based on the T-symmetry). It is proved that 'CPT' is the only (unique) 

combination of C, P, and T symmetries that could be defined as a symmetry for interacting fields. In 

addition, on the basis of these discrete symmetries of derived field equations, it has been also shown 

that only left-handed particle fields (along with their complementary right-handed fields) could be 

coupled to the corresponding (any) source currents. Furthermore, it has been shown that the metric of 

background space-time is diagonalized for the uniquely derived fermion field equations (defined and 

expressed solely in (1+2)-dimensional space-time), where this property generates a certain set of 

additional symmetries corresponding uniquely to the SU(2)LU(2)R symmetry group for spin-1/2 

fermion fields (representing ―1+3‖ generations of four fermions, including a group of eight leptons 

and a group of eight quarks), and also the SU(2)LU(2)R and SU(3) gauge symmetry groups for spin-

1 boson fields coupled to the spin-1/2 fermionic source currents. Hence, along with the known 

elementary particles, eight new elementary particles, including: four new charge-less right-handed 

spin-1/2 fermions (two leptons and two quarks, represented by ―ze , zn and zu , zd‖), a spin-3/2 

fermion, and also three new spin-1 massive bosons (represented by ",
~

,
~

" ZWW



, where in 

particular, the new boson Z


is complementary right-handed particle of ordinary Z boson), have 

been predicted uniquely by this new mathematical axiomatic approach (as shown in Sections 3-6-1-2 

and 3-6-3-2). 
 

1-2-4. As a particular consequence, in Sec. 3-4-2, it is shown that a certain massive formalism of 

the general theory of relativity – with a definite torsion field which generates the gravitational field‗s 

mass – is obtained only by first quantization (followed by a basic procedure of minimal coupling to 

space-time geometry) of a set of special relativistic algebraic matrix relations. In Sec. 3-4-4, it is also 

proved that Lagrangian densities specified for the derived unique massive forms of Maxwell, Yang-
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Mills and Dirac equations, are gauge invariant as well, where the invariant mass of each field is 

generated by the corresponding torsion field. In addition, in Sec. 3-4-5, in agreement with recent 

astronomical data, a new massive boson is identified (corresponding to U(1) gauge group) with 

invariant mass: mγ ≈ 4.90571×10-50kg, generated by a coupling torsion field of the background 

space-time geometry. Furthermore, in Sec. 3-4-2, based on the definite and unique formulation of the 

derived Maxwell‗s equations (and also determined Yang-Mills equations, represented unqiely with 

two specific forms of gauge symmetries), it is also concluded that magnetic monopoles could not 

exist in nature. 

1-2-5. As it would be also shown in Sec. 3-4-3, if the Ricci curvature tensor R  is defined basically 

by the following relation in terms of Riemann curvature tensor (which is determined by field 

equations (3-1) – (3-3)): 

                      




 Rk
im

Rk
im

Rk
im RRR

)()()(
)(

0

)(

0

)(

0












  ,                 (8-1) 

then from this expression for the current in terms of the stress-energy tensor T : 

])()[(8])()[(8
)(

0

)(

0

)(

0

)(

0)(

  Tgk
im

Tgk
im

BTk
im

Tk
im

J
RRRR

R




  
(8-2) 

where 
TT  , the gravitational field equations (including a cosmological constant emerged 

naturally in the course of derivation process) could be equivalently derived particularly from the 

massless case of tensor field equations (3-1) – (3-3)  in (1+3) space-time dimensions, as follows: 

                                                     gTgTR  48                                        (9) 

 

1-2-6. Let we emphasize again that the results obtained in this article, are direct outcomes of a new 

algebraic-axiomatic approach1 which has been presented in Sec. 2. This algebraic approach, in the 

form of a basic linearization theory, has been constructed on the basis of a new single axiom (that is 

the axiom (17) in Sec. 2-1) proposed to replace with the ordinary axiom of ―no zero divisors‖ of 

integral domains (that is the axiom (16) in Sec. 2). In fact, as noted in Sec. 1-1 and also Sec. 2-1, the 

new proposed axiom is a definite generalized form of ordinary axiom (16), which particularly has 

been formulated in terms of square matrices (using basically as primary objects for representing the 

elements of underlying algebra, i.e. integral domains including the ring of integers). In Sec. 3, based 

on this new algebraic axiomatic formalism, as a new mathematical approach to origin of the laws of 

nature, “it is shown that certain mathematical forms of fundamental laws of nature, including laws 

governing the fundamental forces of nature (represented by a set of two definite classes of general 

covariant massive field equations, with new matrix formalisms), are derived uniquely from only a 

very few axioms”; where in agreement with the rational Lorentz group, it is also basically assumed 

that the components of relativistic energy-momentum can only take rational values. 

--------------------------------------------------------------------------------------------------------- 
1.

  Besides, we may argue that our presented axiomatic matrix approach (for a direct derivation and formulating the fundamental laws of nature 

uniquely) is not subject to the Gödel's incompleteness theorems [51]. As in our axiomatic approach, firstly, we've basically changed (i.e. 

replaced and generalized) one of the main Peano axioms (when these axioms algebraically are augmented with the operations of addition and 
multiplication [52, 53, 54]) for integers, which is the algebraic axiom of ―no zero divisors‖.            

Secondly, based on our approach, one of the axiomatic properties of integers (i.e. axiom of ―no zero divisors‖) could be accomplished solely 

by the arbitrary square matrices (with integer components). This axiomatic reformulation of algebraic properties of integers thoroughly has 
been presented in Sec. 2 of this article. 
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2. Theory of Linearization: a New Algebraic-Axiomatic (Matrix) Approach   

   Based on the Ring Theory 

 
In this Section a new algebraic theory of linearization (including the simultaneous parameterization) of 

the homogeneous equations has been presented that is formulated on the basis of ring theory and matrix 

representation of the generalized Clifford algebras (associated with homogeneous forms of degree r ≥ 2 

defined over the integral domain ℤ). 

 

Mathematical models of physical processes include certain classes of mathematical objects and relations 

between these objects. The models of this type, which are most commonly used, are groups, rings, vector 

spaces, and linear algebras. A group is a set G with a single operation (multiplication) cba  ;

Gcba ,,  which obeys the known conditions [5]. A ring is a set of elements R, where two binary 

operations, namely, addition and multiplication, are defined. With respect to addition this set is a group, 

and multiplication is connected with addition by the distributivity laws: ),()()( cabacba 

)()()( acabacb  ; Rcba ,, . The rings reflect the structural properties of the set R. As 

distinct from the group models, those connected with rings are not frequently applied, although in physics 

various algebras of matrices, algebras of hyper-complex numbers, Grassman and Clifford algebras are 

widely used. This is due to the intricacy of finding a connection between the binary relations of addition 

and multiplication and the element of the rings [5, 2]. This Section is devoted to the development of a 

rather simple approach of establishing such a connection and an analysis of concrete problems on this 

basis. 

I‘ve found out that if the algebraic axiom of ―no zero divisors‖ of integral domains is generalized 

expressing in terms of the square matrices (as it has been formulated by the axiomatic relation (17)), 

fruitful new results hold. In this Section, first on the basis of the matrix representation of the generalized 

Clifford algebras (associated with homogeneous polynomials of degree r ≥ 2 over the integral domain ℤ), 

we‘ve presented a new generalized formulation of the algebraic axiom of ―no zero divisors‖ of integral 

domains. Subsequently, a linearization theory has been constructed axiomatically that implies (necessarily 

and sufficiently) any homogeneous equation of degree r ≥ 2 over the integral domain ℤ, should be 

linearized (and parameterized simultaneously), and then its solution be investigated systematically via its 

equivalent linearized-parameterized formolation (representing as a certain type of system of linear 

homogeneous equations). In Sections 2-2 and 2-4, by this axiomatic approach a class of homogeneous 

quadratic equations (in various numbers of variables) over ℤ has been considered explicitly 

 

2-1. The basic properties of the integral domain  ℤ  with binary operations ),(   are represented as 

follows, respectively [5] (   aaa kji ,...,, ℤ):                       

-  Closure:                                                   lk aa ℤ ,  lk aa ℤ                                               (10)
                                                                  

                                                 

-  Associativity:               ,)()( plkplk aaaaaa    plkplk aaaaaa  )()(          (11) 

-  Commutativity:                                ,kllk aaaa    kllk aaaa                                    (12) 

-  Existence of identity elements:
             

,0 kk aa    kk aa 1                                                 (13)
 

-  Existence of inverse element (for operator of addition):
  

                                                                       
0)(  kk aa                                                            (14)
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-  Distributivity:  ),()()( pklkplk aaaaaaa   )()()( plpkplk aaaaaaa      (15) 

-  No zero divisors (as a logical bi-conditional for operator of multiplication):                                  

                                                             )0,0(0  llkk aaaa                                         (16) 

Axiom (16), equivalently, could be also expressed as follows,
 

 

                                                             0)00(  lklk aaaa                                     (16-1)          
 

In this article as a new basic algebraic property of the domain of integers, we present the following 

new axiomatic generalization of the ordinary axiom of ―no zero divisors‖ (16), which particularly has 

been formulated on the basis of matrix formalism of Clifford algebras (associated with homogeneous 

polynomials of degree r ≥ 2, over the integral domain ℤ): 

    

   “Let ][ ijaA   be a nn  matrix with entries expressed by the following linear homogeneous 

polynomials in s variables over the integral domain ℤ: ;),...,,,(
1

321 



s

k

kijksijij bHbbbbaa  suppose 

also ― r ℕ: ns IbbbbF Ar ),...,,,( 321 ‖, where ),...,,,( 321 sbbbbF is a homogeneous polynomial of 

degree r ≥ 2, and nI
 
is nn  identity matrix.  Then the following axiom is assumed (as a new 

axiomatic generalization of the ordinary axiom of ―no zero divisors‖ of integral domain ℤ): 

                                                  )0,0()0(  MMAAr
                                (17) 

where M is a non-zero arbitrary 1n  column matrix”.  

The axiomatic relation (17) is a logical biconditional, where )0( rA  and )0,0(  MMA  are 

respectively the antecedent and consequent of this biconditional. In addition, based on the initial 

assumption r ℕ: ns IbbbbF Ar ),...,,,( 321 , the axiomatic biconditional (17) could be also 

represented as follows: 

                                        )0,0(]0),...,,,([ 321  MMAbbbbF s                          (17-1) 

where the homogeneous equation  0),...,,,( 321 sbbbbF , and system of linear equations 

)0,0(  MMA are respectively the antecedent and consequent of biconditional (17-1). The 

axiomatic biconditional (17-1), defines a system of linear equations of the type 0MA  )0( M , 

as the algebraic equivalent representation of 
thr  degree homogeneous equation 0),...,,,( 321 sbbbbF  

(over the integral domain ℤ). The axiom (17) (or (17-1)) for 1n , is equivalent to the ordinary 

axiom of ―no zero divisors‖ (16). In fact, the axiom (16), as a particular case, can be obtained from 

the axiom (17) (or (17-1), but not vice versa. 

 

Moreover, according to the Ref. [6], since 0),...,,,( 321 sbbbbF  is a homogeneous equation over ℤ, it 

is also concluded that homogeneous equations defined over the field of rational numbers ℚ,
 

obey the 

axiomatic relations (17) and (17-1) as well.  
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As a crucial additional issue concerning the axiom (17), it should be noted that the condition                

― r ℕ: ns IbbbbF Ar ),...,,,( 321 ‖ which is assumed initially in the axiom (17), is also compatible 

with matrix representation of the generalized Clifford algebras [Refs. 40 – 47] associated with the  

r
th

 degree homogeneous polynomials ),...,,,( 321 sbbbbF . In fact, we may represent uniquely the square 

matrix A  (with assumed properties in the axiom (17)) by this homogeneous linear form: 





s

k

kk EbA
1

, then the relation: ns IbbbbF Ar ),...,,,( 321  implies that the square matrices kE  (which 

their entries are independent from the variables kb ) would be generators of the corresponding 

generalized Clifford algebra associated with the r
th

 degree homogeneous polynomial

),...,,,( 321 sbbbbF . However, in some particular cases and applications, we may also assume some 

additional conditions for the generators kE , such as the Hermiticity or anti-Hermiticity (see Sections 

2-2, 2-4 and 3-1). In Sec. 3, we use these algebraic properties of the square matrix A  (corresponding 

with the homogeneous quadratic equations), where we present explicitly the main applications of the 

axiomatic relations (17) and (17-1) in foundations of physics (where we also use the basic 

assumptions (2) and (3) mentioned in Sec. 1-1). 

 

It is noteworthy that since the axiom (17) has been formulated solely in terms of square matrices, in 

Ref. [76] we have shown that all the ordinary algebraic axioms (10) – (15) of integral domain ℤ 

(except the axiom of ―no zero divisors‖ (16)), in addition to the new axiom (17), could be also 

reformulated uniformly in terms of the set of square matrices. Hence, we may conclude that the 

square matrices, logically, are the most elemental algebraic objects for representing the basic 

properties of set of integers (as the most fundamental set of mathematics).  

 
In the following, based on the axiomatic relation (17-1), we‘ve constructed a corresponding basic 

algebraic linearization (including a parameterization procedure) approach applicable to the all classes 

of homogeneous equation. Hence, it could be also shown that for any given homogeneous equation 

of degree r ≥ 2 over the ring ℤ (or field ℚ), a square matrix A  exists that obeys the relation (17-1). 

In this regard, for various classes of homogeneous equations, their equivalent systems of linear 

equations would be derived systematically.

 

As a particular crucial case, in Sections 2-2 and 2-4, by 

derivation of the systems of linear equations equivalent to a class of quadratic homogeneous 

equations (in various number of unknown variables) over the integral domain ℤ (or field ℚ), these 

equations have been analyzed (and solved) thoroughly by this axiomatic approach.

 

In the following, 

the basic schemes of this axiomatic linearization-parameterization approach are described.  

 

First, it should be noted that since the entries ija
 
of square matrix A are linear homogeneous forms 

expressed in terms of the integral variables pb , i.e.

 




s

k

kijkij bHa
1

, we may also represent the square 

matrix A  by this linear matrix form: 



s

k

kk EbA
1

, then (as noted above) the relation: 

ns IbbbbF Ar ),...,,,( 321  implies that the square matrices kE  (which their entries are independent 

from the variables kb ) would be generators of the corresponding generalized Clifford algebra 
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associated with the r
th

 degree homogeneous polynomial ),...,,,( 321 sbbbbF [43 – 47]. However, for 

some particular cases of the r
th

 degree homogeneous forms ),...,,,( 321 sbbbbF  (for r ≥ 2, such as the 

standard quadratic forms defined in the quadratic equation (18) in Sec. 2-2), without any restriction 

in the existence and procedure of derivation of their corresponding square matrices 



s

k

kk EbA
1

(with 

the algebraic properties assuming in axiom (17)) obeying the Clifford algebraic relation: 

ns IbbbbF Ar ),...,,,( 321 , we may also assume certain additional conditions for the matrix 

generators kE , such as the Hermiticity (or anti-Hermiticity), and so on (see Sections 2-2, 2-4 and 3-

1). In fact, these conditions could be required, for example, if a homogeneous invariant relation (of 

physics) be represented by a homogeneous algebraic equation of the type: ,0),...,,,( 321 sbbbbF  with 

the algebraic properties as assumed in the axiom (17), where the variables kb  denote the components 

of corresponding physical quantity (such as the relativistic energy-momentum, as it has been 

assumed in Sec. 3-1 of this article based on the basic assumption (2) noted in Sections 1-1 and 3-1). 

 
In Sec. 2-2, as one of the main applications of the axiomatic relations (17) and (17-1), we derive a unique 

set the square matrices nnA   (by assuming a minimum value for n  , i.e. the size of the corresponding 

matrix nnA  ) corresponding to the quadratic homogeneous equations of the type: 0
0




s

i

ii fe , for            

s = 0,1,2,3,4,.., respectively. Subsequently, in Sec. 2-4, by solving the corresponding systems of linear 

equations 0MA , we obtain the general parametric solutions of quadratic homogeneous equations 

,0
0




s

i

ii fe  for s = 0,1,2,3,4,..,  respectively. In addition, in Sec. 2-3 using this systematic axiomatic 

approach, for some particular forms of homogeneous equations of degrees 3, 4 and 5 , their equivalent 

systems of linear equations have been derived as well. It is noteworthy that using this general axiomatic 

approach (on the basis of the logical biconditional relations (17) and (17-1)), for any given r
th

 degree 

homogeneous equation in s unknown variables over the integral domain over ℤ, its equivalent system(s) 

of linear equations 0MA  is derivable (with a unique size, if in the course of the derivation, we also 

assume a minimum value for n , i.e. the size of corresponding square matrix nnA  ). Furthermore, for a 

given homogeneous equation of degree r in s unknown variables, the minimum value  for n , i.e. the size 

of the corresponding square matrix nnA   in its equivalent matrix equation: 0MA ,  is: 

11

min

  ss rrn   for 2r , and 
ss rrn min   for 2r . For additional detail concerning the general 

methodology of the derivation of square matrix nnA   and the matrix equation: 0MA  equivalent to a 

given homogeneous equation of degree r in s unknown variables,  on the basis of the axiomatic relations 

(17) and (17-1), see also the preprint versions of this article in Refs. [76]. 

2-2. In this section, on the basis of axiomatic relation (17-1) and general methodological notes 

(mentioned above), for the following general form of homogeneous quadratic equations their equivalent 

systems of linear equations are derived (uniquely):  
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0),,...,,,,(

0

1100 


s

i

iiss fefefefeQ
    

                       (18)  

Equation (18) for s = 0,1,2,3,4,.. is represented by, respectively: 

                                                                

,000

0

0




fefe
i

ii                                                 (19) 

                                                           

,01100

1

0




fefefe
i

ii                                            (20) 

                                                     

,0221100

2

0




fefefefe
i

ii                                      (21) 

                                                

,033221100

3

0




fefefefefe
i

ii                               (22) 

                                          

.04433221100

4

0




fefefefefefe
i

ii                            (23) 

It is necessary to note that quadratic equation (18) is isomorphic to the following ordinary representations 

of homogeneous quadratic equations: 

                                                                      

,0
0,





s

ji

jiij ccG                                                 (18-1) 

                                                                 
 


s

ji

s

ji

jiijjiij ddGccG
0, 0,

,                                        (18-2) 

using the linear transformations: 

                   

  ,

.

.

.

...

.

.

.

...

...

...

.

.

.

22

11

00

210

2222120

1121110

0020100

3

1

0































































































sssssss

s

s

s

s dc

dc

dc

dc

GGGG

GGGG

GGGG

GGGG

e

e

e

e

     



































































sss dc

dc

dc

dc

f

f

f

f

.

.

.

.

.

.

22

11

00

3

1

0

      (18-3) 

where ][ ijG is a symmetric and invertible square matrix, i.e.: jiij GG   and 0]det[ ijG , and the quadratic 

form


s

ji

jiij ccG
0,

in equation (18-1) could be obtained via transformations (18-3), only by taking 0id .  

 

2-2-1. As it will be shown in Sec. 2-2-2, the reason for choosing equation (18) as the standard general 

form for representing the homogeneous quadratic equations (that could be also transformed to the 

ordinary representations of homogeneous quadratic equations (18-1) and (18-2), by linear transformations 

(18-3)) is not only its very simple algebraic structure, but also the simple linear homogeneous forms of 

the entries of square matrices A  (expressed in terms of variables ii fe , ) in the corresponding systems of 

linear equations 0MA   obtained as the equivalent form of quadratic equation (18) in various 

number of unknown variables.  
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Moreover, as it is shown in the following, we may also assume certain Hermiticity and anti-Hermiticity 

conditions for the deriving square matrices A (in the corresponding systems of linear equations 

0MA equivalent to the quadratic equation (18)), without any restriction in the existence and 

procedure of derivation of these matrices. By adding these particular conditions, for a specific number of 

variables in equation (18), its equivalent matrix equation 0MA could be determined uniquely. In 

Sec. 3, where we use the algebraic results obtained in Sections 2-2 and 2-4 on the basis of axiomatic 

relations (17) and (17-1), in fact, the assumption of these Hermiticity and anti-Hermiticity properties is a 

necessary issue. These Hermiticity and anti-Hermiticity additional conditions are defined as follows: 

 “ First, by supposing: 00 fe   and ii fe   (for si ,...,2,1 ), the quadratic equation (18) would be 

represented as: 0
1

22

0 


s

i

iee , and consequently the corresponding square matrix A  in the deriving 

system of linear equations 0MA (which equivalently represent the quadratic equation (18), based on 

the axiomatic relation (17-1)) could be also expressed by the homogeneous linear matrix form: 





s

i

ii EeA
0

, where the real matrices 
iE  are generators of the corresponding Clifford algebra associated 

with the standard quadratic form 



s

i

iee
1

22

0 .  

   Now for defining the relevant Hermiticity and anti-Hermiticity conditions,  we assume that any square 

matrix A  in the deriving matrix equation: 0MA  (as the equivalent representation of quadratic 

equation (18)), should also has this additional property that by supposing: 00 fe   and ii fe 
 
by 

which the square matrix A  could be represented as: 



s

i

ii EeA
0

, the matrix generator 
0E  be Hermitian: 

*

00 EE  , and matrix generators 
iE  (for si ,...,2,1 ) be anti-Hermitian:  *

ii EE 
 
”.  

2-2-2. As noted and would be also shown below, by assuming the above additional Hermiticity and 

anti-Hermiticity conditions, the system of linear equations 0MA corresponding to quadratic 

equation (18), is determined uniquely for any specific number of variables ii fe , . Hence, starting from 

the simplest (or trivial) case of quadratic equation (18), i.e. equation (19), its equivalent system of linear 

equations is given uniquely as follows: 

                                                           

0
0

0

2

1

0

0



















m

m

f

e
MA                                              (24) 

where it is assumed 0M , and in agreement with (17-1) we also have: 

                                                      
200

0

0

0

02 )(
0

0

0

0
Ife

f

e

f

e
A 
















                                   (24-1) 

For equation (20), the corresponding equivalent system of linear equations is determined as: 
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0

00

00

00

00

0

0

3

2

1

01

10

01

10





































































m

m

m

m

ee

ff

fe

fe

M

M

A

A
MA

                           (25) 

where we have: 

            

41100

01

10

01

10

01

10

01

10

2 )(

00

00

00

00

00

00

00

00

,0 Ifefe

ee

ff

fe

fe

ee

ff

fe

fe

A
M

M
M 




























































      (25-1) 

Notice that matrix equation (25) could be represented by two matrix equations, as follows: 

                                                             

,0
3

01

10





















m

m

fe

fe
MA                                           (25-2) 

                                                            0
2

1

01

10





















m

m

ee

ff
MA                                            (25-3)                 

The matrix equations (25-2) and (25-3) are equivalent (due to the assumption of arbitrariness of 

parameters mmmm ,,, 321 ), so we may choose the matrix equation (25-2) as the system of linear 

equations equivalent to the quadratic equation (20) – where for simplicity in the indices of parameters im , 

we may simply replace arbitrary parameter 3m with arbitrary parameter 1m , as follows (for 0
1










m

m ): 

                                                                .0
1

01

10


















 m

m

fe

fe                                                            (26) 

The system of linear equations corresponding to the quadratic equation (21) is obtained as: 
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fee

M
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A
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          (27) 

where in agreement with (17) we have: 

8221100
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00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

Ifefefe

eee

eff

fef

fef

fee

fff

fee

fee

eee

eff

fef

fef

fee

fff

fee

fee

A









































































































                                                                                                                                                               



17 
 

In addition, similar to equation (25), the obtained matrix equation (27) is equivalent to a system of two 

matrix equations, as follows: 
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The matrix equations (27-2) and (27-3) are equivalent  (due to the assumption of arbitrariness of 

parameters mmmm ,,...,, 721 ), so we may choose the equation (27-2) as the system of linear equations 

corresponding to the quadratic equation (21) – where for simplicity in the indices of parameters im , we 

may simply replace the arbitrary parameters 5m , 6m , 7m  with parameters 1m , 2m , 3m , as follows: 

                                              

.0 ,0

0

0

0

0

3

2

1

3

2

1

021

012

210

120



































































m

m

m

m

m

m

m

m

fee

fff

fee

fee

                     (28) 

 

Similarly, for the quadratic equations (22) the corresponding system of linear equations is obtained 

uniquely as follows: 
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where the column parametric matrix M in (29) is non-zero 0M .  

In a similar manner, the uniquely obtained system of linear equations corresponding to the quadratic 

equation (23), is given by: 
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                                                                                                                                                                                  (30)

                                                                       

where we‘ve assumed the parametric column matrix M in (30) is non-zero, 0M . 

In a similar manner, the systems of linear equations (written in matrix forms similar to the matrix 

equations (24), (26), (28), (29) and (30)) with larger sizes are obtained for the quadratic equation (18) in 

more variables (i.e. for ,...8,7,6s ), where the size of the square matrices of the corresponding matrix 

equations is 
ss 22   (which could be reduced to 

11 22   ss
 for 2s ). In general (as it has been also 

mentioned in Sec. 2-1), the size of the nn square matrices A  (with the minimum value for n ) in the 

matrix equations 0MA  corresponding to the homogeneous polynomials ),...,,,( 321 sbbbbF  of 

degree r  defined in axiom (17) is 
ss rr   (which for 2r  this size, in particular, could be reduced to 

11 22   ss
). Moreover, based on the axiom (17), in fact, by solving the obtained system of linear 

equations corresponding to a homogeneous equation of degree r , we may systematically show (and 

decide) whether this equation has the integral solution. 

2-3. Similar to the uniquely obtained systems of linear equations corresponding to the homogeneous 

quadratic equations (in Sec. 2-2), in this section in agreement with the axiom (17), we present the 

obtained systems of linear equations, i.e. 0MA  (by assuming the minimum value for n , i.e. the  

size of square matrix nnA  ), corresponding to some homogeneous equations of degrees 3, 4 and 5, 

respectively. For the homogeneous equation of degree three of the type:
                                                                   

                              

                        ,0),,,,,( 111

2

222

2

2

2

000

2

0221100  gfefefefefefefefeF               (31) 

the corresponding system of linear equations is given as follows: 
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where A  is a 27×27 square matrix written in terms of the square 9×9 matrices 21, AA and 3A , given by: 
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The uniquely obtained system of linear equations (i.e. 0MA , by assuming the minimum size for the 

square matrix nnA  ) corresponding to the well-known homogeneous equation of degree three: 

                                                         0)(2),,( 333  BbcacbaF                                         (34) 
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has the following form (in compatible with the new axiom (17)):                                           
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                                              (35)             

where A  is a 27×27 square matrix written in terms of the 9×9 matrices 1A , 2A and 3A  given by: 

  

                                                                      (36)       

For the 4
th
 degree homogeneous equation of the type: 

                                       
0),,,,,( 43212

3

1

3

21432121  ffffeeeeffffeeF                       (37) 

the corresponding system of linear equations is given as, 
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where A  is a 16×16 square matrix represented in terms of the 4×4 matrices 4321 ,,, AAAA : 
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                                                (39)  

 

In addition, the system of linear equations corresponding to 5
th
 degree homogeneous equation of the type,  
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15432121  fffffeeeeeeeefffffeeF          (40) 

is determined as: 
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where A  is a 25×25 square matrix expressed in terms of the following 5×5 matrices 54321 ,,,, AAAAA : 

 

  

 

                      (42) 

 

2-4. In this Section by solving the derived systems of linear equations (26), (28), (29) and (30) 

corresponding to the quadratic homogeneous equations (20) – (23) in Sec. 2-2, the general parametric 

solutions of these equations are obtained for unknowns ie and if . There are the standard methods for 
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obtaining the general solutions of the systems of homogeneous linear equations in integers [7, 8]. Using 

these methods, for the system of linear equations (26) (and consequently, its corresponding quadratic 

equation (20)) we get directly the following general parametric solutions for unknowns 10 ,ee and 10 , ff : 

                                       
1011111000 ,,, mlkfmlkemlkfmlke                                    (43) 

where 10 ,kk , lmm ,,1  are arbitrary parameters. In the matrix representation the general parametric 

solution (43) has the following form: 
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                  (43-1) 

where 2mIM e  , K is a column parametric matrix and fM is also a parametric anti-symmetric matrix. 

For the system of linear equations (28) (and, consequently, for its corresponding quadratic homogeneous 

equation (21)), the following general parametric solution is obtained directly: 

                                 
)(,),(,),(, 312022210321112211000 mkmklfmlkemkmklfmlkemkmklfmlke    (44) 

where lmmmmkkk ,,,,,,, 321210  
are arbitrary parameters. In matrix representation the general parametric 

solution (44) could be also written as follows: 
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         (44-1) 

where 3mIM e  , K is a column parametric matrix and fM is also a parametric anti-symmetric matrix. 

In addition, it could be simply shown that by adding two particular solutions of the types },{ ii fe and 

},{ ii fe  of homogeneous quadratic equation (18), the new solution },{ iii fee  is also obtained, as 

follows: 

                   0)(0)()0,0(
0000

 


s

i

iii

s

i

iiii

s

i

ii

s

i

ii feefefefefe            (44-2) 

Using the general basic property (44-2) in addition to the general parametric solution (44) of quadratic 

equation (21) (which has been obtained directly from the system of linear equations (28) corresponding to 

quadratic equation (21)), exceptionally, the following equivalent general parametric solution is also 

obtained for quadratic equation (21): 

                              

)(),(),(

),(),(),(

3120212210321

21122110300

mkmklfkmmklemkmklf

kmmklemkmklfkmmkle




                     (45) 

where kkkk ,,, 210 , lmmmm ,,,, 321 are arbitrary parameters. 

Moreover, the parametric solution (45) by the direct bijective replacements of six unknown variables 

),( ii fe (where i = 0,1,2) with the six new variables of the type h , given by: 
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,,,, 100212201230 hfhehehe 
032311 , hfhf  , in addition to the replacements of nine 

arbitrary parameters 3210 ,,, uuuu , wvvvv ,,,, 3210 , with new nine parameters of the types 3210 ,,, uuuu ,

wvvvv ,,,, 3210 , given as: ,,,, 2120130 ukukukuk  ,2uk  ,11 vm  ,02 vm  ,33 vm 

,2vm  wl  , exceptionally, could be also represented as follows: 

 

                         

);(),(),(

),(),(),(

300303122121133131

022020011010322323

vuvuwhvuvuwhvuvuwh

vuvuwhvuvuwhvuvuwh




             (45-1) 

where it could be expressed by a single uniform formula as well (for μ, ν = 0,1,2,3): 

                                                                   )(  vuvuwh                                                 (45-2) 

A crucial and important issue concerning the algebraic representation (45-2) (as the differences of 

products of two parametric variables u and v ) for the general parametric solution (45), is that it 

generates a symmetric algebra Sym(V) on the vector space ,V  where Vvu ),(   
[11]. This essential 

property of the form (45-2) would be used for various purposes in the following and also in Sec. 3 (where 

we show the applications of this axiomatic linearization-parameterization approach and the results 

obtained in this Section and Sec. 2-4, in foundations of physics).  

In addition, as it is also shown in the following, it should be mentioned again that the algebraic form    

(45-2) (representing the symmetric algebra Sym(V)), exceptionally, is determined solely from the 

parametric solution (44-1) (obtained from the system of equations (28)) by using the identity (44-2). In 

fact, from the parametric solutions obtained directly from the subsequent systems of linear equations. i.e. 

equations (29), (30) and so on (corresponding to the quadratic equations (22), (23),…, and subsequent 

equations, i.e. 0
0




s

i

ii fe  for 3s ), the expanded parametric solutions of the type (45) (equivalent to 

the algebraic form (45-2)) are not derived.  

In the following (also see Ref. [76]), we present the parametric solutions that are obtained directly from 

the systems of linear equations (29), (30) and so on, which also would be the parametric solutions of their 

corresponding quadratic equations (18) in various number of unknowns (on the basis of axiom (17)). 

Meanwhile, the following obtained parametric solutions for the systems of linear equations (29), (30) and 

so on, similar to the parametric solutions (43) and (44), include one parametric term for each of  

unknowns ie  , and sum of s  parametric terms for each of  unknowns if  (where si ,...,3,2,1,0 ).  

Hence, the following parametric solution is derived directly from the system of linear equations (29) (that 

would be also the solution of its corresponding quadratic equation (22)): 
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),(,),(,
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


     (46) 

 

where lkkkk ,,,, 3210  are arbitrary parameters. In the matrix representation, the parametric solution (46) 

is represented as follows: 
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   (46-1) 

 

where 4mIM e  , K is a column parametric matrix and fM is also a parametric anti-symmetric matrix. 

However, in solutions (46) or (46-1) the parameters mmmmmmmm ,,,,,,, 7654321 are not arbitrary, and in 

fact, in the course of obtaining the solution (46) from the system of linear equations (29), a condition 

appears for these parameters as follows:  

                                                         
07362514  mmmmmmmm                                            (47) 

The condition (47) is also a homogeneous quadratic equation that should be solved first, in order to obtain 

a general parametric solution for the system of linear equations (29). Since the parameter 4m has not 

appeared in the solution (46), it could be assumed that 04 m , and the condition (47) is reduced to the 

following homogeneous quadratic equation, which is equivalent to the quadratic equation (20) 

(corresponding to the system of linear equations (28)):  

                                                       
,04 m   0736251  mmmmmm  ,                                     (47-1) 

where the parameter m would be arbitrary. The condition (47-1) is equivalent to the quadratic equation 

(21). Hence by using the general parametric solution (45-1) (as the most symmetric solution obtained for 

quadratic equation (21) by solving its corresponding system of linear equations (28)), the following 

general parametric solution for the condition (47-1) is obtained: 
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


              (48) 

where 3210 ,,, uuuu , wvvvv ,,,, 3210 , m  are arbitrary parameters. Now by replacing the solutions (48) 

(obtained for 765321 ,,,,, mmmmmm  in terms of the new parameters 3210 ,,, uuuu , wvvvv ,,,, 3210 ) in the 

relations (46), the general parametric solution of the system of linear equations (29) (and its 

corresponding quadratic equation (22)) is obtained in terms of the arbitrary parameters 3210 ,,, kkkk ,

3210 ,,, uuuu , ,,,,, 3210 wvvvv lm, . 

 

For the system of linear equations (30) (and its corresponding quadratic equation (23)), the following 
parametric solution is obtained:  

 

)(,

),(,),(,

),(,),(,
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(49)  

where lkkkkk ,,,,, 43210  are arbitrary parameters. In the matrix representation the solution (49) could be 

also written as follows: 
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   (49-1)  

where 5mIM e  , K is a column parametric matrix and fM is also a parametric anti-symmetric matrix.  

However, similar to the system of equations (29), in the course of obtaining the solutions (49) or (49-1) 

from the system of linear equations (30), the following conditions appear for parameters 

1514131211105321 ,,,,,,,,, mmmmmmmmmm : 

                                                          
.

,

,

,

,
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1351131028

1451231017

1551221116

1531421314

mmmmmmmm

mmmmmmmm

mmmmmmmm

mmmmmmmm

mmmmmmmm











                                    (50) 

that is similar to the condition (47). Here also by the same approach, since the parameters 

98764 ,,,, mmmmm
 

have not appeared in the solution (49), it could be assumed that

098764  mmmmm , and the set of conditions (50) are reduced to the following system of 

homogeneous quadratic equations which are similar to the quadratic equation (20) (corresponding to the 

system of linear equations (28)):  
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The conditions (50-1) are also similar to the quadratic equation (21). Hence using again the general 

parametric solution (45-1), the following general parametric solutions for the system of homogeneous 

quadratic equations (50-1) are obtained directly:  
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where 4321043210 ,,,,,,,,, vvvvvuuuuu  and w  are arbitrary parameters. Now by replacing the solution 

(51) (that have been obtained for 321 ,, mmm  1514131211105 ,,,,,,, mmmmmmm  in terms of the new 

parameters wvvvvvuuuuu ,,,,,,,,,, 4321043210 ) in the relations (49), the general parametric solution of 

the system of linear equations (30) (and its corresponding quadratic equation (23)) is obtained in terms of 

the arbitrary parameters ,,,,,,,,,,,,,,,, 432104321043210 wvvvvvuuuuukkkkk lm, .
 

 

Meanwhile, similar to the relations (48) and (51), it should be noted that arbitrary parameter 1m
 
in the 

general parametric solution (43) and arbitrary parameters  321 ,, mmm in the general parametric solution 

(44) (which have been obtained as the solutions of quadratic equations (20) and (21), respectively, by 

solving their equivalent systems of linear equations (26) and (28)), by keeping their arbitrariness property, 

could particularly be expressed in terms of new arbitrary parameters 1010 ,,, vvuu and 210210 ,,,,, vvvuuu , 

as follows, respectively: 

                                                               

);( 01101 vuvuwm                                                        (43-2) 

                         

).(),(),( 033030220201101 vuvuwmvuvuwmvuvuwm                  (44-3) 

In fact, as a particular common algebraic property of both parametric relations (43-2) and (44-2), it could 

be shown directly that by choosing appropriate integer values for parameters wvvuu ,,,, 1010  in the 

relation (43-2), the parameter 1m
 
(defined in terms of arbitrary parameters ),,,, 1010 wvvuu  could take any 

given integer value, and similarly, by choosing appropriate integer values for parameters 

wvvvuuu ,,,,,, 210210  in the relation (43-2), the parameters 321 ,, mmm
 
(defined in terms of arbitrary 

parameters ),,,,,, 210210 wvvvuuu  could also take any given integer values. Therefore, using this common 

algebraic property of the parametric relations (43-2) and (44-2), the arbitrary parameter 1m
 
in general 

parametric solutions (43), and arbitrary parameters 321 ,, mmm  in general parametric solutions (44), could 

be equivalently replaced by new arbitrary parameters wvvuu ,,,, 1010  and wvvvuuu ,,,,,, 210210 , 

respectively. In addition, for the general quadratic homogeneous equation (18) with more number of 

unknowns, the general parametric solutions could be obtained by the same approaches used above for 

quadratic equations (20) – (23), i.e. by solving their corresponding systems of linear equations (defined on 

the basis of axiom (17)). Moreover, using the isomorphic transformations (18-3) and the above general 

parametric solutions obtained for quadratic equations (20) – (23),… (via solving their corresponding 

systems of linear equations (26), (28), (29), (30),…), the general parametric solutions of quadratic 

equations of the regular type (18-2)  (in various number of unknown) are also obtained straightforwardly. 

All the parametric solutions that are obtained by this new systematic matrix approach for the 

homogeneous quadratic equations and also higher degree homogeneous equations of the type 

0),...,,,( 321 sxxxxF  (defined in the axiom (17)), are fully compatible with the solutions and 

conclusions that have been obtained previously for various homogeneous equations by different and 

miscellaneous methods and approaches  [6, 7, 8]. In Sec. 3, we‘ve used the uniquely specified systems of 

homogeneous linear equations (and also their general parametric solutions) corresponding to the 

homogeneous quadratic equations – where, in particular, it has been assumed basically that the 

components of the relativistic energy-momentum vector (as one of the most basic physical quantities) in 

the Lorentz invariant energy-momentum (homogeneous) quadratic relation, can only take the rational 

values. 
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3. A Unique Mathematical Derivation of the Laws Governing the Fundamental   

    Forces of Nature: Based on a New Algebraic-Axiomatic (Matrix) Approach 
 

In this Section, , as a new mathematical approach to origin of the laws of nature, using the new basic 

algebraic axiomatic (matrix) formalism (presented in Sec.2), “it is shown that certain mathematical 

forms of fundamental laws of nature, including laws governing the fundamental forces of nature 

(represented by a set of two definite classes of general covariant massive field equations, with new 

matrix formalisms), are derived uniquely from only a very few axioms”; where in agreement with the 

rational Lorentz group, it is also basically assumed that the components of relativistic energy-

momentum can only take rational values. Concerning the basic assumption of rationality of 

relativistic energy-momentum, it is necessary to note that the rational Lorentz symmetry group is not 

only dense in the general form of Lorentz group, but also is compatible with the necessary conditions 

required basically for the formalism of a consistent relativistic quantum theory [77].  In essence, the 

main scheme of this new mathematical axiomatic approach to fundamental laws of nature is as 

follows. First in Sec. 3-1-1, based on the assumption of rationality of D-momentum, by linearization 

(along with a parameterization procedure) of the Lorentz invariant energy-momentum quadratic 

relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix 

formalisms compatible with certain Clifford, and symmetric algebras) is derived. Then in Sec. 3-4, 

by first quantization (followed by a basic procedure of minimal coupling to space-time geometry) of 

these determined systems of linear equations, a set of two classes of general covariant massive 

(tensor) field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras) 

is derived uniquely as well. Each class of the derived general covariant field equations also includes a 

definite form of torsion field appeared as generator of the corresponding field‘ invariant mass. In 

addition, in Sections 3-4 – 3-5, it is shown that the (1+3)-dimensional cases of two classes of derived 

field equations represent a new general covariant massive formalism of bispinor fields of spin-2, and 

spin-1 particles, respectively. In fact, these uniquely determined bispinor fields represent a unique set 

of new generalized massive forms of the laws governing the fundamental forces of nature, including 

the Einstein (gravitational), Maxwell (electromagnetic) and Yang-Mills (nuclear) field equations. 

Moreover, it is also shown that the (1+2)-dimensional cases of two classes of these field equations 

represent (asymptotically) a new general covariant massive formalism of bispinor fields of spin-3/2 

and spin-1/2 particles, respectively, corresponding to the Dirac and Rarita–Schwinger equations.  
  
    As a particular consequence, in Sec. 3-4-2, it is shown that a certain massive formalism of general 

relativity – with a definite  form of torsion field appeared originally as the generator of gravitational 

field‘s invariant mass – is obtained only by first quantization (followed by a basic procedure of 

minimal coupling to space-time geometry) of a certain set of special relativistic algebraic matrix 

equations. In Sec. 3-4-4, it has been also proved that Lagrangian densities specified for the originally 

derived new massive forms of the Maxwell, Yang-Mills and Dirac field equations, are also gauge 

invariant, where the invariant mass of each field is generated solely by the corresponding torsion 

field. In addition, in Sec. 3-4-5, in agreement with recent astronomical data, a particular new form of 

massive boson is identified (corresponding to U(1) gauge group) with invariant mass:                       

mγ ≈ 4.90571×10-50kg, generated by a coupled torsion field of the background space-time geometry.     

Moreover, in Sec. 3-5-2, based on the definite mathematical formalism of this axiomatic approach, 

along with the C, P and T symmetries (represented basically by the corresponding quantum 
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operators) of the fundamentally derived field equations, it has been concluded that the universe could 

be realized solely with the (1+2) and (1+3)-dimensional space-times (where this conclusion, in 

particular, is based on the time-reversal symmetry). In Sections 3-5-3 and 3-5-4, it is proved that 

'CPT' is the only (unique) combination of C, P, and T symmetries that could be defined as a 

symmetry for interacting fields. In addition, in Sec. 3-5-4, on the basis of these discrete symmetries 

of derived field equations, it has been also shown that only left-handed particle fields (along with 

their complementary right-handed fields) could be coupled to the corresponding (any) source 

currents. Furthermore, in Sec. 3-6, it has been shown that metric of the background space-time is 

diagonalized for the uniquely derived fermion field equations (defined and expressed solely in (1+2)-

dimensional space-time), where this property generates a certain set of additional symmetries 

corresponding uniquely to the SU(2)LU(2)R symmetry group for spin-1/2 fermion fields 

(representing ―1+3‖ generations of four fermions, including a group of eight leptons and a group of 

eight quarks), and also the SU(2)LU(2)R and SU(3) gauge symmetry groups for spin-1 boson fields 

coupled to the spin-1/2 fermionic source currents. Hence, along with the known elementary particles, 

eight new elementary particles, including: four new charge-less right-handed spin-1/2 fermions (two 

leptons and two quarks, represented by ―ze , zn and zu , zd‖), a spin-3/2 fermion, and also three new 

spin-1 massive bosons (represented by ",
~

,
~

" ZWW



, where in particular, the new boson Z


is 

complementary right-handed particle of ordinary Z boson), are predicted uniquely by this new 

mathematical axiomatic approach.  
 

Furthermore, as a particular result, in Sec. 3-4-2, based on the definite and unique formulation of the 

derived Maxwell‘s equations (and also determined Yang-Mills equations, represented uniquely with 

two specific forms of gauge symmetries, in 3-6-3-2), it is also concluded generally that magnetic 

monopoles could not exist in nature. 
 

3-1. As noted in Sec. 1-1, the main results obtained in this article are based on the following three 

basic assumptions (as postulates):  
 

(1)- “A new definite axiomatic generalization of the axiom of ―no zero divisors‖ of integral 

domains (including the integr ring ℤ) is assumed (represented by formula (17), in Sec. 2-1);” 
 

      This basic assumption (as a postulate) is a new mathematical concept. In Sec. 2-1, based on this 

new axiom, a general algebraic axiomatic (matrix) approach (in the form of a basic linearization-

parameterization theory) to homogeneous equations of degree r ≥ 2 (over the integer domain, 

extendable to field of rational numbers), has been formulated. A summary of the main results 

obtained from this axiomatic approach have been presented in Sec. 1-1. As particular outcome of this 

new mathematical axiomatic formalism (based on the axiomatic relations (17) and (17-1), including 

their basic algebraic properties presented in detail, in Sections 2-1 – 2-4), in Sec. 3-4, it is shown that 

using, a unique set of general covariant massive (tensor) field equations (with new matrix formalism 

compatible with Clifford, and Weyl algebras), corresponding to the fundamental field equations of 

physics, are derived – where, in agreement with the rational Lorentz symmetry group, it has been 

basically assumed that the components of relativistic energy-momentum can only take the rational 

values. In Sections 3-2 – 3-6, we present in detail the main applications of this basic algebraic 

assumption (along with the following basic assumptions (2) and (3)) in fundamental physics. 
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(2)- “In agreement with the rational Lorentz symmetry group, we assume basically that the 

components of relativistic energy-momentum (D-momentum) can only take the rational values;”  
 

       Concerning this assumption, it is necessary to note that the rational Lorentz symmetry group is 

not only dense in the general form of Lorentz group, but also is compatible with the necessary 

conditions required basically for the formalism of a consistent relativistic quantum theory [77]. 

Moreover, this assumption is clearly also compatible with any quantum circumstance in which the 

energy-momentum of a relativistic particle is transferred as integer multiples of the quantum of 

action ―h‖ (Planck constant). 

Before defining the next basic assumption, it should be noted that from the basic assumptions (1) and 

(2), it follows directly that the Lorentz invariant energy-momentum quadratic relation (represented by 

formula (52), in Sec. 3-1-1) is a particular form of homogeneous quadratic equation (18-2). Hence, using 

the set of systems of linear equations that have been determined uniquely as equivalent algebraic 

representations of the corresponding set of quadratic homogeneous equations (given by equation (18-2) in 

various number of unknown variables, respectively), a unique set of the Lorentz invariant systems of 

homogeneous linear equations (with matrix formalisms compatible with certain Clifford, and 

symmetric algebras) are also determined, representing equivalent algebraic forms of the energy-

momentum quadratic relation in various space-time dimensions, respectively. Subsequently, we‘ve shown 

that by first quantization (followed by a basic procedure of minimal coupling to space-time 

geometry) of these determined systems of linear equations, a unique set of two definite classes of 

general covariant massive (tensor) field equations (with matrix formalisms compatible with certain 

Clifford, and Weyl algebras) is also derived, corresponding to various space-time dimensions, 

respectively. In addition, it is also shown that this derived set of two classes of general covariant field 

equations represent new tensor massive (matrix) formalism of the fundamental field equations of physics, 

corresponding to fundamental laws of nature (including the laws governing the fundamental forces of 

nature). Following these essential results, in addition to the basic assumptions (1) and (2), it would be 

also basically assumed that: 
 

(3)- “We assume that the mathematical formalism of the fundamental laws of nature, are 

defined solely by the axiomatic matrix constitution formulated uniquely on the basis of 

postulates (1) and (2)”. 
 

    In addition to this basic assumption, in Sec. 3-5,  the C, P and T symmetries of uniquely derived 

general covariant field equations (that are equations (71) and (72), in Sec. 3-4), are also represented 

basically by their corresponding quantum matrix operators. 

3-1-1. Based on the basic assumption (2), i.e., the assumption of rationality of the relativistic energy-

momentum, the following Lorentz invariant quadratic relations (expressed in terms of the components of 

D-momentums p  ,
 

p  of a relativistic massive particle (given in two reference frames), and also 

components of quantity  kmp 0

st   , where m0 is the invariant mass of particle and k
 
is its covariant 

velocity in the stationary reference frame): 
 

                                                                 
,ppgppg 




                                        (51) 
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μν

                       

would be particular cases of homogeneous quadratic equation (18-2) in Sec. 2-2, and hence, they would 

be necessarily subject to the process of linearization (along with a parameterization procedure), using the 

systematic axiomatic approach presented Sections 2, 2-2 and 2-4 (formulated based on the basic 

assumption (1)).  

The Lorentz invariant relations (51) and (52) (as the norm of the relativistic energy-momentum) have 

been defined in the D-dimensional space-time, where m0 is the invariant mass of the particle, p  and
 p  

are its relativistic energy-momentums (i.e. D-momentums) given respectively in two reference frames, k  

is a time-like covariant vector given by:  )0,...,0,()0,...,0,( 00

0 gckk 
,  ―c‖  is the speed of light, and 

the components of metric have the constant values. As noted in Sec. 1-2, in this article, the sign 

conventions (2) (including the metric signature (+ – – …– )) and geometric units would be used (where in 

particular  ―c = 1‖). However, for the clarity, in some of relativistic formulas (such as the relativistic 

matrix relations), the speed of light ―c‖ is indicated formally. 
 
As a crucial issue here, it should be noted that in the invariant quadratic relations (51) and (52), the 

components of metric which have the constant values (as assumed), necessarily, have been written by 

their general representations 
g  (and not by the Minkowski metric 

 , and so on). This follows from 

the fact that by axiomatic approach of linearization-parameterization (presented in Sections 2-1 – 2-4) of 

quadratic relations (51) and (52) (as particular forms of homogeneous quadratic equation (18-2) which 

could be expressed equivalently by quadratic equations of the types (18) via the linear transformations 

(18-3)), their corresponding algebraic equivalent systems of linear equations could be determined 

uniquely. In fact, based on the formulations of systems of linear equations obtained uniquely for the 

quadratic equations (18) in Sections 2-2 – 2-4, it is concluded directly that the algebraic equivalent 

systems of linear equations corresponding to the relations (51) and (52), are determined uniquely if and 

only if these quadratic relations be expressed in terms of the components 
g represented by their general 

forms (and not in terms of any special presentation of the metric‘s components, such as the Minkowski 

metric, and so on). However, after the derivation of corresponding systems of linear equations 

(representing uniquely the equivalent algebraic matrix forms of the quadratic relations (51) and (52) in 

various space-time dimensions), the Minkowski metric could be used in these equations (and the 

subsequent relativistic equations and relations as well). 
 
Hence, using the systems of linear equations (24), (26), (28), (29), (30),…, obtained uniquely on the basis 

of the axiom (17) by linearization (along with a parameterization procedure) of the homogeneous 

quadratic equations (19) – (23),… (which could be transformed directly to the general quadratic equation 

(18-2), by the isomorphic linear transformations (18-3)),  and also using the parametric relations (43-2), 

(44-3), (48) and (52) (expressed in terms of the arbitrary parameters u  and v ), as the result of 

linearization (along with a parameterization procedure) of the invariant quadratic relations (51) and (52), 

the following systems of linear equations are also derived uniquely corresponding to various space-time 

dimensions, respectively: 
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- For (1+0)-dimensional case of the invariant relation (51), we obtain:

 

                                                                 
0])][([ 0  sppg 

                                                 (53) 

where ν = 0 and parameter s is arbitrary; 
 
 - For (1+1)-dimensional space-time we have: 
 

                                             

0
)(

)()(

)( 0110

00

1

11

0








 













s

wvuvu

ppppg

ppppg







                           (54) 

where ν = 0,1 and ,, 10 uu ,,, 10 wvv s  are arbitrary parameters; 
 
 
 - For (1+2)-dimensional space-time we have:
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where ν = 0,1,2 and ,,, 210 uuu ,,,, 210 wvvv s  are arbitrary parameters; 

 
- For (1+3)-dimensional space-time we obtain: 
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where ν = 0,1,2,3 and 3210 ,,,, uuuuw , 3210 ,,, vvvv , s  are arbitrary parameters, and we also having: 
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- For (1+4)-dimensional case, the system of linear equations corresponding to the invariant quadratic 

relation (51) is specified as follows: 
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where ν = 0,1,2,3,4 , 43210 ,,,, uuuuu , wvvvvv ,,,,, 43210 , s  are arbitrary parameters, and we have: 
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The systems of linear equations that are obtained for (1+5) and higher dimensional cases of the invariant 

quadratic relation (51), have also the formulations similar to the obtained systems of linear equations     

(53) – (57), and would be expressed by the matrix product of a 
NN 22   square matrix and a 12 N

 column 

matrix in (1+ N)-dimensional space-time. For (1+5)-dimensional case of the invariant relation (51), the 

column matrix of the corresponding system of linear equations (expressed by the matrix product of a 

3232  square matrix and a 132  column matrix) is given by (where 
543210 ,,,,, uuuuuu ,

swvvvvvv ,,,,,,, 543210  are arbitrary parameters): 
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In a similar manner, using the axiomatic approach presented in Sec. 2, the systems of linear equations 

corresponding to the energy-momentum invariant relation (52) in various space-time dimensions are 

obtained uniquely as follows, respectively (note that by using the geometric units, we would take 1c ): 

- For (1+0)-dimensional space-time we obtain:
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where ν = 0 and parameter s is arbitrary; 

- For (1+1)-dimensional space-time we have:
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where ν = 0,1 and ,, 10 uu ,,, 10 wvv s  are arbitrary parameters; 

 

- For (1+2) dimensions we have (where ν = 0,1,2 and ,,, 210 uuu ,,,, 210 wvvv s are arbitrary parameters):
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- For (1+3)-dimensional space-time we obtain:
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where ν = 0,1,2,3 and 3210 ,,, uuuu , wvvvv ,,,, 3210 , s  are arbitrary parameters, and we also having:  
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- For (1+4)-dimensional space-time, the system of linear equations corresponding to the invariant 

quadratic relation (52) is derived as follows: 
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where ν = 0,1,2,3,4 and 43210 ,,,, uuuuu , wvvvvv ,,,,, 43210 , s  are arbitrary parameters, and we have: 
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                  (62-1)        

The systems of linear equations that are obtained for (1+5) and higher dimensional cases of the energy-

momentum quadratic relation (52), have also the formulations similar to the obtained systems of linear 

equations (58) – (62), and would be expressed by the matrix product of a 
NN 22   square matrix and a 

12 N
 column matrix in (1+N)-dimensional space-time. For the (1+5)-dimensional case of energy-

momentum relation (52), the column matrix of the corresponding system of linear equations (expressed by 

the matrix product of a 3232  square matrix and a 132  column matrix, similar to (57-2)) is given by: 
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where 
543210 ,,,,, uuuuuu , swvvvvvv ,,,,,,, 543210  are arbitrary parameters. 

 

3-2. From the derived systems of linear equations (54) – (57) corresponding to the (1+1) – (1+4)-

dimensional cases of the invariant relation (51), and also using the general parametric solutions (43) – 

(51) (obtained for systems of linear equations (26) – (30)), the rational Lorentz transformations (which are 

completely dense in the standard group of Lorentz transformations [77], as noted in Sec. 3-1) are derived 

for momentums p  and p . For instance, assuming the Minkowski metric, from the system of linear 

equations (55), a parametric form of rational Lorentz transformations for three-momentums p  and p  

in (1+2)dimensional space-time, is derived as follows: 
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      (63) 

 

 where the parameters s  in (63) are given by the formulas: wvuvuz )( 01100  , wvuvuz )( 20022  , 

,)( 12213 wvuvuz   that are expressed in terms of the arbitrary parameters wvvvuuu ,,,,,, 210210 . These 

parameters would be also determined and expressed in terms of the initially given physical variables 

(such as the relative velocity between the reference frames). However, as it has been also noted in Sec. 2-

4 concerning a particular common algebraic property of parametric relations (43-2) and (44-3) which are 

equivalent to the above expressions, by choosing appropriate integer values for parameters 

wvvvuuu ,,,,,, 210210 , the parameters 210 ,, zzz  could take any given integer values. Thus, we may 

directly determine the relevant expressions for parameters s  in terms of the initially given physical 

values and variables. Hence, as a particular case, from the isomorphic transformations (63), in addition to 

these determined expressions for the parameters s (in terms of the relative velocity between the 

reference frames in x-direction and the speed of light): 0,)1( 210  zzz  , 211   , ,cv

we obtain the equivalent form of Lorentz transformations in the standard configuration [59]: 
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Similar to the derived transformations (63-1), the Lorentz transformations (in standard configuration) are 

derived by the same approach for higher-dimensional space-times. 

3-3. The Lorentz invariant systems of linear equations (59) – (62),…, (obtained on the basis of the 

axiom (17) and relevant general results obtained in Sections 2-2 and 2-4 for homogeneous quadratic 

equations) as equivalent forms of the Lorentz invariant energy-momentum quadratic relation (52), could 

be expressed generally by the following matrix formulation in (1+N)-dimensional space-time: 

                                                              
,0)~( 0  Skmp 




                                             (64) 
  

 
where                                               

   ~,  ,                                     (65) 

0m  is the invariant mass of a relativistic particle  and )0,...,0,( 00gck 
 is its covariant velocity 

(that is a time-like covariant vector) in the stationary reference frame,  
 and 

~ are two contravariant 
NN 22   square matrices (corresponding to the matrix representations of Clifford algebras Cℓ1,2, Cℓ1,3, 

Cℓ1,4 ,…, Cℓ1,N  (for N ≥ 2) and their generalizations[1, 40, 46], see also Appendix A) that by the 
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isomorphic linear relations (65) are expressed in terms of two corresponding contravariant 
NN 22 

matrices 
 and   , and S  is a 12 N

 parametric column matrix. These matrices in (1+1), (1+2), (1+3), 

(1+4) and (1+5) space-time dimensions are given uniquely as follows, respectively:                                                           

 - For (1+1)-dimensional case we get: 
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where ,, 10 uu ,,, 10 wvv s  are arbitrary parameters. 

- For (1+2)-dimensional case we obtain where ,,, 210 uuu ,,,, 210 wvvv s  are arbitrary parameters): 
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  - For (1+3)-dimensional case we obtain: 
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 (68)                                                                                                                                                                                     

where 3210 ,,, uuuu , wvvvv ,,,, 3210 , s  are arbitrary parameters. Moreover, the 4×4 matrices 
i  (68) generate 

the Lorentz Lie algebra in (1+3) dimensions.  

- For (1+4)-dimensional case we have:
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where 43210 ,,,, uuuuu , swvvvvv ,,,,,, 43210  are arbitrary parameters. Furthermore, similar to the 4×4 
i

matrices in (68), the 8×8 matrices 
i  (69) generate the Lorentz Lie algebra in (1+4) dimensions.  
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For (1+5)-dimensional case the size of matrices  and   is 3232 . S  is also a 132  column matrix 

given by: 
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where 
543210 ,,,,, uuuuuu , swvvvvvv ,,,,,,, 543210  are arbitrary parameters.

 
 
Similar to the formulations (66) – (70), for the higher dimensional cases of invariant quadratic relation 

(52), the column matrix S and square matrices 
 and

   (defining the square matrices 
 and



that correspond to the matrix representations of Clifford algebras and their generalization, see Sec. 3-3 and 

also Appendix A) are obtained with similar algebraic structures, where in (1+N) space-time dimensions the 

size of square matrices 
 and

 
 
is  

NN 22  and the size of column matrix S  is 12 N
. 

3-3-1. General algebraic formulation of the column matrix S given in the matrix equation (64)  

As noted in Sec. 3-3, the matrix equation (64) represents uniquely the equivalent form of the Lorentz 

invariant energy-momentum quadratic relation (52) (as the norm of the D-momentum), based on the 

axiomatic relations (17) and (17-1) and relevant general results obtained in Sections 2-2 and 2-4 for 

homogeneous quadratic equations over the integral domain over ℤ. Hence (as it has been also mentioned 

in Sec. 3-3), the general algebraic formulation of the entries of column matrices S  obtaining in 

subsequent higher space-time dimensions, are similar to formulations of the obtained matrices S  (66) – 

(70) corresponding, respectively, to the (1+0), (1+1), (1+2), (1+3), (1+4) and (1+5)-dimensional cases of 

Lorentz invariant matrix equation (64). Hence, the algebraic formulation of column matrix S  in (1+N) 

space-time dimensions would be generally defined as follows: the last entry of S  is represented solely by 

the arbitrary parameter s , 
12 N

entries are definitely zero (see Sec. 3-3-2 for detail) and all the other

12 1 N
 entries of S  could be represented uniformly by the following unique algebraic formulation 

(expressing in terms of the arbitrary parameters: 
Nuuuuu ,...,,,, 3210

, wvvvvv N ,,...,,,, 3210 ) given on the basis 
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of a one-to-one correspondence between these (non-zero) entries of matrix S  and the entries h  (for μ > 

ν)  of a 
11 22   NN
 square matrix ][ hH defined in (1+N) dimensions, by: 

                                                       wvuvuh )(                                             (70-1) 

where  μ, ν = 0,1,2,…, N,  and 0h
 
for  μ = ν. 

Note that the algebraic form (70-1) is equivalent to form (45-2) which, as it has been noted in Sec. 2-4, 

generates a symmetric algebra Sym(V) on the vector space V , where Vvu ),(   
” [11].  

Hence, as a basic algebraic property of the form (70-1), a natural unique isomorphism is defined between 

the underlying vector space V of the symmetric algebra Sym(V) (which is generated by algebraic form (70-

1)) and the Weyl algebra W(V). Moreover, based on this isomorphism, the Weyl algebra W(V) could be 

defined as a (first) quantization of the symmetric algebra Sym(V), where the generators of the Weyl 

algebra W(V)  would be represented by the corresponding (covariant) differential operators (such as i , 

as per quantum mechanics usage). 

In Sec. 3-4, we use these general and basic algebraic properties of the column matrix S , in particular, in 

the procedure of quantization of the algebraic matrix equation (64). 

 

3-3-2. In addition to the above algebraic properties of the parametric entries of column matrix S , that are 

represented uniformly by the algebraic formula (70-1), in terms of the arbitrary parameters: 

Nuuuuu ,...,,,, 3210
, wvvvvv N ,,...,,,, 3210 , the following basic properties hold as well: 

  Displaying the column matrix S  by two half-sized 12 1 N
column matrices S   and S   (containing 

respectively the upper and lower entries of S , similar to the formulas (57-2) and (62-2) representing the 

(1+5)-dimensional case of matrix S ) such that: 













S

S
S , then we have: 

    (1). The number of entries of the column matrix S   that are zero, is exactly:  )N( N 12 , and the other 

N  entries are represented solely either by the formulation: ,w)vuvu(h 000    or by its negative 

form, i.e.: w)vuvu(hh  0000   , where  μ = 1,2,…, N,  and 0h  denote the N entries (except 

the first entry 00h that is zero) of the first column of square matrix ][ hH  (defined by the formula (70-1));  

    (2). The number of entries of the column matrix S   that are zero, is exactly:
 )1

2

)1(
2( 1 


 NNN , and 

except the last entry (represented by arbitrary parameter s ), all the other )
2

)1(
(

NN
 entries are 

represented solely either by the formulation: ,w)vuvu(h    or by its negative form, i.e.: 

w)vuvu(hh   , where μ > ν ,  μ, ν = 1,2,…, N,  and h denote the components of square 

matrix ][ hH , and the last entry of column matrix S   is also represented by the arbitrary parameter s . 
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(3). If we exchange S  and S  in the column matrix 




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
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
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S

S
S , that could be shown by, 
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)(                                      (70-2) 

then based on the general formulation of matrix S  (defined uniquely by formulas (66) – (70) for various 

space-time dimensions) and its algebraic properties (1) and (2) (mentioned above), it is concluded directly 

that the matrix equation (64) given with the new column matrix )(ChS  (70-2), i.e. equation: 

0)~( )(

0  ChSkmp 



  , is which could be defined solely in (1+2) space-time dimensions for 

0,0,0 11  vus , in (1+3) space-time dimensions for 0s , and in (1+4) space-time dimensions for 

0,0,0 11  vus   (which is reduced and be equivalent to the (1+3)-dimensional case of matrix 

equation (64)). In (1+1) and (1+5) and higher space-time dimensions, the matrix equation 

0)~( )(

0  ChSkmp 



   would be which are defined if and only if all the entries of column matrix 

)(ChS  are zero. This means that the matrix equation (64): 0)~( 0  Skmp 



  , is symmetric in the 

exchange of S  and S  (in the column matrix 













S

S
S ), solely in (1+2)-dimensional space-time for 

0,0,0 11  vus , and in (1+3)-dimensional space-time for 0s . In Sec. 3-5-2, this particular algebraic 

property of the column matrix S  would be used for concluding a new crucial and essential issue in 

fundamental physics.  

In the following Section, the natural isomorphism between the symmetric algebra Sym(V) (generated 

uniquely by the algebraic form (70-1)) and the Weyl algebra W(V) mentioned in Sec. 3-3-1, in addition to 

the general algebraic properties of column matrix S presented in Sec. 3-3-2, would be used and applied 

directly in the procedure of first quantization of the Lorentz invariant system of linear equations (64). 

3-4. A new unique mathematical derivation of the fundamental (massive) field 

equations of physics (representing the laws governing the fundamental forces of nature): 

By first quantization (followed by a basic procedure of minimal coupling to space-time geometry) of 

the Lorentz invariant system of linear equation (64) (representing uniquely the equivalent form of 

energy-momentum quadratic relation (52), see Sec. 3-3) expressed in terms of the Clifford algebraic 

matrices (65) – (70),... , two classes of general covariant field equations are derived uniquely as 

follows (given in (1+N) space-time dimensions): 

                                                         
0)~( )(

0  R

R kmi 



  ,                                 (71)

 

                                                         
0)~( )(

0  F

F kmDi 



                                    (72)      

where i  and Di  are the general relativistic forms of energy-momentum quantum operator 

(where  is the general covariant derivative, and  D
 
is gauge covariant derivative, for detail see the 

ordinary tensor formalisms of these equations, representing by formulas (78-1) – (79-3), in Sec. 3-4-1), 



42 
 

)(

0

Rm  and 
)(

0

Fm  are the fields‘ invariant masses, )0,...,0,( 00gck   is the general covariant 

velocity in stationary reference frame (that is a time-like covariant vector), 
 and 

~ are two 

contravariant 
NN 22   square matrices (compatible with the matrix representations of certain Clifford 

algebras, see Sec. 3-3 and also Appendix A) defined by formulas (65) – (70) in Sec 3-3. In the field 

equation (72), ΨR is a column matrix  as a (first) quantized form of the algebraic column matrix S  
(defined by relations (64) – (70-1) in Sections 3-3, 3-3-1 and 3-3-2), determined and represented uniquely 

by formulas (73) – (77),…, in various space-time dimensions. The column matrix ΨR contains the 

components of field strength tensor R (equivalent to the Riemann curvature tensor), and also the 

components of covariant quantity 
)(G

  that defines the corresponding source current tensor by relation: 

)(
)(

0)( )( R
R

R k
im

J  



  (which appears in the course of the derivation of field equation (71), see Sec. 

3-4-2 for details). In a similar manner, in the tensor field equation (72), ΨF is also a column matrix as a 

(first) quantized form of the algebraic column matrix S (defined by relations (64) – (70-1) in Sections 3-3, 

3-3-1 and 3-3-2), determined and represented uniquely by formulas (73) – (77),…, in to various space-time 

dimensions. The column matrix ΨF contains both the components of  tensor field F
 
(defined as the 

gauge field strength tensor), and also the components of covariant quantity 
)(F  that defines the 

corresponding source current vector by relation: relation: )(
)(

0)( )( F
F

F k
im

DJ 



  (which appears in the 

course of the derivation of field equation (72), see Sec. 3-4-2 for details). Moreover, the general covariance 

formalism of the field equations (71) and (72), would be also shown in Sec. 3-4-1.  

 

In addition, in Sec. 3-5, based on a basic class of discrete symmetries for the field equations (71) and (72), 

along with definite mathematical axiomatic formalism of the derivation of these equations, it is shown that 

these equations could be defined solely in (1+2) and (1+3) space-time dimensions. It is shown that (1+3) 

dimensional cases of these equations represent uniquely a new formalism of bispinor fields of spin-2 and 

spin-1 particles, respectively. It is also shown that the (1+2)-dimensional cases of these equations, 

represent asymptotically new massive forms of bispinor fields of spin-3/2 and spin-1/2 particles, 

respectively. 

 

Moreover, in Sec. 3-5-2, based on the definite mathematical formalism of this axiomatic derivation 

approach, the basic assumption (3) in Sec. 3-1, along with the C, P and T symmetries (represented 

basically by their corresponding quantum matrix operators) of the fundamentally derived general 

covariant field equations (71) and (72), it is concluded that the universe could be realized solely with the 

(1+2) and (1+3)-dimensional space-times (where this conclusion, in particular, is based on the T-

symmetry). In Sections 3-5-3 and 3-5-4, it is proved that 'CPT' is the only (unique) combination of C, P, 

and T symmetries that could be defined as a symmetry for interacting fields. In addition, in Sec. 3-5-4, on 

the basis of these discrete symmetries of the field equations (71) and (72), it is shown that only left-

handed particle fields (along with their complementary right-handed fields) could be coupled to the 

corresponding (any) source currents. 

 

Furthermore, in Sec. 3-6, it is argued that the metric of background curved space-time is diagonalized for 

the spin-1/2 fermion field equations (defined by the field equation (110) as a generalized form of (1+2)-

dimensional case of equation (72)), where this property generates a certain set of additional symmetries 

corresponding uniquely to the SU(2)LU(2)R symmetry group for spin-1/2 fermion fields (represented by 
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two main groups of ―1+3‖ generations, corresponding respectively to two subgroups of leptons and two 

subgroups of quarks), in addition to the SU(2)LU(2)R and SU(3) gauge symmetry groups for spin-1 

boson fields coupled to the spin-1/2 fermionic source currents. Moreover, based on these uniquely 

determined gauge symmetries, four new charge-less spin-1/2 fermions (representing by ―ze , zn ; zu , zd‖, 

where two right-handed charhe-less quarks zu and zd  emerge specifically in two subgroups with anti-

quarks such that: ( b,u,s , zu) and ( t,d,c , zd)), and also three new massive spin-1 bosons (representing 

by ",
~

,
~

" ZWW



, where in particular Z


is the complementary right-handed particle of ordinary Z

boson), are predicted by this new mathematical axiomaticapproach.  

    As a particular result, in Sec. 3-4-2, based on the definite and unique formulation of the derived 

Maxwell‗s equations (and also Yang-Mills equations, defined by the (1+3)-dimensional case of the field 

equation (72), compatible with specific gauge symmetry groups as shown in Sec. 3-6-1-2 and 3-6-3-2), it 

is also concluded that magnetic monopoles could not exist in nature. 

 

3-4-1. Axiomatic Derivation of General Covariant Massive Field Equations (71) and (72):        

First it should be noted that via first quantization (followed by a basic procedure of minimal coupling to 

space-time geometry) of the algebraic systems of linear equations (64) (as a matrix equation given by the 

Clifford algebraic matrices (65) – (70),…, in various space-time dimensions), two categories of general 

covariant field equations (with a definite matrix formalism compatible with the Clifford algebras and their 

generalizations, see Sec 3-3 and also Appendix A) are derived solely, representing by the tensor equations 

(71) and (72) in terms two tensor fields 
R and ,F  respectively. In fact, as it has been mentioned in 

Sections 3-3-1 and 3-3-2, there is a natural isomorphism between the Weyl algebra and the symmetric 

algebra generated by the algebraic form (70-1) which represents the general formulation of the entries of 

algebraic column matrix S  in the matrix equation (64). In addition, the procedure of minimal coupling to 

space-time geometry would be simply defined as a procedure which, starting from a theory in flat space-

time, substitutes all partial derivatives by corresponding covariant derivatives and the flat space-time 

metric by the curved space-time (pseudo-Riemannian) metric. Moreover, as mentioned in Sec. 3-3-1, on 

the basis of this natural isomorphism, the Weyl algebra could be also represented as a quantization of the 

symmetric algebra generated by the algebraic form (70-1)). Hence, using this natural isomorphism, by first 

quantization (followed by a basic procedure of minimal coupling to space-time geometry) of matrix 

equation (64), two definite classes of general covariant massive (tensor) field equations are determined 

uniquely, expressed in terms of two basic connection forms (denoting by two derivatives  and D

corresponding respectively to the diffeomorphism (or metric) invariance and gauge invariance), along with 

their corresponding curvature forms, denoting respectively by 
R (as the gravitational field strength 

tensor, equivalent to Riemann curvature tensor) and 
F (as the gauge field strength tensor). This natural 

isomorphism could be represented by the following mappings (corresponding to the curvature forms
R

and 
F , respectively): 

                                 RRwvuvu RR     ),()(    )(  
  
,              (71-1) 

                                       μνFF Fig  DDDDwvuvu )()(    )(     .                       (72-1) 
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where ),()( 


















 R

  ADADF  , and Fg , A  are respectively the 

corresponding coupling constant and gauge field (that is defined generally as a Lie algebra-valued 1-form 

representing by a unique vector field [58]). Based on this natural unique isomorphism represented by the 

mappings (71-1) and (72-1), the column matrices ΨR and ΨF   (in the expressions of field equations (71) 

and (72), respectively) would be determined uniquely various dimensional space-times, represented by 

formulas (73) – (77),… . 

In addition, as mentioned in Sec. 3-4 in detail, the last entry of algebraic column matrix S  in matrix 

equation (64) (as it has been shown in the relations (64) – (70)), is represented by the arbitrary algebraic 

parameter s .  In the course of the derivation of field equations (71) and (72) (via the first quantization 

procedure mentioned above, and the mappings (71-1) and (72-1)), the arbitrary parameter s  could be 

substituted solely by two covariant quantities 
)(R

  and 
)(F  that define the corresponding covariant 

source currents 
)(R

  and 
)(FJ  (given in the field equations (71) and (72), respectively) by the conditional 

relations: )(
)(

0)( )( R
R

R k
im

J  


  and )(
)(

0)( )( F
F

F k
im

DJ 


 .  

In addition, as another basic issue concerning the general covariance formulation of tensor field equations 

(71) and (72), we should note that each of these equations (as a system of equations) includes also an 

equation corresponding to the 2
nd

 Bianchi identity, as follows, respectively: 

                      0)()()(
)(

0

)(

0

)(

0   Rk
im

Rk
im

Rk
im RRR


,           (71-2) 

                          0)()()(
)(

0

)(

0

)(

0   Fk
im

DFk
im

DFk
im

D
FFF


                 (72-2) 

However, the tensor field 
R as the Riemann curvature tensor, obeys the relation (71-2) tensor, if and 

only if a torsion tensor is defined in as: )()2( )(

0  kgkgimT R   , and subsequently the 

relation (71-2) be equivalent to the 2
nd

 Bianchi identity of the Riemann  tensor. Consequently, the 

covariant derivative  should be also defined with this torsion, that we may show it by 


. Moreover, as 

it has been also shown in Sec. 3-4-2, concerning the relation (72-2), we may also define a torsion field as: 

)()2( )(

0  kgkgimZ F   , and write the relations (71-2) and (72-2) (representing the 2
nd

 Bianchi 

identities) as follows: 

                        
,








 RTRTRTRRR 


           (71-2-a) 

                                                       

0  FDFDFD


                                         (72-2-a) 

where the general relativistic form of gauge derivative D


 has been defined with torsion field Z . We 

use the derivatives 


 and D


 in the ordinary tensor representations (i.e. the formulas (78-1) – (79-3)) 

of the field equations (71) and (72) in Sec. 3-4-2. In addition, based on the formulations of torsions T  

and Z  (that have appeared naturally in the course of derivation of the field equations (71) and (72)) 

and general properties of torsion tensors (in particular, this property that a torsion tensor can always be 
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treated as an independent tensor field, or equivalently, as part of the space-time geometry [72 - 74]), it 

could be concluded directly that torsion field T  generates the invariant mass of corresponding 

gravitational field, and torsion field Z  generates the invariant mass of corresponding gauge field, 

respectively. Hence, based on our axiomatic derivation approach including the mappings (71-1) and (72-

1) (mentioned above), the (1+1), (1+2), (1+3), (1+4), (1+5),…, dimensional cases of column matrices ΨR 

and ΨF  in the specific expressions of general covariant massive (tensor) field equations (71) and (72), are 

determined uniquely as follows, respectively; For (1+1)-dimensional space-time we have:   

    

,

;)(

,)(
,,

)(
)(

0)(

)(
)(

0)(

)(

10

)(

10

F
F

F

R
R

R

FFRR

k
im

DJ

k
im

JFR










































                         (73) 

- For (1+2)-dimensional space-time we obtain: 
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
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                                       (74) 

- For (1+3)-dimensional space-time we have: 

 

     

;)(

,)(
,

0
,

0

)(
)(

0)(

)(
)(

0)(

)(

12

31

23

30

20

10

)(

12

31

23

30

20

10

F
F

F

R
R

R

F

F

R

R

k
im

DJ

k
im

J

F

F

F

F

F

F

R

R

R

R

R

R








































































































                                    (75) 

- For (1+4)-dimensional space-time we get, 
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 - For (1+5)-dimensional space-time we obtain: 
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                         (77) 

 

where in the relations (73) – (77), 
)(RJ  and )(FJ  are the source currents expressed, necessarily, in terms of 

the covariant quantities
 

)(G

  and 
)(F  (as the initially given quantities), respectively. For higher-
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dimensional space-times, the column matrices R and F  (with similar formulations) are determined 

uniquely as well. 

3-4-2. From the field equations (71) and (72) (derived uniquely with certain matrix formalisms 

compatible with the Clifford and Weyl algebras), the following general covariant field equations, with 

ordinary tensor formalisms, are obtained (but not vice versa), respectively: 

  

                       

,







 RTRTRTRRR 


             (78-1) 

                                                 










)()(

0 )( RR JRkimR  


 ;                                 (78-2) 

 

                                          

 ),()( 


















 R

                                

                                       

)(
)(

0)( )( R
R

R k
im

J  



 , ).(

2

)(

0
 kgkg

im
T

R




                      (78-3) 

and 

     

                                                      

,0  FDFDFD


                                           (79-1) 

                                                                 

)(FJFD 
 


 ;                                                       (79-2) 

                                                               
 ADADF


  ,  

                                 )(
)(

0)( )( F
F

F k
im

DJ 



 , ).(

2

)(

0
 kgkg

im
Z

F




                       (79-3) 

 

where 

  is the affine connection: 








 K ,  


  is the Christoffel symbol (or the torsion-

free connection), 

K  is the contorsion tensor defined by:  kgimK R )2( )(

0   (that is anti-

symmetric in the first and last indices), T is the torsion given by:  KKT   (that generates 

the invariant mass of the gravitational field), )0,...,0,( 00gck   (where we supposed 1c ) is the 

covariant velocity of particle (or the static observer) in the stationary reference frame, and A  is the gauge 
potential vector field. Moreover, in general covariant field equations (79-1) – (79-3), the covariant 

derivative D


has been defined specifically with the torsion field Z  (generating the invariant mass of 

gauge field strength tensor F ).  

It should be emphasized again that the tensor field equations (78-1) – (78-3) and (79-1) – (79-3) (which 

are obtained respectively from the original equations (71) and (72), but not vice versa) show merely the 

general covariance formalism (including torsions fields 

T and


Z ) of the axiomatically derived field 

equations (71) and (72). The crucial issue here is that the original field equations (71) and (72) could not 

be obtained from the tensor equations (78-1) – (78-3) and (79-1) – (79-3). In fact, the tensor equations 

(78-1) – (78-3) and (79-1) – (79-3) don’t represent completely the definite matrix formalism (compatible 

with certain Clifford and Weyl algebras) of the axiomatic field equations (71) and (72). Hence, based on 

this mathematical axiomatic formalism and derivation approach of equations (71) and (72) (presented in 

Sections 3-3 – 3-4-1), it is concluded that the fundamental force fields of physics cannot be described 

completely via the ordinary tensor representations of these fields (in the current standard classic and 

quantum relativistic field theoretic formalism of physics), such as the representations (78-1) – (78-3) and 
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(79-1) – (79-3); and as shown in Sections 3-3 – 3-4-1, on the basis of this new mathematical formalism, 

all the fundamental force fields of physics could be represented (and described) solely by the 

axiomatically determined and formulated field equations (71) and (72) with their definite covariant matrix 

formalisms (given and specified by formulas (65) – (70) for various space-time dimensions, compatible 

with certain Clifford and Weyl algebras). 

3-4-2-1. Derivation of the Einstein field Equations 

Along with the massive gravitational field equations (78-1) – (78-3) (obtained uniquely from the 

originally derived field equations (71)) that are expressed solely in terms of R  as the field strength 

tensor and also torsion‘s depended terms, we also assume the following relation as basic definition for the 

Ricci tensor (where the Riemann curvature tensor and Ricci tensor don‘t obey the interchange 

symmetries:  RR  ,  RR  , because of the torsion [28]): 

                           



 Rk
im

Rk
im

Rk
im RRR

)()()(
)(

0

)(

0

)(

0












             (78-4) 

 
where the relation (78-4) particularly remains unchanged by the transformation: 

                                                                   gRR                                                        (78-5) 

(where as would be shown,  is equivalent to the cosmological constant). It should be noted that by 

taking 0 , from the 2
nd

 Bianchi identity of the Riemann curvature tensor and relation (78-4) it could 

be shown that the Ricci tensor is also the contraction of the Riemann tensor, i.e. 

 RR   (which is 

equivalent to the ordinary definition of the Ricci tensor). However, this ordinary definition for the Ricci 

tensor, necessarily, doesn‘t imply the above transformation. In fact, in the following, we show that this 

basic transformation is necessary for having the cosmological constant in the gravitational field equations 

(including the Einstein field equations which could be derived from the above equations and relations) 

expressed in terms of the Ricci and stress-energy tensors. As a direct result, a unique equivalent 

expression of gravitational field equations, in terms of the Ricci tensor R and stress-energy tensor T  , 

could be also determined from the basic definition   (78-4) (for Ricci curvature tensor, based on this 

axiomatic formalism), and field equations (78-1) – (78-3), along with the following expression for current 
)(RJ   (defined in terms of the stress-energy tensor T , )( 

TT  , and metric g , in D-dimensional 

space-time): 

])()[(8])()[(8
)(

0

)(

0

)(

0

)(

0)(

  Tgk
im

Tgk
im

BTk
im

Tk
im

J
RRRR

R


 ,  (78-6) 

where  TT    for 0)(

0 Rm , 0B  for 2,1D , and )2/(1  DB  
for 3D . , the Einstein field 

equations (as the massless case) are determined directly as follows: 

                                                            gBTgTR  )(8                                    (78-7) 

3-4-3. Showing that magnetic monopoles could not exist in nature. As a direct consequence of the 

uniquely derived general covariant field equations (72) that are specified by the matrices (73) – (77) and 

(65) – (70) (or the general covariant field equations (79-1) – (79-3) obtained from the original equation 
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(72)), which , in fact, represent the electromagnetic fields equivalent to a generalized massive form of the 

Maxwell‘s equations (as well as a generalized massive form of the Yang-Mills fields corresponding to 

certain gauge symmetry groups, see Sec. 3-6), it is concluded straightforwardly that magnetic 

monopoles could not exist in nature. 

3-4-4. On the local gauge invariance of uniquely derived new general covariant massive (matrix) 

forms of the Maxwell’s (and Yang-Mills) and Dirac equations.  

 

The Lagrangian density specified for the tensor field 
F in the field equations (79-1) – (79-3) is 

(supposing 0)( FJ 
)[58]: 

                                                      


FFgL F *)( )41(                                                (80) 

where g is the metric's determinant. Moreover, the trace part of torsion field Z in (79-3) is obtained as: 

                                              



 kNk)im(NZZ )F(  20

                                     (81) 

where (1+N) is the number of space-time dimensions and 
2

)(

0

Fim
 . Now based on the definition of 

covariant vector k (as a time-like covariant vector), we simply get:    k: . This basic property, 

along with and formula (81), imply the general covariant massive field equations (79-1) – (79-3) 

(formulated originally with the torsion field (79-3) generating the invariant mass 
)(

0

Fm of field F ), and 

the corresponding Lagrangian density (80), be invariant under the U(1) Abelian gauge group [9, 58, 60-

63]. However, in Sec. 3-6, we show that assuming the spin-1/2 fermion fields (describing generally by the 

field equation (110-9) compatible with specific gauge symmetry group (110-12), as shown in Sec. 3-6-1-

2) and their compositions as the source currents of the (1+3)-dimensional cases of general covariant 

massive field equation (72) (describing the spin-1 boson field), then this field equation would be invariant 

under two types of gauge symmetry groups, including: SU(2)LU(2)R and SU(3), corresponding with a 

group of seven bosons and a groups of eight bosons (as shown in Sec. 3-6-3-2). 

 

3-4-5. Identifying a new particular massive gauge boson. 

 According to Refs. [60 – 63], in agreement with the recent astronomical data, we can directly establish a 

lower bound for a constant quantity which is equivalent to the constant 
2

)(

0

Fim
  (defined by the 

relation (80)) as: 21 . Hence, a new massive particle (corresponding to the U(1) symmetry group) 

would be identified with the invariant mass: 

                                                 m  ≈ 4.90571×10
-50 

kg                                          (82) 

that is generated by a coupling torsion field of the type (79-3) of the background curved space-time.                                                            

In addition, it should be noted that, in general, based on the covariant massive field equations (71) and 

(72) derived by our axiomatic approach (or field equations (78-1) – (78-3) and (79-1) – (79-3) obtained 

from (71) and (72)), the invariant masses of the elementary particles are generated by torsion fields of the 

types  (78-3) (for spin-3/2 and spin-2 particles) and (79-3) (for spin-1/2 and spin-1 particles, see Sec. 3-6).  
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Hence, this approach could be also applied for massive neutrinos concluding that their masses are 

generated by the coupling torsion fields (of the type (79-3)). Such massive particle fields coupled to the 

torsions (of the type (79-3)) of the background space-time geometry could be completely responsible for 

the mysteries of dark energy and dark matter [75]. 

3-5. Quantum Representations of C, P and T Symmetries of the Axiomatically Derived 

General Covariant Massive (tensor) Field Equations (71) and (72): 

As it has been shown in Sections 3-3, 3-3-1, 3-3-2, 3-4 and 3-4-1, the general covariant massive 

(tensor) field equations (71) and (72) as the unique axiomatically determined equations (representing 

the fundamental field of physics, as assumed in Sec. 3-1), are represented originally with definite 

matrix formalisms constructed from the combination of two specific matrix classes including the 

column matrices (73) – (77),… compatible with the Weyl algebras (based on the isomorphism (71-1) 

– (72-1)), and the square matrices (65) – (70),… that are compatible with the Clifford algebras and 

their generalizations; see Sections 3-3, 3-3-1, 3-3-2 and 3-4-1 and also Appendix A for detail). 

In agreement with the principles of relativistic quantum theory [35], and also as another primary 

assumption in addition to the basic assumption (3) defined in Sec. 3-1, we basically represent the C, 

P and T symmetries of the source-free cases of by the following quantum matrix operators (with the 

same forms in both flat and curved space-time), respectively: 

(Note: In Sec. 3-5-3, we show that only a certain simultaneous combination of the C, P and T 

transformations could be defined for the field equations (71) and (72) with non-zero source currents.) 

(1)- Parity Symmetry (P-Symmetry):  

                                                                









I

I
P̂ P

0

0
                                               (83) 

where
 
I is the identity matrix, and the size of matrix 

P  in (1+N)-dimensional space-time is 
NN 22  . 

The operator P̂ obeys the relations: 

                                                
TPPPPPP ˆˆˆˆ,1ˆ,1)ˆdet( 12  

                        (83-1) 
 

(2)- Time-Reversal Symmetry (T-Symmetry): 

                                                                
K̂iK̂T̂T̂ ChP 0                                              (84) 

where the operator K̂  denotes complex conjugation, the operator 
P defined by formula (83) and the 

operator 
Ch

 
in (1+1) and (1+2) space-time dimensions, is given by: 

                                                                     
,

I

I
Ch











0

0
                                                 (84-1) 

and in (1+3) and higher space-time dimensions, 
Ch  is denoted by: 

                                                                 











0

0

iI

iI
Ch                                                 (84-2) 



51 
 

where the size of matrix 
Ch  in (1+N)-dimensional space-time is: 

NN 22  . Moreover, in (1+1) and (1+2) 

space-time dimensions, the time reversal operator T̂ (84) and the Hermitian operator 
ChPiT 0

ˆ
 

(specified in the formula (84)) obey the relations: 

                                                     
,ˆˆˆˆ,1ˆ

00

1

00

2 T
TTTTT 


                               (84-3) 

and in (1+3) and higher space-time dimensions, T̂ and 0T̂ obey the relations: 

                                                        
T

TTTTT 00

1

00

2 ˆˆˆˆ,1ˆ 


                                   (84-4) 

 Concerning the time reversal symmetry, it should be noted that the relations (84-3) are solely compatible 

with the fermionic fields, and relations (84-4) are solely compatible with the bosonic fields. In addition, it 

should be noted that these basic quantum mechanical properties (i.e. the relations (84-3) and (84-4)) of the 

time reversal symmetry (84), are fully compatible with corresponding properties of the field tensors F  

and R  presented in Sec. 3-6, where the tensor field F  (describing by general covariant field 

equation (72)) represents (asymptotically) solely a massive bispinor field of spin-1/2 particles (as a 

new general covariant massive formulation of the Dirac equation) in (1+2) space-time dimensions, 

and also represents a massive bispinor field of spin-1 – as new massive general covariant (matrix) 

formulations of both Maxwell and Yang-Mills field equations compatible with specified gauge 

symmetry groups – in (1+3) space-time dimensions; and tensor field R  (describing by general 

covariant field equation (71)) represents (asymptotically) solely a bispinor field of spin-3/2 particles 

(as a new massive general covariant form of the Rarita–Schwinger equation) in (1+2) space-time 

dimensions , and also represents a massive bispinor field spin-2 particles (equivalent to a generalized 

massive form of the Einstein equations) in (1+3) space-time dimensions.  

(3)- Charge Conjugation Symmetry (C-Symmetry):  

                                         FFCFRRCR KiICKiIC  ˆ~
)(,ˆ~

)(                      (85) 

where KiIC ˆ~
 , I  is the identity matrix, the operator K̂  denotes complex conjugation, and the charge 

conjugation operator Ĉ  defined by: T)(ˆ)( RCR C  , T)(ˆ)( FCF C  . The charge conjugation operator 

Ĉ  obeys the following relations: 

                                                      
TCCCCCC ˆˆˆˆ,1ˆˆ 1  

                                   (85-1) 

As a basic additional issue, it is worth to note that the time-reversal operator (84) could be also expressed 

basically in terms of the parity matrix operator 
P  (83), matrix operator KiIC ˆ~

  given in the definition 

of charge-conjugated transformation (85), and matrix 
Ch defined by formulas (84-1) and (84-2), as 

follows: 

                                                                      
TCChP ˆ~

                                                     (85-2) 

where we have: PChChP   . 

3-5-1. Basic Properties of Matrix (operator) 
Ch (defined by formulas (84-1) and (84-2)): 
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In this Section, the main properties of matrix operator 
Ch  

(defined by unitary matrices (84-1) and    

(84-2)) hav been presented. Each of general covariant (tensor) field equations (71) and (72) (including 

their source-free and non source-free cases), as a system of differential equations, is symmetric and 

has the same spectrum by multiplying by matrix
Ch . The multiplied column matrices 

R

ChCh

R  )(

 
and 

F

ChCh

F  )(  then obey the equations (71) and (72), respectively, but with opposite sign in 

mass term such that: 0)~( )()(

0  Ch

R

R kmi 



  , 0)~( )()(

0  Ch

F

F kmi 



  .  

   As a general additional issue concerning the column matrices R

ChCh

R  )(
 and F

ChCh

F  )(
, 

should be also added that the sign change of the mass terms introduced in the field equations (71) and 

(72) is immaterial (the same property also hold for the ordinary formulation of Dirac equation, and so 

on [32]). In other words, the field equations (71) of the form 0)~( )(

0  R

R kmi 



 

 
are 

equivalent, and similarly the field equations (72) of the form 0)~( )(

0  F

F kmi 



 

 
would be 

equivalent as well. However, since the algebraic column matrix S  in the matrix equation (64) 

(derived and represented uniquely in terms of the matrices (66) – (70),… corresponding to various 

space-time dimensions), is not symmetric by multiplying by matrix
Ch  (84-1) and (84-2) (except for 

(1+2) and (1+3)-dimensional cases of column matrix S ,  based on the definite algebraic properties of 

matrix S presented in Sections 3-3, 3-3-1, 3-3-2), it is concluded that except the (1+2) and (1+3)-

dimensional cases of the fundamental field equations (71) and (72), these field equations could not be 

defined with the column matrices of the types )()(

R

ChCh

R  
 
and )()(

F

ChCh

F   (if assuming 

that the column matrices 
R  and 

F  
are defined with field equations (71) and (72), i.e. they have 

the formulations similar to the formulations of originally derived column matrices (73) – (77),… 

corresponding to various space-time dimensions). This conclusion follows from this fact that the 

filed equations (71) and (72) have been derived (and defined) uniquely from the matrix equation (64) 

via the axiomatic derivation approach (including the first quantization procedure) presented in 

Sections 3-4, 3-4-1. In Sec. 3-5-2, using this property (i.e. multiplication of column matrices 
R  and 

F defined in the fundamental field equations (71) and (72), by matrix 
Ch  (84-1) and (84-2) from 

the left), this crucial and essential issue would be concluded directly that by assuming the time-

reversal invariance of the general covariant filed equations (71) and (72) (represented by the 

transformations 
RTˆ  and 

FTˆ , where the quantum operator T̂ is given uniquely by formula (84), 

i.e.: KiKTT ChP ˆˆˆˆ
0  ), these fundamental field equations could be defined solely in (1+2) and 

(1+3) space-time dimensions (with the column matrices of the forms (96-1) and (98-2), respectively). 

Subsequently, in Sec. 3-5-3, , it would be also shown that only a definite simultaneous combination 

of all the transformations ,Ĉ P̂ , T̂  and also matrix 
Ch  (given by quantum operators (83) – (87)) 

could be defined for the field equations (71) and (72) with non-zero source currents. In addition, the 

matrix operator 
Ch  in (1+1) and (1+2) space-time dimensions obeys the relations:  

                                             
TChChChChCh )()()(,1)( 12   

,                            (86) 

and in the (1+3) and higher dimensions obeys the following relations as well: 
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TChChChChCh )()()(,1)( 12   

                             (87) 

Furthermore, in Sec. 3-5-4, the matrix 
Ch  would be also used basically for defining and representing 

the left-handed and right handed components of the column field matrices R  and F  defined 

originally in the field equations (71) and (72). 

3-5-2. Showing that the universe could be realized solely with the (1+2) and (1+3)-dimensional 

space-times: 

The proof of this essential property of nature within the new mathematical axiomatic formalism presented 

in this article, is mainly based on the T-symmetry (represented basically by quantum matrix operators 

(84)) of the fundamentally derive general covariant field equations (71) and (72). As shown in Sec. 3-5, 

the source-free cases (as basic cases) of field equations (71) and (72) are invariant under the time-reversal 

transformation defined by matrix operator (84). Moreover, in Sec. 3-5-3, it would be also shown that 

these field equations with non-zero source currents are solely invariant under the simultaneous 

transformations of all the ,Ĉ P̂ , and T̂  (83) – (85), multiplied by matrix 
Ch  (given by formulas 

(84-1) and (84-2)). Now, following the definite mathematical formalism of the axiomatic derivation 

approach of fundamental field equations (71) and (72), assuming that any column matrix
RX , or 

FY , 

expressible in the tensor formulation of general covariant field equation (71) or (72), is basically 

definable, if and only if, it could be also derived originally as a column matrix via the axiomatic 

derivation approach presented in Sections 3-4 and 3-4-1.  
 

 On this basis, it could be shown that the time-reversal transformed forms of the column matrices 
R

 
and 

F  given in the expressions of source-free cases of field equations (71) and (72), are definable 

solely in (1+2) and (1+3)-dimensional space-times. Based on this result, along with the basic 

assumption (3) in Sec. 3-1, it is concluded directly that the universe could be realized solely with the 

(1+2) and (1+3)-dimensional space-times. We show this in the following in detail. 
 

 As noted, in fact, the above conclusion follows directly from the formulations of uniquely determined 

time-reversal transformed forms of column matrices 
R

 
and 

F  given in the expressions of source-

free cases of field equations (71) and (72). Denoting these column matrices by 
RR T ˆЖ

 
and 

FF T ˆЖ , where the time-reversal operator
 
(84) is defined by: K̂iK̂T̂T̂ ChP 0 , they would be 

determined as follows in various dimensions: 

 
- For (1+1)-dimensional space-time we have:   

;
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0
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),(

0
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





tiF
tTtTt
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tTtTt FFFRRR

x
xxx

x
xxx



    (88) 

 

- For (1+2)-dimensional space-time it is obtained: 
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- For (1+3)-dimensional space-time we get:      
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- For (1+4)-dimensional space-time we have: 
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- For (1+5)-dimensional space-time we obtain: 
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(92) 

 

Now based on the formulations of the derived time-reversal transformed column matrices RЖ and FЖ  

(88) – (92), although they could be expressed merely in the tensor formulations of field equations (71) 

and (72), however, except the (1+2) and (1+3)-dimensional cases of these transformed column matrices, 
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all the other cases cannot be derived originally as a column matrix via the axiomatic derivation approach 

presented in Sections 3-4 and 3-4-1 (following the formulation of originally derived column matrices (73) 

– (77)). Below this conclusion (and subsequent remarkable results) is discussed in more detail.  

********************************** 

In addition, it is also worth to note that on the basis of our derivation approach, since there are not the 

corresponding isomorphism (that could be represented by the unique mappings (71-1) and (72-1), in Sec. 

3-4-1) between the entries of column matrices RЖ and FЖ  (88), (91), (92),… and the entries (with the 

exactly same indices) of column matrix S (in the algebraic matrix equation (64), where its last entry, i.e. 

arbitrary parameter  ―s‖  is zero compatible with the source-free cases of the field equations (71) and 

(72)) that are given uniquely as follows in (1+1) and (1+4), (1+5),... and higher space-time dimensions, 

respectively,  using the definitions (66) – (70),… (in Sec. 3-3), and also the algebraic properties of 

column matrix S (presented in Sections 3-3-1 and 3-3-2) representing in terms of two half-sized 12 1 N
 

column matrices S   and S  such that: 
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S
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parameters):  
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   - For (1+4), (1+5)-dimensional space-times we get, respectively: 
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it would be directly concluded that in (1+1) and (1+4), (1+5),... and higher space-time dimensions, the 

column matrices RЖ and FЖ  could not be defined as the column matrices in unique formulations of the 

axiomatically derived general covariant field equations (71) and (72). In other words, for the (1+2)-

dimensional cases of the transformed column matrices 
RЖ and 

FЖ (89), the corresponding isomorphism 

(represented uniquely by the mappings (71-1) and (72-1)) could be defined between the components of 
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these matrices and the entries of column matrix S (67), for s = 0 (compatible with ,0)( R

 0)( F ), if 

and only if: 0),(02  tiR x
and 0),(02  tiF x . This could be shown as follows: 
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where for appeared parametric condition: ,02002  vuvu  as it would be shown in Sec. 3-5-2-1, it could 

be supposed solely: 0022 , uvvu   , implying conditions: 002 R and 002 F , which could be 

assumed for the field strength tensors R and F  in (1+2)-dimensional space-time (without vanishing 

these tensor fields), based on their basic definitions given by formulas (71-1) and (72-1). 

Hence, definite mathematical framework of our axiomatic derivation approach (presented in Sec. 3-4), in 

addition to the time-reversal invariance (represented by the quantum operator (84)) of source-free cases of 

general covariant field equations (71) and (72), imply the (1+2)-dimensional case of column matrices ΨR 

and ΨF  given by relations (74) (where we assumed ,0)( R

 0)( F ), could be given solely as follows, 

to be compatible with the above assumed conditions (i.e. being compatible with the mathematical 

framework of axiomatic derivation of field equations (71) and (72), and also the time-reversal invariance 

defined by quantum operator (84)), and consequently, as the column matrices could be defined in the 

formulations of the fundamental tensor field equations (71) and (72), respectively: 
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The formulations (96) that are represented the column matrices ΨR and ΨF in the field equations (71) and 

(72) compatible with the above basic conditions, are also represented these matrices in the field equations 

(71) and (72) with non-zero source currents compatible with two basic conditions (similar to above 

conditions) including a unique combination of the C, P and T symmetries (that have been represented by 

quantum operators (83) – (85)) for these cases of field equations (71) and (72), and also the mathematical 

framework of axiomatic derivation of equations (71) and (72). In fact, as it has been shown in Sec. 3-5-1, 

the field equations (71) and (72) with non-zero source currents could have solely a certain combination 

(given by formulas (86) and (87)) of the C, P and T symmetries (that are represented by the operators 

(83), (84) and (85)). This unique combined symmetry in addition to the unique formulations (96) of 

source-free cases of column matrices ΨR and ΨF in (1+2)-dimensional space-time, implies these matrices 

could take solely the following forms to be defined in the formulations of the fundamental tensor field 

equations (71) and (72) (with non-zero source currents): 
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In the same manner, concerning the (1+4)-dimensional cases of column matrices 
RЖ and 

FЖ (91), there 

would be a mapping between the entries of these matrices and entries (with the same indices) of algebraic 

column matrix S (69), where s = 0 (compatible with ,0)( R

 0)( F ), if and only if: ,0),(10  tiR x

,0),(41  tiR x ,0),(31  tiR x 0),(21  tiR x
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.0),(,0),(

,0),(,0),(

,0),(,0),(

,0),(,0),(

,0,0

0

0

0

),(

0

),(

),(

),(

0

),(

),(

),(

),(

),(

),(

0

Ж,

0

0

0

),(

0

),(

),(

),(

0

),(

),(

),(

),(

),(

),(

0

Ж

0

)(

)(

)(

)(

)(

)(

0

0

0

0

)(

0

)(

)(

)(

4141

3131

2121

1010

11

04

30

02

10

21

31

32

41

42

43

04

30

02

10

21

31

32

41

42

43

1221

1331

2332

1441

2442

3443

4004

0330

2002

0110

















































































































































































































































































































































tiFtiR

tiFtiR

tiFtiR

tiFtiR

vu

tiF

tiF

tiF

tiF

tiF

tiF

tiF

tiF

tiF

tiF

tiR

tiR

tiR

tiR

tiR

tiR

tiR

tiR

tiR

tiR

wvuvu

wvuvu

wvuvu

wvuvu

wvuvu

wvuvu

wvuvu

wvuvu

wvuvu

wvuvu

S FR

on)Quantizati  (First
Procedure  Derivation

xx

xx

xx

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x































 
                                                                                                                                               (97) 

 

This means that in (1+4) space-time dimensions, the mathematical framework of our axiomatic derivation 

approach (described in Sec. 3-4) in addition to the time reversal invariance (defined by the quantum 

operator (84)) of the source-free case of the derived general covariant fundamental field equations (71) 

and (72) imply the column matrices ΨR and ΨF (76) (for ,0)( R

 0)( F ) could take solely the 

following forms (in general) to be defined in the formulations of the field equations (71) and (72): 
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which are equivalent to the (1+3)-dimensional source-free cases of column matrices ΨR and ΨF 

(represented uniquely by formulas (75)) 

In addition, similar to the formulations (96-1), as it has been shown in Sec. 3-5-1, the field equations (71) 

and (72) with non-zero source currents have a certain (and unique) combination of the C, P and T 

symmetries (that have been defined by the operators (83), (84) and (85)). This combined symmetry in 

addition to the forms (98), imply also the (1+4)-dimensional cases of column matrices ΨR and ΨF 

represented by formula (76) could take solely the following forms (in general) to be defined in the 

formulations of fundamental field equations (71) and (72): 
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Consequently, the (1+4)-dimensional cases of column matrices ΨR and ΨF that are originally given by 

formulations (76), are reduced to formulas (98-1) which are equivalent to the (1+3)-dimensional cases of 

these matrices (given originally by column matrices of the forms (75)), i.e.: 
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Moreover, as it would be also noted in Sec. 3-6, it is noteworthy to add that the tensor field R  in 

column matrix ΨR (98-2) (expressing the general representation of column matrices definable in the 

formulation of (1+3)-dimensional case of general covariant field equation (71)), in fact, equivalently 

represents a massive bispinor field of spin-2 particles in (1+3) space-time dimensions (which could be 

identified as a definite generalized massive matrix formulation of the Einstein gravitational field, as it has 

been also shown in Sec. 3-4-2), and the tensor field F  in the column matrix ΨF  (98-2) (expressing the 

general representation of column matrices definable in the formulation of (1+3)-dimensional case of 

general covariant field equation (72)), in fact, equivalently represents a massive bispinor field of spin-1 

particles in (1+3) space-time dimensions (which could be identified as definite generalized massive 

formulation of the Maxwell electromagnetic field, as it has been also shown in Sections 3-4-2 and 3-4-4; 

and also Yang-Mills fields compatible with specific gauge groups, as it would be shown in Sec. 3-6). 
 

Summing up, in this Section (Sec. 3-5-2) we showed that the axiomatic approach of derivation of the 

field equations (71) and (72) (described in Sections 3-1, 3-3 and 3-4) in addition to their time reversal 

invariance (represented basically by the quantum operator (84)), imply these fundamentally derived 

equations could be solely defined in (1+2) and (1+3) space-time dimensions. ―Hence, based on the 

later conclusion and also the basic assumption (3) (defined in Sec. 3-1), we may conclude 

directly that the universe could be realized solely with the (1+2) and (1+3)-dimensional 

space-times, and cannot have more than four space-time dimensions.‖ 
 

Based on the axiomatic arguments and relevant results presented and obtained in this Section, in the 

following Sections we consider solely the (1+2) and (1+3)-dimensional cases of general covariant field 

equations (71) and (72) that are defined solely with the column matrices of the forms (96-1) and (98-2). 

 

3-5-2-1. Equivalent (asymptotically) representations of the bispinor fields of spin-3/2 and 

spin-1/2 particles, respectively, by general covariant field equations (71) and (72) (formulated 

solely with column matrices of the types (96-1)) in (1+2) space-time dimensions: 

It is noteworthy that according to the Ref. [29] and also based on the basic properties of the Riemann 

curvature tensor R  in (1+2) space-time dimensions [64] (in particular the identity:
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



  GR      , where 

G  is the Einstein tensor and ), it would be concluded that R  which is 

defined by (1+2)-dimensional case of the general covariant massive field equation (71) (which could be 

defined solely with a column matrix of the type ΨR (96-1)), represents asymptotically a general 

covariant bispinor field of spin-3/2 particles (that would be asymptotically equivalent to the Rarita–

Schwinger equation). In a similar manner, according to the Ref. [29], and also following the basic 

properties of field strength tensor F  in (1+2) space-time dimensions (that as a rank two anti-symmetric 

with three independent components holding, in particular, the identities: 

  TF  , 


  FT )21( , 

showing that F could be represented equivalently by a vector 
T with three independent components as 

well) it would be concluded that F which is defined by (1+2)-dimensional case of the general 

covariant massive (tensor) field equation (72) (which could be defined solely with a column matrix of the 

type ΨF (96-1)), represents asymptotically a general covariant bispinor field of spin-1/2 particles (that 

would be asymptotically equivalent to the Dirac equation [29]). Furthermore, as it would be shown in 

Sec. 3-6, the general covariant field equations (72) (representing asymptotically the spin-1/2 fermion 

fields) is also compatible with the SU(2)LU(2)R symmetry group (representing ―1+3‖ generations for 

both lepton and quark fields including a new charge-less fermion).  

3-5-2-2. Equivalent representations of the bispinor fields of spin-2 and spin-1 particles, 

respectively, by general covariant field equations (71) and (72) (defined solely with column 

matrices of the types (98-2)) in (1+3) space-time dimensions: 

It should be also note that according to the Refs. [31 – 36], the basic properties of the Riemann curvature 

tensor including the relevant results presented in Sec. 3-4-2 , it would be concluded that the field strength 

tensor R  (i.e. the Riemann tensor) the in (1+3) space-time dimensions by general covariant 

massive (tensor) field equation (71) (formulated solely with a column matrix of the type ΨR (98-2)), 

represents a general covariant bispinor field of spin-2 particles (as a generalized massive formulation 

of the Einstein gravitational field equation). In a similar manner,  according to the Refs. [31 – 36], the 

field strength tensor F  which is defined in (1+3) space-time dimensions by the general covariant 

massive (tensor) field equation (72) (formulated solely with a column matrix of the type ΨF (98-2)), 

represents a general covariant bispinor field of spin-1 particles (representing new generalized 

massive formulations of the Maxwell‘s equations, and also Yang-Mills field equations). Furthermore, 

as it would be shown in Sec. 3-6, the general covariant field equations (72) (representing the spin-1 

boson fields coupling to the spin-1/2 fermionic currents) is also compatible with the SU(2)LU(2)R 

and SU(3) symmetry groups. 

  Moreover, based on these determined gauge symmetries for the derived fermion and boson field 

equations, four new charge-less spin-1/2 fermions (representing by ―ze , zn ; zu , zd‖, where two right-

handed charhe-less quarks zu and zd  emerge specifically in two subgroups with anti-quarks such that:       

( b,u,s , zu) and ( t,d,c , zd)), and also three new massive spin-1 bosons (representing by 

",
~

,
~

" ZWW



, where in particular Z


is the complementary right-handed particle of ordinary Z

boson), are predicted uniquely by this new mathematical axiomatic approach. 
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3-5-3. Showing that only a definite simultaneous combination of the quantum mechanical 

transformations Ĉ , P̂ , T̂  and 
Ch

 
(given uniquely by the matrix operators (83) – (87)) could be 

defined for the general covariant massive (tensor) field equations (71) and (72) with non-zero 

source currents: 
  

As it has been shown in Sections 3-5-1 and 3-5-2, since the algebraic column matrix S  in the matrix 

equation (64) (derived and represented uniquely in terms of the matrices (66) – (70),… 

corresponding to various space-time dimensions), is not symmetric by multiplying by matrix
Ch  (84-

1) and (84-2) (except for (1+2) and (1+3)-dimensional cases of column matrix S ,  based on the 

definite algebraic properties of matrix S presented in Sections 3-3, 3-3-1, 3-3-2), it is concluded that 

except the (1+2) and (1+3)-dimensional cases of the fundamental field equations (71) and (72), these 

field equations could not be defined with column matrices of the type )()(

R

ChCh

R  
 

and 

)()(

F

ChCh

F   (if assuming that the column matrices 
R  and 

F  
are defined with field equations 

(71) and (72), i.e. they have the formulations similar to the formulations of originally derived column 

matrices (73) – (77),… corresponding to various space-time dimensions). This conclusion follows 

from this fact that the filed equations (71) and (72) have been derived (and defined) uniquely from 

the matrix equation (64) via the axiomatic derivation approach (including the first quantization 

procedure) presented in Sections 3-4, 3-4-1. As it has been shown in Sec. 3-5-2, using this property 

(i.e. multiplication of column matrices 
R  and 

F , defined in the unique expressions of 

fundamental field equations (71) and (72), by matrix 
Ch from the left), this crucial and essential 

issue is concluded directly that by assuming the time-reversal invariance of the general covariant 

filed equations (71) and (72) (represented by the transformations 
RTˆ  and 

FTˆ , where the 

quantum operator T̂ is given uniquely by formula (84), i.e.: KiKTT ChP ˆˆˆˆ
0  ), these 

fundamental field equations could be defined solely in (1+2) and (1+3) space-time dimensions (with 

the column matrices of the forms (96-1) and (98-2), respectively).  

Hence, the definite mathematical formalism of the axiomatic approach of derivation of fundamental 

field equations (71) and (72), along with the C, P and T symmetries (represented by the quantum matrix 

operators (83) – (87), in Sec. 3-5) of source-free cases (as basic cases) of these equations, in fact, imply 

these equations with non-zero source currents, would be invariant solely under the simultaneous 

combination of all the transformations ,Ĉ P̂ , and T̂  (83) – (85), multiplied by matrix 
Ch  (defined 

by formulas (84-1) and (84-2)). This unique combined transformation could be expressed uniquely as 

follows, respectively, for the particle fields (representing by column matrices ),( trR


 , ),( trF


 ) 

and their corresponding antiparticle fields (representing by column matrices ),( trR 


, ),( trF 


 
given 

solely with reversed signs of the temporal and spatial coordinates):  

                            
);,( ˆˆˆ),(ˆ

),,( ˆˆˆ),(ˆ

trCPTtrZ

trCPTtrZ

F

Ch

F

R

Ch

R

COMB

COMB












                                             (99) 
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).,( ˆˆˆ),(

~̂

),,( ˆˆˆ),(
~̂

trCPTtrZ

trCPTtrZ

F

Ch

F

R

Ch

R

COMB

COMB












                                                (100) 

 

The unique combined form of transformation 
COMB

Ẑ (99) (and also 
COMB

Z
~̂

(100), where 
COMBCOMB

ZZ ˆ~̂
 ) is 

based on the following two basic issues:  

    Firstly, it follows from the definite formulations of uniquely determined column matrices (73) – 
(77),… (corresponding to various space-time dimensions, however, as noted above, based on the 
arguments presented in Sec. 3-5-2, the only definable column matrices in the formulations of field 
equations (71) and (72), are of the types ΨR and ΨF  represented by formulas (96-1) and (98-2), in (1+2) 

and (1+3) space-time dimensions, respectively), where the source currents 
)(RJ   and 

)(FJ  
should be 

expressible by these conditional relations (in terms of the arbitrary covariant quantities 
)(R

  and 
)(F ), 

respectively: )(

)(

0)( )( R
R

R k
im

J  



 , )(

)(

0)( )( F
F

F k
im

J 



 . In other words, the unique formulation 

of derived combined symmetries  
COMB

Z  and 
COMB

Z
~

 represented by the quantum operators
COMB

Ẑ  (99) and 

COMB
Z
~̂

 (100), in particular, is a direct consequent of the above conditional expressions for source currents 

)(RJ   and 
)(FJ .  As noted in Sec. 3-4-1, these relations appear as necessary conditions in the course of 

the axiomatic derivation of general covariant field equations (71) and (72). In fact, in the field equations 
(71) and (72) the uniquely derived column matrices ΨR and ΨF  (73) – (77),…, not only contain all the 

components of tensor fields ρσμνR and μνF , but also contain the components of arbitrary covariant 

quantities 
)(R

  and 
)(F  (as the initially given quantities) which define the source currents 

)(RJ   and 

)(FJ  by the above expressions, respectively, i.e.: )(

)(

0)( )( R
R

R k
im

J  



 , )(

)(

0)( )( F
F

F k
im

J 



 . 

Now based on these conditional expressions in addition to this natural and basic circumstance that the 

source currents
)(RJ   and 

)(FJ should be also transferred respectively as a rank three tensor and a vector, 

under the parity, time-reversal and charge conjugation transformations (defined by formulas (83) – (85)) 
of the field equations (71) and (72), it would be concluded directly that the transformations (99) and 

(100) are the only simultaneous combinations of transformations ,Ĉ P̂ , T̂  (also including the matrix 
Ch , necessarily, as it would be shown in the following paragraph), which could be defined for the 

field equations (71) and (72) with ―non-zero‖ source currents. 
 

   Secondly, appearing the matrix operator 
Ch  in simultaneous combinations  ˆˆˆ CPTCh  and  ˆˆˆ CPTCh

in the combined transformations (99) and (100), follows simply from the basic arguments presented in 

Sec. 3-5-2. In fact, in these uniquely determined combinations, the simultaneous multiplication by matrix 

Ch  (from the left) is a necessary condition for that the transformed column matrices: ),(ˆ trZ RCOMB


 , 

),(
~̂

trZ RCOMB



, ),(ˆ trZ FCOMB


 , ),(

~̂
trZ FCOMB



 
(given in the transformations (99) and (100)) could be 

also defined in the field equations (71) and (72), based on the formulations of column matrices (96-1) and 

(98-2), as mentioned in Sec. 3-5-2) (however, it is worth to note that this argument is not merely limited 

to the definability of column matrices of the types (96-1) and (98-2), and it could be also represented on 
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the basis of unique formulations of all the originally derived column matrices (73) – (77),… 

corresponding to various space-time dimensions). 

  

In the next Section, we show how the 'CPT' theorem in addition to the unique formulations of the 

combined transformations (99) and (100) (representing the only definable transformation forms, including 

C, P and T quantum mechanical transformations, for the field equations (71) and (72) with ―non-zero‖ 

source currents), imply only the left-handed particle fields (along with their complementary right-handed 

fields) could be coupled to the corresponding (any) source currents. 

 

 

 

 

3-5-4. Showing that only the left-handed particle (along with their complementary right-

handed antiparticle) fields could be coupled to the corresponding source currents: 
 

On the basis of the 'CPT' theorem [35, 36], it would be concluded directly that the unique combined forms 

of transformations (99) and (100) (representing the only combination of ,Ĉ P̂ , and T̂  transformations 

multiplied by matrix 
Ch , that could be defined as a symmetry for general covariant field equations (71) 

and (72) with non-zero source currents), should be equivalent only to simultaneous combination of ,Ĉ P̂ , 

and T̂   transformations (that have been defined uniquely by formulas (83) – (85)). Moreover, based on 

the 'CPT' theorem, the simultaneous combination of transformations ,Ĉ P̂ , and T̂  should: ―interchange 

the particle field and its corresponding antiparticle field; inverts the spatial coordinates rr


 ;  reverse 

the spin of all particle fields; leave the direction of the momentum invariant; and, therefore, should 

interchange the left-handed and right-handed components of both particle field and its corresponding 

antiparticle field‖. Hence, we should have:
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where the column matrices )( rR




 
and )( rF


  represent the particle field and )(rR


  and )(rF


  

denote the transformed forms of column matrices of )( rR


  and )( rF


 , respectively, under the 

simultaneous combination of transformations ,Ĉ P̂ , and T̂ (83) – (85). Furthermore, in agreement and 

based on the definitions and properties of quantum operators Ĉ , P̂ , T̂  and matrix 
Ch  given by 

formulas (83) – (87), the left-handed and right-handed components of column matrices of the types (96-

1) and (98-2) (representing the unique formulations of column matrices that could be defined in the field 

equations (71) and (72), as mentioned in Sec. 3-5-2) are defined solely as follows for the column matrices 

)( rR


 , )( rF


  and also )(rR


 , )(rF


 (as the transformed forms of column matrices )( rR


  and 

)( rF




 
under the TPC ˆˆˆ transformation, respectively): 
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where we have: 
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Now using the definitions (105) and (106) in the formulas (101) – (104), we obtain: 
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Based on the relations (101-1) – (104-1), it would be concluded directly that only the left-handed 

components of particle fields representing by )()]([ LeftR r


 , )()]([ LeftF r


 , and the right-handed 

components of their corresponding antiparticle fields representing by )()]([ RightR r


 , )()]([ RightF r


  (as the 

transformed forms of column matrices )()]([ LeftR r


  and )()]([ LeftF r


 under the TPC ˆˆˆ transformation, 

respectively), obey the transformations (101-1) and (104-1) (as the necessary conditions given 

respectively by relations (101) and (104)). On the other hand, the right-handed components of particle 

fields representing by )()]([ RightR r


 , )()]([ RightF r


  , and the left-handed components of their 

corresponding antiparticle fields representing by )()]([ LeftR r


 , )()]([ LeftF r


  (as the transformed forms of 

column matrices )()]([ RightR r


  and )()]([ RightF r


 under the TPC ˆˆˆ transformation, respectively), don‘t 

obey the transformations (102-1) and (103-1) (as the necessary conditions given respectively by relations 

(102) and (103)). Hence (and also following the basic assumption (3) defined in Sec. 3-1), it is 

concluded directly that only the left-handed particle fields (along with their complementary 

right-handed fields) could be coupled to the corresponding (any) source currents. This means 

that only left-handed bosonic fields (along with their complementary right-handed fields) could 

be coupled to the corresponding fermionic source currents; which also means that only left-

handed fermions (along with their complementary right-handed fermions) can participate in any 

interaction with the bosons (which consequently would be only left-handed bosons or their 

complementary right-handed bosons). 

3-6. Showing the gauge invariance of axiomatically derived general covariant (tensor) field 

equation (72) in (1+2)-dimensional space-time (definable with column matrices of the type ΨF (96-

1), representing the spin-1/2 fermion fields) under the SU(2)LU(2)R symmetry group, and also 

invariance of this equation in (1+3)-dimensional space-time (definable column matrices of the type 

ΨF (98-2), representing the spin-1 boson fields coupled to the fermionic source currents) under the 

SU(2)LU(2)R and SU(3) symmetry group: 
 

One of the natural and basic properties of the (1+2)-dimensional space-time geometry is that the metric 

tensor can be ―diagonalized‖ [78]. Using this basic property, the invariant energy-momentum quadratic 

relation (52) (in Sec. 3-1-1) would be expressed as follows: 
 

                                      

0)()()()( 2

2
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1
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0

002

0

00  pgpgpgpg st
                          (108) 

 

that is equivalent to: 2

0

2

2

222

1

112

0

00 )()()()( cmpgpgpg  , where (as defined in Sec. 3-1-1) 0m
 
and p

are the particle‘s rest mass and momentum (3-momentum), 
μ

st

μ kmp 0 , and )0,0,()0,0,( 00

0 gckk μ   

denotes the covariant form of the 3-velocity of particle in stationary reference frame. As it would be 
shown in the following, a crucial and essential property of the quadratic relation (108) is its invariance 

under a certain set of sign inversions of the components of particle‘s momentum: ),,( 210 ppp , along with 

similar inversions for the components:
 

),,( 210

ststst ppp , where
000 kmpst  , 021  stst pp . This set includes 

seven different types of the sign inversions (in total), which could be represented simply by the following 
symmetric group of transformations (based on the formalism of the corresponding Lorentz symmetry 
group of invariant relation (108)), respectively: 



67 
 

                         

),,,(),,,(),,,( )1(

2

)1(

1

)1(

0

)1(

021002100 pppppppppppp ststst                   (108-1) 
 

                         
),,,(),,,(),,,( )2(

2

)2(

1

)2(

0

)2(

021002100 pppppppppppp ststst                   (108-2) 
 

                         

),,,(),,,(),,,( )3(

2

)3(

1

)3(

0

)3(

021002100 pppppppppppp ststst                (108-3) 
 

                         

),,,(),,,(),,,( )4(

2

)4(

1

)4(

0

)4(

021002100 pppppppppppp ststst           (108-4) 
 

                         
),,,(),,,(),,,( )5(

2

)5(

1

)5(

0

)5(

021002100 pppppppppppp ststst             (108-5) 
 

                         

),,,(),,,(),,,( )6(

2

)6(

1

)6(

0

)6(

021002100 pppppppppppp ststst             (108-6)
   

 
 

                         

),,,(),,,(),,,( )7(

2

)7(

1

)7(

0

)7(

021002100 pppppppppppp ststst                 (108-7) 

Moreover, although, following noncomplex- algebraic values of momentum‘s components p )(  pp 
, 

the corresponding complex representations of transformations (108-1) – (108-7) is not a necessary issue 
in general, however, if the invariant relation (108) is represented formally by equivalent complex form: 
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then, along with the set seven real-valued transformations (108-1) – (108-7), this relation would be also 

invariant under these corresponding sets of complex transformations (for 7,...,3,2,1a ): 
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In Sec. 3-6-1-1, using the transformations (108-1) – (108-7) (along with their corresponding complex 

forms (108-9)), a certain set of seven simultaneous (different) general covariant field equations 

(corresponding to a group of seven bispinor fields of spin-1/2 particles) would be determined as particular 

cases of the (1+2)-dimensional form of general covariant field equation (72) (defined with a column 

matrix of the type (96-1)). 
 

3-6-1. Following the definite formulation of (1+2)-dimensional case of system of linear equation (64) 

(formulated in terms of the matrices (67)), for the energy-momentum relation (108)  (along with the 

transformations (108-1) – (108-7)), the following set of seven systems of linear equations (with different 

parametric formalisms) is determined uniquely. The general parametric solution of each of these systems 

of linear equations, obeys also the quadratic relation (108) (representing a set of seven forms, with 

different parametric formulations, of the general parametric solutions of quadratic relation (108)). This set 

of the seven systems of linear equations could be represented uniformly by a matrix equation as follows: 
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where 7,...,3,2,1a ,  kmp aast )(

0

)(  , 
 and 

~ are two contravariant 44  real matrices (compatible 

with matrix representations of the Clifford algebra Cℓ1,2) defined solely by formulas (65) and (67), and 

parametric column matrix 
)(aS  is also given uniquely as follows (formulated on the basis of definite 

parametric formulation of column matrix S  (67) in (1+2) space-time dimensions): 
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which includes seven cases with specific parametric formulations expressed respectively in terms of 

seven groups of independent arbitrary parameters: 
)(

2

)(

1

)(

0

)(

2

)(

1

)(

0 ,,,,, aaaaaa vvvuuu , and two common arbitrary 

parameters s  and w  (i.e. having the same forms in all of the seven cases of column matrix 
)(aS ). In 

addition, concerning the specific parametric expression (109-1) of column matrix 
)(aS  in the formulation 

of matrix equation (109), it is necessary to add that this parametric expression has been determined 

specifically by assuming (as a basic assumption in addition to the systematic natural approach of 

formulating the matrix equation (109), based on the definite formulation of axiomatically determined 

matrix equation (64)) the minimum value for total number of the arbitrary parameters in all of seven cases 

of column matrix 
)(aS , which implies equivalently the minimum value for total number of the arbitrary 

parameters in all of seven simultaneous (different) cases of matrix equation (109) (necessarily with seven 

independent parametric solutions representing a certain set of seven different equivalent forms of the 

general parametric solution of quadratic relation (108), based on the general conditions of basic definition 

of the systems of linear equations corresponding to homogeneous quadratic and higher degree equations, 

presented in Sec. 2,  and Sections 2-2 – 2-4, 3-1-1 concerning the homogenous quadratic equations). 
 

In the following, in the derivation of the corresponding field equations (from matrix equation (109)), we 

will also use the above particular algebraic property of  parameters s  which has been expressed 

commonly in the expressions of all of seven simultaneous cases of matrix equation (109) (and also in Sec. 

3-6-2, concerning the (1+3)-dimensional corresponding form of matrix equation (109), which holds the 

similar property). 
 

3-6-1-1. In addition, along with the transformations (108-1) – (108-7) and algebraic matrix equation 

(109), using the corresponding complex transformations (108-9), we may also formally have the 

following equivalent matrix equation (with the complex expression): 

                                                       
0)~( )()(
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
                                  (109-2) 

where 7,...,3,2,1a , and  kmp aast )(

0

)(  . Although, based on the real value of momentum 
)(

p  

)( )()( aa pp   , the complex expression of each of the seven cases of algebraic matrix equation (109), 

definitely, is not a necessary issue at the present stage. However, since the corresponding momentum 

operator 
)(ˆ ap  has a complex value (where

)()( ˆˆ aa pp   ), in the following, using this basic property of the 

momentum operator, we derive a certain set of seven different simultaneous general covariant field 

equations from the matrix equations (109) and (109-2) (based on the general axiomatic approach of 

derivation of general covariant massive field equation (72), presented in Sections 3-4 – 3-4-5, in addition 

to certain forms of quantum representations of the  C, P and T symmetries of this field equation, presented 

in Sections 3-5 – 3-5-4). Furthermore, in Sec. 3-6-1-2, it would be also shown that the uniform 

representation of this determined set of seven simultaneous field equations, describe a certain group of 

seven simultaneous bispinor fields of spin-1/2 particles (corresponding, respectively, to a new right-

handed charge-less fermion in addition to three right-handed anti-fermions, along with their three 

complementary left-handed fermions). 

 

Furthermore, concerning the gravitational field equation (71), it should be noted that following from the 

fact that the general covariant field equation (71) should describe, uniquely and uniformly, the 

background space-time geometry via a certain form of the Riemann curvature tensor (which should be 

determined from the tensor field equation (71)), the matrix equation (109) could not be used for the 

derivation of a set of simultaneous different spin-3/2 fermion fields in (1+2) dimensions (there would be 

the same condition for the field equation (71) in higher-dimensional space-times). 
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Hence, based on the axiomatic approach of derivation of (1+2)-dimensional case of field equation (72) 

(defined solely by a column matrix of the form (96-1) in (1+2) space-time dimensions, as shown in Sec. 

3-5-2), from the matrix equation (109) and (109-2) (defined solely by column matrix (109-1)), and also 

taking into account the momentum operator‘s property: 
  pp ˆˆ , the following group of seven 

simultaneous (different) general covariant field equations could be determined: 
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specifying by the following group of transformations (based on the corresponding group of 

transformations (108-1) – (108-7) and (108-9)), for 7,...,3,2,1f , respectively 
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where the column matrix 

)( f

F  would be also given as follows (based on the definite formulation of 

column matrix F  (96-1) in Sec. 3-5-2, expressing the general representation of column matrices 

definable in the formulation of (1+2)-dimensional case of general covariant field equation (72)):   
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where in all of the seven simultaneous cases of field equation (110) defined respectively by the column 

matrices 
)( f

F  (110-8)  (for 7,...,3,2,1f ), the scalar quantity F  (that as a given initial quantity, 

defines the source currents 
)( fJ  

(110-8)), necessarily,  has the same value, based on the definite 

parametric formulation of the algebraic column matrix (109-1) (in particular, the common form of the 

corresponding arbitrary parameter s  in the expressions of all of the seven simultaneous cases of matrix 

equation (109)).  

3-6-1-2. Following the definite formulations of set of seven general covariant (massive) field equations 

(110) (specified, respectively, by the group of seven transformations (110-1) – (110-7)), the set of these  

could be represented uniformly by the following general covariant field equation as well (defined solely 

in (1+2) space-time dimensions): 
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where the column matrix F
 
given by: 
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and the field strength tensor F , scalar F


, along with the source current J  are defined as follows: 
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where I is the 22  identity matrix, and 
2

f

f

l
  (for 7,...,3,2,1f ) are a set of seven 22

 
complex 

matrices given by, 
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which as would be shown in the following, represents uniformly a combined gauge symmetry group of 

the form: SU(2)LU(2)R , where the sub-set of three matrices ― 321 ,,  ‖ corresponds to SU(2)L group, 

and subset of four matrices ― 7654 ,,,  ‖ corresponds to U(2)R  group. 

Now based on the matrix formulation of field strength tensor F  (defined by the general covariant field 

equation (110-9)), and on the basis of C, P and T symmetries of this field equation (as a particular form 

of the (1+2)-dimensional case of field equation (72)) that have been  represented basically by their 

corresponding quantum operators (in Sections 3-5 – 3-5-4), it would be concluded that the general 

covariant field equation (110-9) describes uniformly a group of seven spin-1/2 fermion fields 

corresponding to, respectively: ―three left-handed fermions (for 3,2,1f ), in addition to their three 

complementary right-handed anti-fermions (for 7,6,5f ), and also a new single charge-less right-

handed spin-1/2 fermion (for 4f )‖.  Hence, following the basic algebraic properties of seven matrices 

f  (110-12),  and the gauge symmetry group of the type: SU(2)LU(2)R generated by these matrices, the 

three matrices 321 ,, 
 

(corresponding with SU(2)L) represent respectively ―three left-handed 

fermions‖, and four matrices 7654 ,,,   (corresponding with U(2)R) represent respectively: ―a new 

single right-handed charge-less spin-1/2 fermion, and three right-handed spin-1/2 fermions as the 

complementary particles of the three left-handed spin-1/2 fermions represented by matrices 321 ,,  ‖ . 
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Furthermore, as it would be shown in Sections 3-6-3 – 3-6-3-2, as a natural assumption, by assuming the 

seven types of spin-1/2 fermion fields that are described by general covariant field equation (110-9), as 

the source currents of spin-1 boson fields (that will be represented by two determined unique groups 

describing respectively by general covariant field equations (114-4) and (114-5), in Sec. 3-6-3-2), it 

would be concluded that there should be, in total, four specific groups of seven spin-1/2 fermion fields 

(each) with certain properties, corresponding to ―1+3‖ generations of four fermions, including two groups 

of four leptons each, and two groups of four quarks each. Moreover, based on this basic circumstances, 

two groups of leptons would be represented uniquely by: ―[( μν , e
-
, τν ) , ( μν ,e

+
, τν  ze)] and [(μ

-
, eν , τ

-
) , 

(μ
+
, eν , τ

+
 , zn)], respectively, where each group includes a new single right-handed charge-less lepton, 

representing by: ze and zn‖;  and two groups of quarks would be also represented uniquely by:  ―[( bu,s, ) 

, ( b,u,s , zu)] and [( td,c, ) , ( t,d,c , zd)], respectively, where similar to leptons, each group includes a 

new single right-handed charge-less quark, representing by: zu and zd‖. In addition, emerging two right-

handed charhe-less quarks zu and zd specifically in two subgroups with anti-quarks ( b,u,s , zu) and               

( t,d,c , zd), could explain the baryon asymmetry, and subsequently, the asymmetry between matter and 

antimatter in the universe.   

3-6-2. Assuming the spin-1/2 fermion fields describing by general covariant massive field equations 

(110-9) (defined by column matrix (110-10) in (1+2) space-time dimensions with a digonalized metric), 

as the coupling source currents of spin-1 boson fields (describing generally by (1+3)-dimensional case of 

general covariant field equation (72) formulated with a column matrix of the type ΨF (98-2)), it is 

concluded that the (1+3)-dimensional metric could be also diagonalized for corresponding spin-1 boson 

fields. This conclusion follows directly from the above assumption that the (1+3)-dimensional metric of 

spin-1 boson fields (coupled to the corresponding fermionic source currents) would be also partially 

diagonalized such that: 0μg
 

(for μ = 0,1,2 and μ ≠ ν), which subsequently impliy 

0231303  ggg . Hence, the invariant energy-momentum relation (52) will be expressed as follows in 

(1+3)-dimensional space-time with diagonalized metric: 
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that is equivalent to: 2

0

2
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2

222

1

112

0

00 )()()()()( cmpgpgpgpg  , where (similar to the (1+2)-

dimensional case in Sec. 3-1-1) 0m and p are the particle‘s rest mass and momentum (4-momentum), 

μ

st

μ kmp 0 , and )0,0,0,()0,0,0,( 00

0 gckk μ   denotes the covariant form of the 4-velocity of particle in 

stationary reference frame. Now similar to the transformations (108-1) –  (108-7), as it would be shown in 

the following, a crucial property of the quadratic relation (111) would be also its invariance under two 

certain sets of sign inversions of the components of particle‘s momentum:: ),,,( 3210 pppp , along with 

similar inversions for the components:
 

),,,( 3210

stststst pppp (as particular cases), where 000 kmpst  , 

0321  ststst ppp . The first set of these includes seven different odd types of the sign inversions (i.e. 

with odd inversions), and the second set includes eight different even types of the sign inversions (i.e. 

with even inversions), which could be represented simply by the following two symmetric groups of 

transformations (based on the formalism of the Lorentz symmetry group of invariant relation (111)), 

respectively: 
 

   The first group includes, 
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And the second group is given by, respectively: 
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where, similar to the transformations (108-9) (as equivalent complex representations of the determined 

group of transformations (108-1) – (108-7), in (1+2)-dimensional space-time), following noncomplex- 

algebraic values of momentum‘s components p (  pp 
), the corresponding complex representations of 

transformations (111-1) – (111-15) is not a necessary issue in general, however, if the invariant relation 

(111) is represented formally by equivalent complex form: 
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then, along with the set fifteen real-valued transformations (111-1) – (111-15), this relation would be also 

invariant under these corresponding sets of complex transformations (for 15,...,3,2,1b ): 
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In Sec. 3-6-3, using the transformations (111-1) – (111-15) (along with their corresponding complex 

forms (111-17)), a set of fifteen different general covariant field equations would be determined, 

including two certain groups of simultaneous field equations (corresponding, respectively, to a group of 

seven bispinor fields and a group of eight bispinor fields of spin-1 particles) as the particular cases of the 

(1+3)-dimensional form of general covariant field equation (72) (defined with a column matrix of the type 

(98-2)). 
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3-6-3. Similar to the set of seven algebraic matrix equations (109) (determined uniquely as the algebraic 

equivalent matrix representation of the energy-momentum relation (108)), based on the definite 

formulation of the system of linear equation (64) in (1+3) space-time dimensions (formulated in terms of 

the matrices (68)), for the energy-momentum relation (111) (along with the transformations (111-1) – 

(111-15)) the following two sets of systems of linear equations are also determined uniquely, including 

respectively a set of seven and a set of eight systems of equations (with different parametric formalisms). 

The general parametric solution of each of these systems of linear equations, obeys also the quadratic 

relation (111) (representing a set of fifteen forms, with different parametric formulations, of the general 

parametric solutions of quadratic relation (111)). Each of these sets of the systems of linear equations 

could be represented uniformly by a matrix equation as follows, respectively: 
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where 7,...,3,2,11 b , 15,...,9,82 b ,  kmp
bbst )(

0

)( 11  ,  kmp
bbst )(

0

)( 22  , 
 and 

~ are two 

contravariant 88  real matrices (compatible with matrix representations of the Clifford algebra Cℓ1,3) 

defined solely by formulas (65) and (68), and parametric column matrices 
)( 1b

S  and 
)( 2b

S are also given 

uniquely as follows by two distinct expressions (formulated on the basis of definite parametric 

formulation of column matrix S  (68) in (1+3) space-time dimensions): 
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which column matrix 
)( 1b

S includes seven cases with specific parametric formulations expressed 

respectively in terms of seven groups of independent arbitrary parameters:
)(

2

)(

1

)(

0

)(

2

)(

1

)(

0
111111 ,,,,,

bbbbbb
vvvuuu , 

and two common arbitrary parameters s  and w  (i.e. having the same forms in all of the seven cases of 

column matrix 
)( 1b

S ), and column matrix 
)( 2b

S also includes eight cases with specific parametric 

formulations expressed respectively in terms of eight groups of independent arbitrary parameters:
)(

2

)(

1

)(

0

)(

2

)(

1

)(

0
222222 ,,,,,

bbbbbb
vvvuuu , and two common arbitrary parameters s  and w  (with the same forms in 

all of seven cases of the column matrix 
)( 2b

S ). In addition, similar to the column matrix 
)(aS  represented 

soley by formula (109-1), the specific parametric expressions (113) of column matrices 
)( 1b

S  and 
)( 2b

S  in 

the formulation of matrix equations (112-1) and (112-2), have been determined specifically by assuming 

(as a basic assumption in addition to the systematic natural approach of formulating the matrix equations 

(112-1) and (112-2), based on the definite formulation of axiomatically determined matrix equation (64)) 

the minimum value for total number of arbitrary parameters in both column matrices 
)( 1b

S  and 
)( 2b

S , 

which implies equivalently the minimum value for total number of arbitrary parameters in all of the 



74 
 

fifteen simultaneous (different) cases of matrix equations (112-1) and (112-2) (necessarily with fifteen 

independent parametric solutions representing totally a certain set of fifteen different equivalent forms of 

the general parametric solution of quadratic relation (111), based on the general conditions of basic 

definition of the systems of linear equations corresponding to homogeneous quadratic and higher degree 

equations, presented in Sec. 2,  and Sections 2-2 – 2-4, 3-1-1 concerning the homogenous quadratic 

equations).In the following, similar to the fundamental general covariant field equation (109-2) derived in 

Sec. 3-6-1-1, in the derivation of the corresponding field equations (from matrix equations (112-1) and 

(112-2), respectively), we will also use the above particular algebraic properties of  parameters s  and s

which, respectively, have been expressed commonly in the expressions of all of seven simultaneous cases 

of matrix equation (112-1), and  in the expressions of all of eight cases of matrix equation (112-1). 
 

3-6-3-1. Moreover, similar to the invariant relation (108) and derived matrix equation (109), along with 

the transformations (111-1) – (111-15) and algebraic matrix equations (112-1) and (112-2), using the 

corresponding complex transformations (111-17), we may also formally have the following equivalent 

matrix equations (with the complex expression), respectively (for 7,...,3,2,11 b , 15,...,9,82 b ): 
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where
 kmp

bbst )(

0

)( 11  , 
 kmp

bbst )(

0

)( 22  . Similar to the matrix equation (109-2), although, based on the 

real value of momentum p )(  pp 
, the complex expression of each of the seven cases of algebraic 

matrix equation (112-1), and also each of the eight cases of algebraic matrix equation (112-2), definitely, 

is not a necessary issue at the present stage. However, since the corresponding momentum operator        

p̂  has a complex value (where ),ˆˆ   pp in the following, using this basic property of the operator p̂ , 

we derive, distinctly, two certain groups of the general covariant field equations, including a group of 

seven different simultaneous field equations from the matrix equations (112-1) and (112-3), and a group 

of eight different simultaneous field equations from the matrix equations (112-2) and (112-4) (based on 

the general axiomatic approach of derivation of general covariant massive field equations (72) presented 

in Sections 3-4 – 3-4-5, and the quantum representations of C, P and T symmetries of this equation, 

presented in Sections 3-5 – 3-5-4). Furthermore, in Sec. 3-6-3-2, it would be also shown that each of these 

determined two sets of seven and eight simultaneous field equations describe, respectively, a uniform 

group of seven spin-1boson fields (corresponding to two left-handed massive charged bosons, along with 

their two complementary right-handed bosons; a left-handed massive charge-less boson, along with its 

complementary right-handed boson; and a single right-handed massless and charge-less boson), and a 

uniform group of eight spin-1 boson field (corresponding to eight massless charged bosons). 
 

Hence, similar to the (1+2)-dimensional general covariant field equation (114) derived in Sec. 3-6-1-1, 

based on the axiomatic approach of derivation of the (1+3)-dimensional case of field equation (72) 

(defined solely by a column matrix of the form (98-2) in (1+3) space-time dimensions, as shown in Sec. 

3-5-2), from the matrix equations (112-1), (112-3) and (112-2), (112-4) (defined solely by column 

matrices (113)), also taking into account this basic momentum operator‘s property:  pp ˆˆ  , the 

following two unique groups of seven and eight simultaneous general covariant field equations are 

determined solely, respectively: 
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specifying by the following two groups of transformations (based on their two corresponding groups of 

(sign) transformations (111-1) – (111-7), (111-8) – (111-15) and (111-17)), for 7,...,3,2,11 b  and 

8,...,3,2,12 b , respectively: 
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and the second group is given as follows, respectively: 
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where the column matrices 
)( 1b

Z  and 
)( 1b

G  are also given as follows, written on the basis of definite 

formulations of algebraic column matrices (113), in addition to the unique formulation of column matrix 

(98-2) (expressing the general representation of column matrices definable in the formulation of (1+3)-

dimensional case of general covariant field equation (72)):  
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where in all of the seven simultaneous (different) field equations (112-1) formulated with column matrix  
)( 1b

Z  (for 7,...,3,2,11 b ), and also in all of the eight simultaneous (different) field equations (112-2) 

formulated with column matrix  
)( 2b

G  (for 8,...,3,2,12 b ), the scalar quantity Z  (as initially given 

quantity) defines commonly set of seven source currents 
)( 1b

J   , and scalar quantity G   also defines 

commonly set of eight source currents
)( 2b

J 
 . 

 

3-6-3-2. Following the definite formulations of set of seven field equations (114-1), and set of eight 

field equations (114-2 ) specified, respectively, by the transformations (114-1-1) – (114-1-7) and (114-2-

1) – (114-2-8), these two sets of the field equations could be represented uniformly by the following 

general covariant field equations as well (defined solely in (1+3) space-time dimensions), respectively: 
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where the column matrices Z
 
and G  given by: 
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and the field strength tensors Z , G and scalars Z


 
and G


, along with the source currents J and 

J  are defined as follows: 
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where 2I , 3I  are 22  and 33  identity matrices, and
2

1

1

b

b

l
  (for 7,...,3,2,11 b ) are the following 

set of seven 22
 
complex matrices:  
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which similar to the set of matrices (110-12) in Sec. 3-6-1-1, represents uniformly a combined gauge 

symmetry group of the form:  SU(2)LU(2)R , where the subset of three matrices ― 321 ,,  ‖ corresponds 

to SU(2)L group, and subset of four matrices ― 7654 ,,,  ‖ corresponds to U(2)R  group.                             

The matrices 
22

)21( bb  


 (for 8,...,3,2,12 b ) are also the following set of eight 33 complex 

matrices equivalent to the Gell-Mann matrices (representing the SU(3) gauge symmetry group): 
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Now based on the definite matrix formalisms of the field strength tensors Z  and G  (114-7) 

(described respectively by general covariant massive field equations (114-4) and (114-5)), and on the 

basis of C, P and T symmetries of these field equations (as two particular forms of the (1+3)-dimensional 

case of tensor field equation (72)), represented by their corresponding quantum operators (defined in 

Sections 3-5 – 3-5-4), it would be concluded that the field equation (114-4) describes uniformly a 

definite group of seven simultaneous bispinor fields of spin-1 particles (corresponding to seven matrices 

7654321 ,,,,,,   (114-8)), including, respectively: ―three left-handed massive bosons that could be 

denoted by ",
~

," ZWW



(represented respectively by three matrices 321 ,,  , corresponding with 

SU(2)L), a right-handed charge-less spin-1 boson and also three right-handed spin-1 (massive) bosons 

denoted by ",
~

,," ZWW


 (represented respectively by four matrices 7654 ,,,  ,  corresponding with 

U(2)R),  as the complementary particles of three left-handed bosons represented by the matrices 321 ,,  ‖. 

In addition, following the definite representations of these determined seven bosons, it could be 

concluded that four bosons ),,,( ZWW


 correspond to the known bosons including respectively 
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photon (determined as a right-handed charge-less boson, compatible with the positive-frequency 

corresponding to the right-handed circular polarization state of photon), and ZWW ,, 
 bosons. Hence, 

particles ZWW


,
~

,
~ 

 represent three new massive spin-1 bosons (where, in particular, Z


is the 

complementary right-handed particle of ordinary Z boson), predicted uniquely by this new mathematical 

axiomatic approach. Furthermore, the field equation (114-5) also would describe uniformly a definite 

group of eight spin-1 boson fields (corresponding respectively to the eight matrices

87654321 ,,,,,,, 


, representing SU(3) gauge group). 

Furthermore, as noted in Sec. 3-6-1-1, by assuming the group of seven spin-1/2 fermion fields 

(described by field equations (110-9) – (110-12)) as the source currents of spin-1 boson fields, it would be 

also concluded that the group of seven uniform spin-1 boson fields 
)( 1b

Z  representing by [

),
~

,,(),,
~

,( ZWWZWW


  ] (describing by the general covariant field equation (114-4)), and the group 

of eight uniform spin-1 boson fields 
)( 2b

G  
(describing by general covariant field equations (114-5)), hold 

certain properties (including the electrical and color charges, so on) compatible with the known properties 

of ordinary bosons ZWW ,, 
and photon, and also eight gluon fields (with their known definite 

properties, including the color charges represented by ‗color octet‘ [35, 36]). In addition, based on the 

group representation of three additional new bosons that are predicted uniquely by this new mathematical 

axiomatic approach, denoting by: ",
~

,
~

" ZWW



, these new bosons could have properties similar to the 

ordinary bosons ;,, ZWW 
 where in particular new boson Z


(as the complementary right-handed 

particle of ordinary Z boson), can mix with Z boson. 

Moreover, as mentioned in Sec. 3-6-1-1, by assuming (as a basic natural assumption) the seven types of 

spin-1/2 fermion fields describing by general covariant field equation (110-9), as the source currents of 

the uniquely determined two groups of seven and eight spin-1 boson fields (describing respectively by 

general covariant field equations (114-4) and (114-5)), it would be concluded that there should be, in 

total, four specific groups of seven spin-1/2 fermion fields (each) with certain properties, corresponding to 

―1+3‖ generations of four fermions, including two groups of four leptons each, and two groups of four 

quarks each. Moreover, based on this basic circumstances, two groups of leptons would be represented 

uniquely by: ―[( μν , e
-
, τν ) , ( μν ,e

+
, τν  ze)] and [(μ

-
, eν , τ

-
) , (μ

+
, eν , τ

+
 , zn)], respectively, where each 

group includes a new single right-handed charge-less lepton, representing by: ze and zn‖;  and two groups 

of quarks would be also represented uniquely by:  ―[( bu,s, ) , ( b,u,s , zu)] and [( td,c, ) , ( t,d,c , zd)], 

respectively, where similar to leptons, each group includes a new single right-handed charge-less quark, 

representing by: zu and zd‖. In addition, emerging two right-handed charhe-less quarks zu and zd 

specifically in two subgroups with anti-quarks ( b,u,s , zu) and ( t,d,c , zd), could explain the baryon 

asymmetry, and subsequently, the asymmetry between matter and antimatter in the universe.   
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4. Conclusion 
 

The main results obtained in this article, are mainly, the outcomes of the new algebraic axiom (17) 

(along with the basic assumptions (2) – (3) defined in Sec. 3-1). This new axiom as a definite 

generalized form of the ordinary axiom of ―no zero divisors‖ of integral domains (including the 

domain of integers), has been formulated soley in terms of square matrices (with integer entries, 

appeared as primary objects for representing the integer elements in their corresponding algebraic 

axiomatic formalism). In Sec. 3 of this article, as a new mathematical approach to origin of the laws 

of nature, using a new basic algebraic axiomatic (matrix) formalism based on the ring theory and 

Clifford algebras (presented in Sec.2), “it is shown that certain mathematical forms of fundamental 

laws of nature, including laws governing the fundamental forces of nature (represented by a set of 

two definite classes of general covariant massive field equations, with new matrix formalisms), are 

derived uniquely from only a very few axioms”; where as a basic additional assumption (that is the 

assumption (2) in Sec. 3-1), in agreement with the rational Lorentz symmetry group, it has been also 

assumed that the components of relativistic energy-momentum (D-momentum) can only take the 

rational values. Concerning the basic assumption of rationality of relativistic energy-momentum, it is 

necessary to add (as mentioned in Sec. 3-1) that the rational Lorentz symmetry group is not only 

dense in the general form of Lorentz group, but also is compatible with the necessary conditions 

required basically for the formalism of a consistent relativistic quantum theory [77].  In essence, the 

main scheme of the new mathematical axiomatic approach to fundamental laws of nature presented 

in Sec. 3, is as follows. First in Sec. 3-1-1, based on the assumption of rationality of D-momentum, 

by linearization (along with a parameterization procedure) of the Lorentz invariant energy-

momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear 

equations (with matrix formalisms compatible with certain Clifford, and symmetric algebras) has 

been derived. Then in Sec. 3-4, by first quantization (followed by a basic procedure of minimal 

coupling to space-time geometry) of these determined systems of linear equations, a set of two 

classes of general covariant massive (tensor) field equations (with matrix formalisms compatible 

with certain Clifford, and Weyl algebras) has been derived uniquely as well. Each class of the 

derived general covariant field equations also includes a definite form of torsion field appeared as 

generator of the corresponding field‘ invariant mass. In addition, in Sections 3-4 – 3-5, it has been 

shown that the (1+3)-dimensional cases of two classes of derived field equations represent a new 

general covariant massive formalism of bispinor fields of spin-2, and spin-1 particles, respectively. In 

fact, these uniquely determined bispinor fields represent a unique set of new generalized massive forms of 

the laws governing the fundamental forces of nature, including the Einstein (gravitational), Maxwell 

(electromagnetic) and Yang-Mills (nuclear) field equations. Moreover, it has been also shown that the 

(1+2)-dimensional cases of two classes of these field equations represent (asymptotically) a new general 

covariant massive formalism of bispinor fields of spin-3/2 and spin-1/2 particles, respectively, 

corresponding to the Dirac and Rarita–Schwinger equations.  
  
As a particular consequence, in Sec. 3-4-2, it has been shown that a certain massive formalism of general 

relativity – with a definite  form of torsion field appeared originally as the generator of gravitational 

field‘s invariant mass – is obtained only by first quantization (followed by a basic procedure of minimal 

coupling to space-time geometry) of a certain set of special relativistic algebraic matrix equations. In Sec. 

3-4-4, it has been also proved that Lagrangian densities specified for the originally derived new massive 

forms of the Maxwell, Yang-Mills and Dirac field equations, are also gauge invariant, where the invariant 

mass of each field is generated solely by the corresponding torsion field. In addition, in Sec. 3-4-5, in 
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agreement with recent astronomical data, a new particular form of massive boson has been identified 

(corresponding to U(1) gauge group) with invariant mass: mγ ≈ 4.90571×10-50kg, which is specially 

generated by a coupled torsion field of the background space-time geometry.     
 

Moreover, in Sec. 3-5-2, based on the definite mathematical formalism of this new axiomatic 

approach, along with the C, P and T symmetries (represented basically by the corresponding 

quantum matrix operators) of uniquely derived two fundamental classes of general covariant field 

equations, it has been concluded that the universe could be realized solely with the (1+2) and (1+3)-

dimensional space-times (where this conclusion, in particular, is based on the time-reversal 

symmetry). In Sections 3-5-3 and 3-5-4, it has been proved that 'CPT' is the only (unique) 

combination of C, P, and T symmetries that could be defined as a symmetry for interacting fields.. In 

addition, in Sec. 3-5-4, on the basis of these discrete symmetries of derived field equations, it has 

been also shown that only left-handed particle fields (along with their complementary right-handed 

fields) could be coupled to the corresponding (any) source currents. Furthermore, in Sec. 3-6, it has 

been shown that metric of the background space-time is diagonalized for the uniquely derived 

fermion field equations (defined and expressed solely in (1+2)-dimensional space-time), where this 

property generates a certain set of additional symmetries corresponding uniquely to the 

SU(2)LU(2)R symmetry group for spin-1/2 fermion fields (representing ―1+3‖ generations of four 

fermions, including a group of eight leptons and a group of eight quarks), and also the SU(2)LU(2)R 

and SU(3) gauge symmetry groups for spin-1 boson fields coupled to the spin-1/2 fermionic source 

currents. Hence, along with the known elementary particles, eight new elementary particles, 

including: four new charge-less right-handed spin-1/2 fermions (two leptons and two quarks, 

represented by ―ze , zn and zu , zd‖), a spin-3/2 fermion, and also three new spin-1 massive bosons 

(represented by ",
~

,
~

" ZWW



, where in particular, the new boson Z


is complementary right-

handed particle of ordinary Z boson), have been predicted uniquely by this fundamental axiomatic 

approach. As a particular result, in Sec. 3-4-2, based on the definite and unique formulation of the 

derived Maxwell‘s equations (and also determined Yang-Mills equations, represented uniquely with 

two specific forms of gauge symmetries, in 3-6-3-2), it has been also concluded generally that 

magnetic monopoles could not exist in nature. 
 

The new results obtained in this article, which are connecting with a number of longstanding 

essential issues in science and philosophy, demonstrate the wide efficiency of a new fundamental 

algebraic-axiomatic formalism presented in Sec. 2 of this article. 
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Appendix A. 

The matrix equation (64) in Minkowski flat space-time (with metric signature (+ – –...–)) would be 

represented simply by: 

                                                                0)( 0  SImp
                                                     (A) 

where I  is the identity matrix, and column matrix S  is defined uniquely by formulas  (66) – (70),… in 

(1+1), (1+2), (1+3), (1+4), (1+5),… space-time dimensions. The general contravariant forms of real 

matrices 
 that generate the Clifford algebra Cℓ1,N  (for N  ≥ 2) in (1+N)-dimensional space-time, are 

(as mentioned in Sec.  3-3), are expressed by formulas (66) – (70),… in various space-times dimensions. 

Moreover, following the axiomatic approach of derivation of matrix equation (64), matrices 
 in 

Minkowski flat space-time also hold the Hermiticity and anti-Hermiticity properties such that: 
 )( 00   (compatible with 1)( 20  ), and 

 )(    (compatible with 1)( 2  , for μ 

=1,2,3,…).  

These matrices in the (1+1), (1+2), (1+3) and (1+4)-dimensional Minkowski space-time (as special cases 

of their general contravariant forms (65) – (69),…), have the following representations, respectively: 
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   - For (1+2)-dimensional case we get: 
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  - In (1+3) dimensions, we have:  
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 - In (1+4) dimensions, these matrices given by: 

 

,

1000000000000000

0100000000000000

0010000000000000

0001000000000000

0000100000000000

0000010000000000

0000001000000000

0000000100000000

0000000010000000

0000000001000000

0000000000100000

0000000000010000

0000000000001000

0000000000000100

0000000000000010

0000000000000001

0










































































 
 

,

0000000000000001

0000000000000010

0000000000000100

0000000000001000

0000000000010000

0000000000100000

0000000001000000

0000000010000000

0000000100000000

0000001000000000

0000010000000000

0000100000000000

0001000000000000

0010000000000000

0100000000000000

1000000000000000

1











































































 



88 
 

,

0000000000000010

0000000000000001

0000000000001000

0000000000000100

0000000000100000

0000000000010000

0000000010000000

0000000001000000

0000001000000000

0000000100000000

0000100000000000

0000010000000000

0010000000000000

0001000000000000

1000000000000000

0100000000000000

2











































































 
 

,

0000000000000100

0000000000001000

0000000000000001

0000000000000010

0000000001000000

0000000010000000

0000000000010000

0000000000100000

0000010000000000

0000100000000000

0000000100000000

0000001000000000

0100000000000000

1000000000000000

0001000000000000

0010000000000000

3











































































 

 



89 
 

,

0000000000010000

0000000000100000

0000000001000000

0000000010000000

0000000000000001

0000000000000010

0000000000000100

0000000000001000

0001000000000000

0010000000000000

0100000000000000

1000000000000000

0000000100000000

0000001000000000

0000010000000000

0000100000000000

4










































































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