Software for Detector Studies Status Report

Brieuc Francois (CERN) for the FCCSW team FCC week 2023, London Jun. 08th, 2023

Introduction

- FCC feasibility study main deliverables include
 - Consolidation of the detector concepts
 - Optimization of the sub-detectors and of the full detector concepts
 - Demonstration that solutions meeting detector requirements can be realized
 - Convincing arguments will come from detector R&D results and detector full simulation
 - Strong connection between the two communities
 - > Full sim is a precious tool to optimize a detector and understand its performance
 - > Allows us to evaluate many scenarios and motivate our choices
 - > Implementing a sub-detector reliably in full sim requires deep understanding of the important effects at play
- > Goal pursued: all sub-detectors and their reconstruction in a consistent framework
 - > To perform full detector concept studies
 - > To study various configurations of sub-detectors
 - > Swap a technology for another

Outline

- FCC Software General Overview
- FCC-ee Detector Full Sim Readiness
 - > IDEA
 - Noble Liquid Based Concept
 - > CLD
- Closing Words

FCC Software Ecosystem in a Nutshell

- FCC software fully relies on Key4hep
 - Framework meant to support all future colliders studies
 - Centrally provides a set of useful HEP packages in a consistent stack
- edm4hep data format, relying on podio
- Well advanced, though not frozen yet: bi-weekly discussion
- Chains of algorithms (Gen, Sim, Digi, Reco) orchestrated with Gaudi
- Detector description based on DD4hep (next slide)

DD4hep

- > **DD4hep**: generic detector description framework supporting the full life cycle of experiments
 - Conceptualization, optimization, construction and operations
- Complete description
 - > Geometry, material properties, readout, alignment, calibration, ...
- > DD4hep is **becoming a standard** with strong community support
 - > Adopted by CMS, LHCb, ILC, EIC detectors, ...
- From the user perspective
 - > C++ for generic geometry structure construction
 - > XML configuration for detector specific parameters
 - Can be naively seen as an extra layer facilitating the interactions with Geant4 and extending it
 - Makes sub-detector combination much easier
 - A lot of examples available: link
 - Documentation: User's manual, doxygen

HEP Software Building Blocks

(Build/Test/Deploy)

FCC Software Building Blocks

FCC-ee Detector Full Sim Readiness

Beam Pipe

Andrea Ciarma

- Beam pipe is common to all detectors
- An updated version is now available in DD4hep
 - > Smaller radius: starts at r = 1 cm (instead of 1.5 cm)
- Four components in FCCDetectors under Detector/DetFCCeeCommon/compact/
 - Beampipe, synchortron radiation shields, instrumentation (compensation and screening solenoids), final focusing quadrupole
 - Easy to add/remove component to study e.g. effectiveness of the shields
 - Parts can be made sensitive to study energy deposits (FFquads are supra-conducting)
- LumiCal under Detector/DetFCCeeCommon/compact/LumiCal.xml

Someone?

- > SiW sandwich layout coming from ILD (few years old)
- Some inconsistencies spotted w.r.t. current design (thanks Mogens)
 - Should be updated when manpower is found

Preshower

- IDEA: Innovative Detector for Electron-positron Accelerator
 - Light vertex detector (DMAPS)
 - Low material budget beneficial for vertex position resolution
 - Light gaseous tracker $(2 5\% \text{ of } X_0) + \text{silicon wrapper}$

- Large volume needed due to small magnetic field (~2 T, beam emittance)
- Good PID capabilities thanks to cluster counting
- Ultra-thin solenoid inside calorimeter
 - Low cost, low material budget needed for particle flow performance
- Pre-shower and dual readout calorimeter
 - 30 40 % / \sqrt{E} jet energy resolution (H \rightarrow ZZ $^{\pi}$ \rightarrow 4j and H \rightarrow W W $^{\pi}$ \rightarrow 4j discrimination)
- μ-RWELL in return yoke
- Alternative option under study: add a dual readout segmented crystal ECAL
 - Greatly improves EM energy resolution and brings some longitudinal segmentation

Vertex Detector in DD4hep

- A new detailed DD4hep description of the Vertex detector is being finalized
 - \rightarrow Simple sensitive plates \rightarrow accurate material stack of staves, sensors and flex
 - Few overlaps to be fixed
 - WIP pull request already opened PR#273
 - > Sim, Digi (simHit position smearing) and Reco available
 - First performance sanity checks performed!
 - ddsim + iLCSoft vertex reco/perf (k4MarlinWrapper)

Outer barrel

Endcaps

- > Next steps: add further details (e.g. services), edm4hep native digitization
- > The silicon wrapper will be implemented based on the same detector builders
 - No engineered design available yet

More details in Armin's talk!

Drift Chamber in DD4hep

- > IDEA DCH originally implemented in plain Geant4: link
- Simplified (no wires) DD4hep version used so far: link
- New detailed **DD4hep implementation available** in
 FCCDetectors: link (we unfortunately lost the main developer)
 - Carbon fibre/Cu walls, W sense wires, Al field/guard wires, Au coating, includes stereo angle, filled with GasHe 90Isob 10
 - Currently under debugging and validation
 - Overlaps to be fixed, material scan, ...
 - SimHits can now be extracted! (PR to be opened soon)
 - Comparison with plain Geant4 implementation started
 - Occupancy study can be started once PR is merged

Drift Chamber Reconstruction

- Next step is to implement the DCH reconstruction in Key4hep
 - ▶ DCH segmentation into sensitive region (hit ↔ wire)
 - SimHit → RecHit in edm4hep data format, including cluster counting Layer

- Prepared k4RecTracker: Key4hep compliant repository to host general VTX and Tracker reconstruction in edm4hep native data format + Tracking
- Tracking
 - Only one algorithm ready to be used in Key4hep: iLCSoft MarlinTracker (CLIC/CLD)
 - Silicon oriented
 - Several solutions could be investigated and wrapped in Gaudi
 - ACTS: needs some data format gymnastic and a way to ship the geometry
 - Solution implemented by EIC
 - > ILD approach
 - > Track segments built separately in inner Si-tracking and TPC, then combined
 - BES III solution: TrackNETv2 (machine learning based)
 - > Genfit: already available as a Key4hep package, only for track fitting
 - > Implement our own Key4hep native drift chamber tracking algorithm?

Dual Readout Fiber Calorimeter

> Dual readout calorimeter fully available in Key4hep: HEP-FCC/dual-readout

Sanghyun Ko

- > Geometry, simulation, digitization, reconstruction
- Custom segmentation (more fibers in the rear than in the front)
- Optical physics included: link
 - Fast Sim module applied to optical photons: link
- SiPM emulation with external package: SimSiPM
- Next steps
 - Integrate geometry in the central repository (k4geo)
 - Further work on lowering CPU cost of simulation
 - More details in Sanghyun's talk!

K4SimGeant4 configuration

```
regionTool = SimG4FastSimOpFiberRegion("fastfiber")
opticalPhysicsTool = SimG4OpticalPhysicsList("opticalPhysics", fullphysics="SimG4FtfpBert")
physicslistTool = SimG4FastSimPhysicsList("Physics", fullphysics=opticalPhysicsTool)

from Configurables import SimG4DRcaloActions
actionTool = SimG4DRcaloActions("SimG4DRcaloActions")

# Name of the tool in GAUDI is "XX/YY" where XX is the tool class name and YY is the given name geantservice = SimG4Svc("SimG4Svc",
    physicslist = physicslistTool,
    regions = ["SimG4FastSimOpFiberRegion/fastfiber"],
    actions = actionTool
```


Dual Readout Crystals in Key4hep

- Alternative detector configuration with greatly improved EM energy resolution/longitudinal segmentation under study
 - Add longitudinally segmented **dual readout crystals** in front of the HCAL (before the solenoid)
 - Again, has to be integrated in the common framework to study this alternative detector concept
- Detector description implemented in DD4hep: link
 - Great synergies with fiber dual readout!
 - Used the same Github repository as starting point
 - > SimHits available
- WIP: port the code to the central dual-readout repository, digitization, reconstruction, Particle Flow (not Pandora based)

Wonyong Chung and Marco Lucchini

Noble Liquid Based Concept

- Noble Liquid based concept (will soon have a real name!)
 - New detector concept w.r.t. CDR
 - Started with a high granularity noble liquid ECAL
 - Pb/W inclined absorbers, LAr/LKr sensitive media, highly granular readout electrodes as multilayer PCB
 - Now dressing it with other sud-detectors
 - Current plans
 - Drift chamber and vertex detector similar to IDEA
 - Coil after ECAL inside the same cryostat
 - Scintillator based HCAL (acting as a return yoke)
 - Muon system TBD

Noble Liquid Based Concept in Key4hep

- Current detector description in DD4hep: link
 - > Simplified vertex (CLD), will be updated to the detailed IDEA one
 - Simplified drift chamber (no tracking available)
 - **ECAL Barrel fully available in Key4hep**
 - Inclined absorber plates that can be made trapezoidal
 - Cryostat, services and solenoid material budget included
 - Calibration, noise and clusterings available as edm4hep native Gaudi algorithms!
 - Plug-and-play compliant
 - Good factorization between xml and cpp builders
 - Automatic rescaling upon geometry changes
 - First performance studies performed
 - Need Particle Flow to optimize granularity, requires tracks
 - Prepared a detector configuration with CLD + LAr ECAL
 - > Temporary hack to exercise the technical machinery
 - Working now on PandoraPFA integration
 - ECAL endcaps under validation

Noble Liquid Based Concept in Key4hep

- HCAL geometry implemented in DD4hep: link
 - Sim, Digi, Reco available
 - Clustering (need to bridge ECAL and HCAL)
 - Sliding window ready
 - Topological clustering needs some fixes
 - Calibration as edm4hep native Gaudi algorithm
 - Benchmark analytical method available
 - Machine learning based will be investigated
 - First performance studies started
 - Nice linearity
 - More details in Michaela's talk!
- > Muon chambers as simple sensitive plates for now

CLD in DD4hep

- CLD (CLIC-like detector)
 - > Full silicon vertex + tracker
 - Highly granular SiW ECAL + scintillator-steel HCAL
 - Superconducting solenoid outside HCAL
 - Steel yoke with RPC's

- Several configurations envisaged
- Link to geometries
- Last update: added tracker support structure
 - Some overlaps to be fixed
- Possible improvement towards plug-and-play
 - Further automatize global parameter modifications
 - > E.g. changing tracker outer radius requires manual interventions

CLD Full Sim Status

- > Full simulation + reconstruction workflow available!
 - Simulation through ddsim
 - Reconstruction through Marlin
 - Background overlay, digitization, conformalTracking, ParticleFlow (PandoraPFA), vertexing and flavor tagging
 - > Inherited from ILD/CLICdet
- Marlin reconstruction based on LCIO data format but can be integrated in EDM4hep Gaudi based workflows through the MarlinWrappers + data format translation
 - Example of steering file
- Improvement towards inter-operability
 - Be able to run Marlin Reco after having simulated CLD with k4SimGeant4
 - Differences in the way Geant4 hits are stored (modifs could be applied to k4SimGeant4)


```
ddsim --compactFile FCCee_o1_v05/FCCee_o1_v05.xml \
--enableGun \
--gun.distribution uniform \
--gun.energy "10*GeV" \
--gun.particle mu- \
--number0fEvents 100 \
--outputFile Step2_edm4hep.root
```


ARC

- Dedicated Particle Identification (PID) detector could greatly improve PID capabilities (flavor, Higgs)
 - Currently implementing the ARC (Array of RICH Cells) detector in Key4hep
 - Barrel and endcap geometries ready (PR#271 in k4geo)
 - SimHits available (ddsim so far)
 - Working now on digitization and reconstruction
 - Hosted in k4RecTracker for now (similar to VTX)
 - > Improvement towards plug-and-play
 - Most detector dimensions currently hard-coded
 - All free parameters (e.g. mirror position and orientation) have to be carefully re-optimized upon e.g. radial position change
 - Current optimization strategy not easy to integrate
- Will prepare a CLD version including ARC (PID needs track)
 - > Allows us to evaluate performance in a global environment
- Much more details will be provided in Alvaro's talk

ARC detector (one cell)

Inter-operability

- "Only" three detector concepts at the moment
 - Already a lot of sub-detectors to model and more are to come!
- All concepts are still evolving → need flexibility and inter-operability

- Want to be able to easily study many different detector concept configurations
 - > Sub-detector content, extent, position, ...
- Plug-and-play approach made possible by DD4hep but not granted
 - > Some ingenuity required in designing the C++/xml architecture
- A common data format is not enough, needs additional prescriptions
 - > Strategy to store Geant4 hits, fields with freedom left to the user (e.g. calo clusters shape parameters), ...
- FCC detector geometries are being moved from FCCDetectors to k4geo
 - Linear collider detectors already hosted there
 - Having all sub-detector geometries in a common place will ease inter-operability, grid submission
 - > This repository could also host test-beam module description
 - A flexible enough detector builder (C++) should allow us to easily write the xml for a small module

Organizing the Effort

- > Building now a collaboration of people working on FCC detector Full Sim in Key4hep
- > Starting a bi-weekly working meeting on FCC Detector Full Sim: indico page
 - Mondays at 11 am CEST
 - Flexible on the frequency and time (will sometimes move to an afternoon slot for people on the other side of the Atlantic)
 - > Subscribe to the FCC-PED-SoftwareAndComputing-Full-Simulation CERN e-group to receive the announcements
 - > Scope: detector implementation, simulation, digitization, reconstruction and performance
 - **Working meeting**: issues faced, lesson learned, status report, questions, unpolished plots, ...
 - Will try to integrate also the detector physics community
 - Deep detector expertise needed to write their full sim
 - Upstream detector design updated from R&D teams to the simulation

More contributors needed!

- > Full Sim is a complex business, long ramping-up phase, requires **good software skills** and uninterrupted commitment
 - > Better to have 1 person at 50-100% than 5 people at 20%
- Expertise should be maintained on the **long run**
 - Writing digitization and reconstruction requires to know how the detector was implemented

Summary

- Many IDEA sub-detectors start being available in DD4hep/Key4hep
 - Various stages of development (Sim, Digi, Reco) and validation
 - Missing the pre-shower and muon chambers (4 months intern starting in August)
 - > Would benefit from more **dedicated manpower**, especially for the drift chamber
- Noble Liquid based concept has ECAL and HCAL, muon chambers as sensitive plate
 - > Will use IDEA drift chamber and vertex detector when ready
 - > The team is growing!
- All baseline CLD detectors implemented in DD4hep
 - > Sim, Digi, Reco available through Marlin with data format translation
 - > Does not mean that we are done! (further optimization, maintenance, inter-operability, ...)
 - Adding an option with ARC PID detector (SimHits available, reco ongoing)
 - Very active in the past (ILD/CLIC), need to revive the effort!
- > All detector description being migrated to a common repository
 - > Inter-operability, user-friendliness, grid submission
- FCC Detector Full Sim Working Meeting being started
 - > Build a collaboration of people working on Full Sim
 - > Need long term commitment and teams to carry the expertise on along the way
 - Bring together software and detector expertise