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This document contains a transcription of three lectures on flavour physics, given at the
University of Cambridge (UK) in February, 2017 for PhD students in physics. There is no original
content. Some of the material presented here, with minor modifications, has been published
elsewhere, mainly in C. M. Becchi, G. Ridolfi, An introduction to relativistic processes and the
standard model of electroweak interactions, Springer 2013, to which the reader is referred for
notations and conventions. For up-to-date information on the present status of the comparison
between theory and data, we refer the reader to the web page of the UTFit and CKMFitter
collaborations, and to the Particle Data Group, where a complete bibliography can also be
found.
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1 Lecture One: Flavour

Let us consider the standard model with only one generation of quarks and leptons. Its lagrangian
density is entirely specified by the assumption of local invariance with respect to the group
SU(2)L⊗U(1)Y , and by the following assignments of fermion fields to irreducible representations
of the gauge group:

ψ1 = qL =

(
uL

dL

)
∼ (2, 1/3)

ψ2 = uR ∼ (1, 4/3)

ψ3 = dR ∼ (1,−2/3)

ψ4 = `L =

(
νL

eL

)
∼ (2,−1)

ψ5 = eR ∼ (1,−2).

Here, the symbol ∼ means “transforms as”; the two numbers in brackets stand for the SU(2)
representation (2 for the doublet, 1 for the singlet) and for the hypercharge quantum number
Y = 2(Q− T3), respectively.

The SU(2)⊗ U(1)-invariant Lagrangian can be written in the following compact form:

LSU(2)⊗U(1) = LYang−Mills +
5∑

k=1

ψ̄k iD/ψk, (1.1)

where the sum runs over the five different irreducible representations of SU(2)⊗U(1) of fermions
within one generation. Mass terms are forbidden by the gauge symmetry.

The Lagrangian density in eq. (1.1) is not yet suited to an accurate description of electroweak
interactions, for two reasons:

1. the gauge symmetry is realized exactly, and all gauge vector bosons are massless, contrary
to observations;

2. it is invariant under a large class of global transformations, most of which are not observed.

The way out of problem n. 1 is well known: the gauge symmetry must be spontaneously broken
down to U(1)em. The simplest way to do it is the minimal Higgs mechanism, whereby a doulbet
of scalar fields is introduced with hypercharge Y = 1,

φ =

(
φ+

φ0

)
, (1.2)

and the term
LHiggs = (Dµφ)†Dµφ− µ2|φ|2 − λ|φ|4 (1.3)

is added to the gauge-invariant lagrangian. If µ2 < 0, spontaneous symmetry breaking is achieved
by a non-zero vacuum expectation value of the scalar field

〈φ〉 =
1√
2

(
0
v

)
; v2 = −µ

2

λ
. (1.4)
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As a consequence, weak vector bosons acquire masses proportional to v ∼ 250 GeV through
gauge-invariant interactions with the scalar field. We will not elaborate on this issue any further
here.

Rather, we concentrate on problem n. 2, namely the presence of a large, and largely unde-
sirable, global symmetry in eq. (1.1). We note that the fermion fields within each representation
can be multiplied by an arbitrary constant phase

ψk → eiφkψk (1.5)

without affecting LSU(2)⊗U(1). This [U(1)]5 global symmetry was not imposed: it is a consequence
of the assumed local symmetry and of the renormalizability condition. For this reason, it is
usually refferred to as an accidental symmetry. The five conserved currents corresponding to the
global transformations (1.5) are

Jµ
1 = ūLγ

µuL + d̄Lγ
µdL

Jµ
2 = ūRγ

µuR

Jµ
3 = d̄Rγ

µdR

Jµ
4 = ν̄Lγ

µνL + ēLγ
µeL

Jµ
5 = ēRγ

µeR.

It proves convenient to replace Jµ
1 , . . . , J

µ
5 by the following independent linear combinations:

Jµ
Y =

5∑
k=1

Yk

2
Jµ

k

Jµ
b =

1

3
(Jµ

1 + Jµ
2 + Jµ

3 ) =
1

3
(ūγµu+ d̄γµd)

Jµ
` = Jµ

4 + Jµ
5 = ν̄Lγ

µνL + ēγµe

Jµ
b5 = −Jµ

1 + Jµ
2 + Jµ

3 = ūγµγ5u+ d̄γµγ5d.

Jµ
`5 = −Jµ

4 + Jµ
5 = ν̄Lγ

µγ5νL + ēγµγ5e

(we have used γ5νL = −νL.) The current JY is the hypercharge current, which corresponds to a
local invariance of the theory. The actual accidental symmetry is therefore [U(1)]4, rather than
[U(1)]5.

The currents Jb and J` are immediately recognized to be the baryonic and leptonic number
currents, respectively. The invariance of the Lagrangian under the corresponding global sym-
metries is welcome, because baryonic and leptonic number are known to be conserved to an
extremely high accuracy. For example, the present bound on the proton lifetime is

τp > 2.1 · 1029 y. (1.6)

The most accurate tests of lepton number conservation are provided by the following observables:

B(µ→ eγ) ≤ 1.2 · 10−11; B(τ → µγ) ≤ 2.7 · 10−6 (1.7)

B(µ→ 3e) ≤ 1 · 10−12 (1.8)

Γ(µ Ti → e Ti)

Γ(µ Ti → all)
≤ 4 · 10−12, (1.9)
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where B stands for the ratio between the rate of the indicated process and the total decay rate.
On the other hand, experimental data are not compatible with the conservation of J`5 and Jb5,
since they are incompatible with fermion mass terms. This part of the accidental symmetry
must be explicitly broken.

We know that the structure of fermion fields outline above can be replicated a number n of
times, with the only constraint (originating from the cancellation of the axial anomalies) that
all five representations are replicated. This gives rise to the possible existence of families, or
generations, of fermions. Experiments show the existence of three fermion families, which are
distinguished on the basis of their masses. For this reason, the different fermion families are not
distinguished one from the other inLSU(2)⊗U(1), which is therefore invariant under the group of
global transformations

ψk → Ukψk, (1.10)

where it is now understood that each ψk also carries a fermion generation index f = 1, . . . , n, and
Uk are constant, unitary n×n matrices in generation space. The group of accidental symmetries
is therefore [U(1)]4 ⊗ [SU(n)]5.

In order to build a realistic theory, this large global symmetry must be broken explicitly,
without affecting gauge invariance and renormalizability. The solution to this puzzle arise in
a natural way in the Standard Model, with the gauge symmetry spontaneously broken by the
Higgs mechanism in its minimal realization. Indeed, it is easy to show that a Yukawa interaction
term can be added to the Lagrangian density:

LYukawa = −
[
q̄L hU uR φ̃+ φ̃† ūR h

†
U qL

]
−
[
q̄L hD dR φ+ φ† d̄R h

†
D qL

]
−
[
¯̀
L hL eR φ+ φ† ēR h

†
L `L
]

(1.11)

where the scalar field φ̃ is defined by

φ̃ = εφ∗ =

(
φ0∗

−φ−
)
, (1.12)

and it can be shown to transform as a doublet under SU(2)L. The matrices hU, hD, hL are generic
n × n constant complex matrices in the generation space. Generation indices are understood
everywhere.

It should be noted that, because of accidental symmetries, Yukawa interactions cannot be
generated by radiative corrections. This is the mechanism which keeps neutrinos massless, and
protects fermion masses from receiving large radiative corrections.

The Yukawa lagrangian eq. (1.11) is manifestly Lorentz-invariant and renormalizable, since
it only contains field operators of mass dimension 4 (or equivalently, the couplings hU, hD, hL

are dimensionless). It is also gauge invariant: invariance under SU(2)L is manifest, invariance
under U(1)Y follows from the assignment Y = 2(Q− T3).

On the other hand, LYukawa breaks the accidental symmetry (1.10) explicitly, as one can see
by rewriting it as

LYukawa = −
[
ψ̄1 hU ψ2 φ̃+ ψ̄1 hD ψ3 φ+ ψ̄4 hL ψ5 φ

]
+ h.c. (1.13)
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In particular, after spontaneous symmetry breaking, LYukawa contains bilinear terms in the
fermion fields which can eventually be interpreted as mass terms. Our first task is that of
identifying the fermion fields with definite mass. To this purpose, we observe that after sponta-
neous symmetry breaking the bilinear term in LYukawa is given by

L(2)
Yukawa = − v√

2

n∑
f,g=1

[
ūf

L h
fg
U ug

R + d̄f
L h

fg
D dg

R + ēf
L h

fg
L eg

R

]
+ h.c. (1.14)

The matrices hU,D,L are not diagonal; however, a result in linear algebra called singular value
decomposition guarantees that any complex (even rectangular) matrix h can be decomposed as

h = UĥV †, (1.15)

where U, V are unitary matrices, and ĥ is diagonal, with real non-negative diagonal entries. We
may find such a decomposition for the Yukawa coupling matrices hU,D,L:

hU = UUĥUV
†

U (1.16)

hD = UDĥDV
†

D (1.17)

hL = ULĥLV
†

L (1.18)

and redefine the fermion fields according to

uL → UUuL, uR → VUuR (1.19)

dL → UDdL, dR → VDdR (1.20)

eL → ULeL, eR → VLeR (1.21)

so that the bilinear part of eq. (1.11) now reads

L(2)
Yukawa = − v√

2

n∑
f=1

[
ūf ĥff

U uf + d̄f hff
D df + ēf hff

L ef
]
. (1.22)

We can now identify the quark masses with

mf
U =

vĥff
U√
2
, mf

D =
vĥff

D√
2
, mf

E =
vĥff

E√
2
. (1.23)

We must now figure out how the rest of the lagrangian is modified by the transformations
eqs. (1.19,1.20,1.21). Since the matrices UU,D,L, VU,D,L are constant in space-time, eqs. (1.19,1.20,1.21)
obviously leave the free quark Lagrangian unchanged. They also leave unchanged neutral-current
interaction terms, because of the universality of the fermion couplings of different families to the
photon and the Z. This is an important result: no flavour-mixing terms arise in the neutral-
current part of the electroweak interactions, consistently with observations.

Thanks to the absence of right-handed neutrino fields, the lepton charged-current interaction
term is also unaffected by the transformation (1.21); indeed, we may transform the left-handed
neutrino field as the left-handed charged leptons, i.e.

νL → ULνL, (1.24)
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so that

Llepton
c =

g√
2
W+

µ ν̄L γ
µ eL + h.c. → g√

2
W+

µ ν̄L U
†
Lγ

µ UL eL + h.c.

=
g√
2
W+

µ ν̄L γ
µ eL + h.c. (1.25)

since UL is unitary. In the Standard Model with massless neutrinos, no flavour mixing arises in
the leptonic sector.

The only term in LSU(2)⊗U(1) which is affected by the transformations in eqs. (1.19,1.20) is the
charged-current quark interaction, because the up and down components of the same left-handed
SU(2) doublet are transformed in different ways. Indeed, we find

Lquark
c =

g√
2
W+

µ ūL γ
µ dL + h.c. → g√

2
W+

µ ūL U
†
Uγ

µ UD dL + h.c.

=
g√
2
W+

µ ūL γ
µ V dg

L + h.c. (1.26)

where we have defined
V = U †

UVD. (1.27)

The matrix V is usually called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is a unitary
matrix, and its unitarity guarantees the suppression of flavour-changing neutral currents. The
elements of V are fundamental parameters of the standard model Lagrangian, on the same
footing as masses and gauge couplings, and must be extracted from experiments.

Finally, the Yukawa lagrangian eq. (1.11) is transformed as follows:

LYukawa (1.28)

= −ūLUUĥUV
†

UuRφ
0∗ + d̄LUUĥUV

†
UuRφ

− − ūLUDĥDV
†

DdRφ
+ − d̄LUDĥDV

†
DdRφ

0

−ν̄LULĥLV
†

L eRφ
+ − ēLULĥLV

†
L eRφ

0 + h.c..

→ −ūLĥUuRφ
0∗ + d̄LV

†ĥUuRφ
− − ūLĥDV dRφ

+ − d̄LĥDdRφ
0

−ν̄LĥLeRφ
+ − ēLĥLeRφ

0 + h.c..

Notice that the CKM matrix appears here only in terms involving the charged scalar component,
which is in fact a non-physical would-be Goldstone bosons; it is set to zero in the unitary gauge.

We now determine the number of independent parameters in the CKM matrix. A generic
n× n unitary matrix depends on n2 independent real parameters (the easiest way to see this is
writing V as the exponential of i times a hermitian matrix.) Some (nA) of them can be thought
of as rotation angles in the n-dimensional space of generations, and they are as many as the
coordinate planes in n dimensions:

nA =

(
n
2

)
=

1

2
n(n− 1). (1.29)

The remaining

n̂P = n2 − nA =
1

2
n(n+ 1) (1.30)
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parameters are complex phases. Some of them can be eliminated from the Lagrangian density
by redefining the left-handed quark fields as

uf
L → eiαf uf

L; dg
L → eiβg dg

L, (1.31)

with αf , βg real constants. Indeed, the transformations eq. (1.31) are symmetry transformations
for the whole standard model Lagrangian except Lhadr

c , and therefore amount to a redefinition
of the CKM matrix:

Vfg → ei(βg−αf ) Vfg. (1.32)

The 2n constants αf , βg can be chosen so that 2n − 1 phases are eliminated from the matrix
V , since there are 2n − 1 independent differences βg − αf . The number of really independent
complex phases in V is therefore

nP = n̂P − (2n− 1) =
1

2
(n− 1)(n− 2). (1.33)

Observe that, with one or two fermion families, the CKM matrix can be made real. The first
case with non-trivial phases is n = 3, which corresponds to nP = 1. In the standard model with
three fermion families, the CKM matrix has four independent parameters: three rotation angles
and one complex phase. In the general case, the total number of independent parameters in the
CKM matrix is

nA + nP = (n− 1)2. (1.34)

The presence of complex coupling constants implies violation of the CP symmetry. CP violation

phenomena in weak interactions were first observed around 1964 in the K0 − K
0

system; the
existence of a third quark generation may therefore be considered as a prediction of the standard
model, confirmed by the discovery of the b and t quarks.

The elements of the CKM matrix are fundamental parameters of the Standard Model: their
values are not predicted by the theory, and must be extracted from experiment. For example,
it was soon recognized, by the study of β decays nd of the decays of strange baryons, that
Vud ' cos θc and Vus ' cos θc, where θc, the Cabibbo angle, is rather small: sin θC = 0.22.
The mixing between the first and the third generation is even smaller: decays of B mesons into
final states with no charmed particles are extremely rare, and were observed only recently. This
results in a small value of |Vub|, of the order of sin3 θc. These simple considerations suggest that
a convenient way of parametrizing the CKM matrix is an expansion in powers of λ = sin θc, as
suggested by L. Wolfenstein. One finds

V =

 1− λ2/2 λ λ3A(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 +O(λ4). (1.35)

The parameters A, ρ, η turn out to be of order 1.
As mentioned above, the unitarity of V is a crucial ingredient of the Standard Model, because

it guarantees the absence of flavour-changing neutral current weak processes, which are observed
to be very rare. Conversely, any signal of non-unitarity of the CKM matrix can in principle be
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interpreted as a deviation from the Standard Model. For this reason, experimental tests of
unitarity are of great relevance, and have been perfomed by experimentalists to a great degree
of accuracy. It is convenient to define the combinations

ξαβ
i = ViαV

∗
iβ, (1.36)

where i = u, c, t and α, β = d, s, b. Unitarity of V corresponds to the six relationships∑
i

ξαβ
i = δαβ. (1.37)

For α = β, this equations are real, while the three phase-dependent relations∑
i

ξαβ
i = 0; α 6= β (1.38)

can be represented as triangles in the complex plane. Note that the CKM entries Viα are phase-
convention-dependent quantities, because they can be modified by phase transformations of
the fermion fields, but the relative phases of ξαβ

i for fixed α, β are not; hence, a generic phase
transformation of the quark fields has the effect of rotating rigidly each of the unitarity triangles
(1.38), but does not affect its sides and internal angles.

It turns out that, among the three triangles in eq. (1.38), only one has all three sides of
comparable sizes, namely the one corresponding to α = d, β = b. This is immediately seen by
inspection of eq. (1.35): the ds triangle has two sides of order λ and one of order λ5, while the
sb triangle has two sides of order λ2 and one of order λ4, and therefore are nearly degenerate.
On the contrary, the sides of the db triangle are all of order λ3, which is the reason why it is
often referred to as the unitarity triangle. It is customary to rewrite the corresponding unitarity
relation as

ξdb
u

ξdb
c

+
ξdb
t

ξdb
c

+ 1 = 0 (1.39)

and to define

ρ̄+ iη̄ = −ξ
db
u

ξdb
c

, (1.40)

so that the unitarity triangle has one side between 0 and 1 along the real axis in the ρ̄, η̄ complex
plane, and the opposite vertex in ρ̄+iη̄. The parameters ρ̄, η̄ are related ro ρ, η in the Wolfenstein
parametrization by

ρ̄+ iη̄ =

(
1− λ2

2

)
(ρ+ iη). (1.41)

The present status of the experimental tests of the unitarity triangle is shown in fig. 1. As one
can see, the CKM picture of flavor mixing appears to be consistent with observations. In the
next lecture we shall study in some detail how one of these constraints is imposed on the entries
of the CKM matrix.
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Figure 1: Present constraints on the unitarity triangle.

2 Lecture Two: An example

One interesting example of the experimental constraints on the CKM matrix entries is provided

by the K0 −K
0

system. The K0 meson is a pseudoscalar, spin-0 particle with a mass of about
490 MeV and a definite value of the strangeness quantum number S = +1.

Let us begin by reviewing the general properties of K0 −K
0

systems. Since K0 mesons are
produced by strong interaction processes (for example, π− + p → K0 + Λ0), at the initial time
t = 0 the K meson is in a quantum state with a definite value of the strangeness quantum

number S (S = +1 for K0 and S = −1 for K
0
). K0 mesons are stable with respect to strong

interactions, because of strangeness conservation, but weak interactions induce vaious decay

modes; furthermore, the transition K0 → K
0

is also allowed, since strangeness is not conserved
by the weak hamiltonian. It is therefore appropriate to introduce a two-dimensional subspace

of the full state space, spanned by the two states |K0〉 and |K0〉:

|K0〉 ≡
[

1
0

]
|K0〉 ≡

[
0
1

]
. (2.1)

The Schrödinger equation for a generic state in this subspace,

|Ψ(t)〉 = Ψ1(t)|K0〉+ Ψ2(t)|K
0〉 =

[
Ψ1(t)
Ψ2(t)

]
. (2.2)
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has the form

i
∂

∂t
|Ψ(t)〉 = Heff |Ψ(t)〉, (2.3)

where the effective hamiltonian Heff is a generic 2× 2 matrix, in general non-hermitian in order
to account for decay processes outside the subspace. The stationary states (that is, states with

definite mass and lifetime) are linear combinations of |K0〉 and |K0〉 that diagonalize the matrix
Heff . It is always possible to decompose the effective hamiltonian as

Heff = M − i

2
Γ, (2.4)

where M and Γ are both hermitian matrices:

M =

[
M11 M12

M∗
12 M22

]
; Γ =

[
Γ11 Γ12

Γ∗12 Γ22

]
. (2.5)

It can be shown that CPT invariance implies

M11 = M22 ≡ mK; Γ11 = Γ22 ≡ γ. (2.6)

We now diagonalize the matrix Heff . The two eigenvalues are

MS,L −
i

2
ΓS,L = mK −

i

2
γ ±R, (2.7)

where

R =

√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
. (2.8)

Therefore, mass and lifetime differences between the two eigenstates are

∆M = MS −ML = 2ReR (2.9)

∆Γ = ΓS − ΓL = −4ImR. (2.10)

The measured values for masses and lifetimes are (PDG 2016)

mK =
MS +ML

2
= 497.611± 0.013 MeV (2.11)

∆M = (−0.5289± 0.0010)× 1010 s−1 ' −3.53× 10−6 eV (2.12)

ΓL = 1.93× 107 s−1 (2.13)

ΓS = 1.12× 1010 s−1. (2.14)

Notice that ΓL � ΓS, and that

∆M ' −1

2
∆Γ. (2.15)

The two eigenvectors are given by

|KS〉 = p|K0〉+ q|K0〉 (2.16)

|KL〉 = p|K0〉 − q|K0〉, (2.17)
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where

q

p
=

√
M∗

12 − i
2
Γ∗12

M12 − i
2
Γ12

; |p|2 + |q|2 = 1. (2.18)

Equations (2.18) fix q and p up to a common phase. The indices L (for long) and S (for short)
reflect the fact that the two eigenstates have very different lifetimes.

We are now ready to solve the problem of time evolution of K0 meson states. Integrating
eq. (2.3), one immediately obtains

|KS(t)〉 = e−i(MS− i
2
ΓS)t|KS(0)〉 (2.19)

|KL(t)〉 = e−i(ML− i
2
ΓL)t|KL(0)〉. (2.20)

The time evolution of a generic state |Ψ(t)〉 is obtained by expanding |Ψ(0)〉 on the |KS〉, |KL〉
basis and then using eqs. (2.19-2.20). For example, consider a beam composed of |K0〉 mesons
only, produced at t = 0. From eqs. (2.16-2.17),

|Ψ(0)〉 = |K0〉 =
1

2p
(|KS(0)〉+ |KL(0)〉) , (2.21)

which in turn implies

|Ψ(t)〉 =
1

2p
[|KS(t)〉+ |KL(t)〉] = f+(t)|K0〉+

q

p
f−(t)|K0〉, (2.22)

where

f±(t) =
1

2

[
e−i(MS− i

2
ΓS)t ± e−i(ML− i

2
ΓL)t
]
. (2.23)

The probability of finding a K0 in the beam after a time t is proportional to

|〈K0|Ψ(t)〉|2 = |f+(t)|2 =
1

4

[
e−ΓSt + e−ΓLt + 2e−

ΓS+ΓL
2

t cos(∆Mt)
]

(2.24)

and analogously the probability of finding a K
0

is proportional to

|〈K0|Ψ(t)〉|2 =

∣∣∣∣qp
∣∣∣∣2 |f−(t)|2 =

∣∣∣∣qp
∣∣∣∣2 1

4

[
e−ΓSt + e−ΓLt − 2e−

ΓS+ΓL
2

t cos(∆Mt)
]
. (2.25)

The time-integrated fractions of K0 and K
0

in the beam are sometimes useful. We find∫ +∞
0

dt |f+(t)|2∫ +∞
0

dt
[
|f+(t)|2 + |f−(t)|2

] =
1

2

2 + x2 − y2

1 + x2
(2.26)∫ +∞

0
dt |f−(t)|2∫ +∞

0
dt
[
|f+(t)|2 + |f−(t)|2

] =
1

2

x2 + y2

1 + x2
, (2.27)

where

x =
∆M

Γ
; y =

∆Γ

2Γ
(2.28)
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and Γ = (ΓS + ΓL)/2. Both quantities in eqs. (2.26,2.27) are approximately equal to 1/2 in the
case of K0 mesons.

The mass difference ∆M can be determined using semileptonic decays of K0 and K
0
. As

shown above, a beam of K0 mesons at time t = 0 will contain at time t > 0 both K0 and

K
0

with probabilities given by eqs. (2.24) and (2.25) respectively. Neglecting for the moment
CP-violation effects (which amounts to assuming |q/p| = 1) we find

N(K0)−N(K
0
)

N(K0) +N(K
0
)

=
2 cos(∆Mt)

e−
∆Γt
2 + e

∆Γt
2

, (2.29)

where N(K0) (N(K
0
)) denotes the number of K0 (K

0
) mesons in the beam at the time t. These

numbers can be determined experimentally by studying the semileptonic decays of K0 mesons:

K0 → π−e+νe (2.30)

K
0 → π+e−ν̄e. (2.31)

The same processes with opposite sign of the lepton charges are forbidden. As a consequence,

N(K0) is proportional to the number of observed positrons, andN(K
0
) to the number of observed

electrons, and the quantity in eq. (2.29) can be experimentally determined as a function of time.
We now turn to an analysis of CP violation. We define the CP transformation as

CP |K0〉 = eiα|K0〉 CP |K0〉 = e−iα|K0〉, (2.32)

where α is an arbitrary phase. We begin by proving the following, important result:
|KS〉 and |KL〉 are CP eigenstates ⇔ Im(M12Γ

∗
12) = 0.

The proof is straightforward: let us assume that |KS〉 and |KL〉 are eigenstates of the CP operator,
defined as in eq. (2.32), with eigenvalues +1 and −1 respectively:

CP |KS〉 = peiα|K0〉+ qe−iα|K0〉 = p|K0〉+ q|K0〉 (2.33)

CP |KL〉 = peiα|K0〉 − qe−iα|K0〉 = −p|K0〉+ q|K0〉 . (2.34)

Equations (2.33,2.34) give
q

p
= eiα. (2.35)

On the other hand, using eq. (2.18) we find∣∣∣∣qp
∣∣∣∣2 =

√
|M12|2 + |Γ12|2 /4 + Im(M12Γ∗12)

|M12|2 + |Γ12|2 /4− Im(M12Γ∗12)
. (2.36)

The condition |q/p|2 = 1 is therefore equivalent to

Im(M12Γ
∗
12) = 0. (2.37)
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The argument can be reversed: if Im(M12Γ
∗
12) = 0, then q/p = eiβ, and |KS〉, |KL〉 are CP

eigenstates, provided the CP operator is defined by CP |K0〉 = eiβ|K0〉.
Is it possible to decide experimentally whether the eigenstates of the effective hamiltonian

Heff are also CP eigenstates? To answer this question, we must consider the decays of K0

mesons into two-pion states, |π0π0〉 or |π+π−〉, and three-pion states, |π0π0π0〉 or |π+π−π0〉.
This is because two-pion states are CP eigenstates with eigenvalue +1, while three-pion states
are predominantly in a CP eigenstate with eigenvalue −1. As a consequence, if KL and KS are
also CP eigenstates, we expect KS to decay mainly into two pions, and KL only into three pions.
Studying these processes, we will see that another mechanism of CP violation, independent of

K0 −K
0

mixing, can take place.
We define the following ratios of decay amplitudes:

η± =
A(KL → π+π−)

A(KS → π+π−)
; η00 =

A(KL → π0π0)

A(KS → π0π0)
(2.38)

Clearly, both η± and η00 vanish if CP is conserved, since in that caseKL would be a CP eigenstate
with eigenvalue −1, and could not decay into two pions1. So, η± and η00 are the appropriate
quantities to investigate CP violation. Decomposing the two-pion states in terms of states with
definite isotopic spin I and using the familiar Clebsch-Gordan decomposition we find

|π+π−〉 =

√
2

3
|ππ, I = 0〉+

√
1

3
|ππ, I = 2〉

|π0π0〉 = −
√

1

3
|ππ, I = 0〉+

√
2

3
|ππ, I = 2〉. (2.39)

where we have used the fact that the possible values of the total isospin of two-pion states are
I = 0, 1, 2, but I = 1 is forbidden by Bose statistic. Hence

η± =
ε0 + ω√

2
ε2

1 + ω√
2

; η00 =
ε0 −

√
2ωε2

1−
√

2ω
, (2.40)

where

ε0,2 =
A(KL → ππ, I = 0, 2)

A(KS → ππ, I = 0, 2)
; ω =

A(KS → ππ, I = 2)

A(KS → ππ, I = 0)
. (2.41)

The ratio ω turns out to be rather small, as a manifestation of the so-called ∆I = 1/2 selection
rule. The present (PDG 2016) measured values of |η±|, |η00| are

|η±| =

√
Γ(KL → π+π−)

Γ(KS → π+π−)
= (2.232± 0.011)× 10−3 (2.42)

|η00| =

√
Γ(KL → π0π0)

Γ(KS → π0π0)
= (2.220± 0.011)× 10−3, (2.43)

1Observe that the reversed statement for three pion states is not true: KS can decay into three pions even if
CP is an exact symmetry, since three pion states contain a small component with CP = +1.
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which show that violation of the CP symmetry is an effect of order 10−3, to be compared with
parity and charge-conjugation violation in weak interactions, which are instead maximal.

Let us assume for a moment that the term of the weak hamiltonian which is responsible for
K decays into ππ does not violate the CP symmetry. In this case we would have

A(K0 → ππ) = eiαA(K
0 → ππ) (2.44)

for both I = 0 and I = 2 (the phase factor exp(iα) originates from the definition of the CP
operator, eq. (2.32)). This implies

ε0 = ε2 =
pA(K0 → ππ)− qA(K

0 → ππ)

pA(K0 → ππ) + qA(K
0 → ππ)

=
1− q

p
eiα

1 + q
p
eiα

(2.45)

and therefore, recalling eq. (2.40),
η± = η00 = ε0. (2.46)

Present (PDG 2016) experimental data show a small deviation from this picture of CP violation:
indeed ∣∣∣∣η00

η±

∣∣∣∣ = 0.9950± 0.0007, (2.47)

which shows that direct CP violation (that is, CP violation inK decays) is suppressed by another

factor of 10−3 with respect to CP violation in the mixing K0 −K
0
. For the moment we neglect

this small effect.
Eq. (2.45) can be used to relate ε0 with the effective hamiltonian M − iΓ/2, which we will

eventually compute within a given theory. To this purpose, we define

M12 = |M12| ei(φ+δ); Γ12 = |Γ12| eiφ. (2.48)

Using eqs. (2.18) we obtain

q

p
= e−iφ

√
|M12| e−iδ − i

2
|Γ12|

|M12| eiδ − i
2
|Γ12|

(2.49)

Comparing eqs. (2.42-2.43) with eq. (2.45) we conclude that |q/p| = 1+O(10−3). Therefore, the
phase mismatch δ must be close to 0 or π. Expanding in powers of sin δ to first order we obtain

q

p
= e−iφ

(
1− i |M12| sin δ

|M12| cos δ − i
2
|Γ12|

)
+O(sin2 δ), (2.50)

where, to this order, cos δ = ±1. Furthermore

R =

√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
= |M12| cos δ − i

2
|Γ12|+O(sin2 δ). (2.51)

The sign of cos δ can now be determined recalling eqs. (2.9,2.10), which give

∆M = 2 |M12| cos δ +O(sin2 δ), ∆Γ = 2 |Γ12|+O(sin2 δ). (2.52)
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Since experimentally ∆M < 0, we conclude that cos δ < 0 and therefore δ is close to π. We may
therefore rename δ → π+δ and expand around δ = 0: sin(π+δ) = − sin δ ' −δ, cos(π+δ) ' −1.
Frmo eqs. (2.45,2.50) we obtain

ε0 =
1− q

p
eiα

1 + q
p
eiα

=
i

2

|M12| δ
|M12|+ i

2
|Γ12|

+O(δ2), (2.53)

where we have chosen the phase α in the definition of CP to be equal to the phase φ of Γ12.
Finally, the experimental fact that ∆M ' −∆Γ/2, together with eq. (2.52) allow us to obtain
the simple result

ε0 '
iδ

1 + i
+O(δ2) =

δ√
2
eiπ/4 +O(δ2). (2.54)

Notice that the value of π/4 we have obtained for the phase of ε0 (and therefore, approximately,
of η± and η00) is an experimental value; it follows from the fact that CP violation effects are
so small, which allowed us to neglect terms of order δ2, and from the experimental observation
that ∆M ' −∆Γ/2 for kaons. This is not the case, for example, for B0 mesons, for which
∆M � ∆Γ.

As mentioned above, experiments show small deviations from the equality η± = η00, which
signal CP violation in K decays. In order to account for this small effect, we rewrite η±, η00 in
the form

η± = ε0 +
1

1 + ω/
√

2

ω√
2
(ε2 − ε0) = εK + ε′ +O(ω2) (2.55)

η00 = ε0 −
2

1− ω
√

2

ω√
2
(ε2 − ε0) = εK − 2ε′ +O(ω2), (2.56)

where we have used the widely adopted notation

εK ≡ ε0; ε′ ≡ ω√
2
(ε2 − ε0) (2.57)

and we have neglected terms of order ω2, since the ∆I = 1/2 rule is rather accurate in this
context.

The quantity ε′ signals direct CP violation. It can be extracted from measurements of the
quantity

D =
B(KL → π+π−)/B(KS → π+π−)

B(KL → π0π0)/B(KS → π0π0)
=

∣∣∣∣ η±η00

∣∣∣∣2 ' 1 + 6Re
ε′

εK
. (2.58)

The present (PDG 2016) world data average gives

Re
ε′

εK
= (1.66± 0.7)× 10−3. (2.59)
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2.1 K0 −K
0

mixing in the standard model

The transition K0 → K
0

is a neutral current process where strangeness changes by two units;
such process can take place within the standard model, but they involve diagrams with at
least one loop and the exchange of two W bosons. The relevant diagram is shown in fig. 2.
The corresponding amplitude can be interpreted as an effective lagrangian term for processes

d

s̄

s

d̄

W W

(0.1)

1

Figure 2: One loop diagram for ∆S = 2 transitions in the standard model.

involving ds̄→ sd̄ transitions. In the limit of zero external momenta one finds

L∆s=2
eff =

G2
Fm

2
W

64π2
[s̄γµ(1− γ5)d]

2
∑

i=u,c,t

∑
j=u,c,t

ξiξjF (xi, xj) + h.c., (2.60)

where

ξi = VisV
∗
id, xi =

m2
i

m2
W

(2.61)

and

F (xi, xj) = xixj
f(xi)− f(xj)

xi − xj

; f(x) =
x2 − 8x+ 4

(x− 1)2
log x+

3

x− 1
(2.62)

F (xi, xi) = x2
i f

′(xi) = xi
6x2

i log xi + x3
i − 12x2

i + 15xi − 4

(xi − 1)3
. (2.63)

Although straightforward, the calculation is rather complicated. Note that in the unitary gauge
the W propagators behave as constants in the large momentum limit, and therefore the diagram
is divergent by power counting. However, in the limit of large loop momenta all quark masses
can be neglected, and the integrand tends to be proportional to the sum

∑
i ξi
∑

i ξj, which is
zero by unitarity of the CKM matrix. For the same reason, the amplitude would be zero if the
up-type quarks were degenerate in mass.

We first compute the KLKS mass difference

∆M ' 2 |M12| . (2.64)
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Using the standard Lorentz-invariant state normalization

〈K0|K0〉 = (2π)3δ3(0)2mK = V2mK , (2.65)

where V is the volume of three-dimensional space, we find

M12 =
1

2mKV

∫
d3x〈K0|

(
−L∆s=2

eff (x)
)
|K0〉 . (2.66)

It is easy to show that the integrand is constant, and thus a factor of V is generated that cancels
the V in the denominator. We get

M12 = − 1

2mK

〈K0|L∆s=2
eff |K0〉 , (2.67)

and therefore

∆M ' 2 |M12| =
G2

Fm
2
W

64π2mK

∣∣∣∣∣∑
i,j

ξiξjF (xi, xj)

∣∣∣∣∣ 〈K0| [s̄γµ(1− γ5)d]
2 |K0〉. (2.68)

A numerical estimate of ∆M is considerably simplified if one takes into account the numerical
values of xi and ξi. Current (PDG 2016) estimates give

xu =
m2

u

m2
W

∼ 10−10; xc =
m2

c

m2
W

' 2.5 · 10−4; xt =
m2

t

m2
W

' 4.6. (2.69)

Thus, for i, j = u, c we have xi � 1, xj � 1, and

F (xi, xj) =
4xixj

xi − xj

log
xi

xj

+O(x2
i , x

2
j); F (xi, xi) = 4xi +O(x2

i ). (2.70)

Since
ξu ' −ξc = λ (2.71)

(see eq. (1.35)), we conclude that the dominant contribution from u, c circulating in the loop is
the one proportional to ξ2

cF (xc, xc) ∼ 4λ2x2
c . The contributions from top quarks are proportional

to either
F (xt, xi) = xi [f(xt)− 4 log xi] +O(x2

i ) (2.72)

or
F (xt, xt) ∼ 10. (2.73)

The only contribution which is not suppressed by light quark masses is therefore the one pro-
portional to ξ2

t ∼ A4λ10, with A ∼ 0.8. This term is however negligible with respect to the
analogous contribution from charm quarks. Indeed

ξ2
tF (xt, xt)

ξ2
cF (xc, xc)

' A4λ10

λ2

10xt

4xc

∼ 0.05. (2.74)
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So

∆M ' 2 |M12| =
G2

F ξ
2
cmc

2

16π2mK

〈K0| [s̄γµ(1− γ5)d]
2 |K0〉. (2.75)

The matrix element in eq. (2.75) depends on the strong interaction dynamics at energies of the
order of the K0 mass, and therefore it cannot be computed in a perturbative framework. It is
usually parametrized as

〈K0| [s̄γµ(1− γ5)d]
2 |K0〉 =

8

3
f 2

Km
2
KBK , (2.76)

where fK ' 1.23fπ ' 114 MeV is the K decay constant, extracted from the measured decay
rate for the process K+ → µ+νµ, and BK is a parameter which is expected to be of order 1 on
the basis of flavor symmetry considerations and lattice calculations. We have therefore

∆M ' G2
F

6π2
ξ2
cm

2
c f

2
KmKBK . (2.77)

Equation (2.77) allows us to estimate of the charm quark mass (we recall that the KLKS mass
difference was measured before the charm quark discovery). For BK = 1 we find

mc ∼ 1.6 GeV, (2.78)

which is remarkably close to current estimates.
We now turn to the relationship between the CP violation parameter ε0 and the CKM matrix

entries. We have

ε0 =
δ√
2
eiπ/4 +O(δ2), (2.79)

where δ is the difference between the complex phases of M12 and Γ12. We may choose the
phase in the definition of the K0 state such that Γ12 is real (this is the case in the Wolfenstein
parametrization of the CKM matrix.) In this case

Im (M12Γ
∗
12) = Γ12ImM12 = Γ12|M12| sin δ ' Γ12|M12|δ. (2.80)

We have therefore

|ε0| '
δ√
2
' 1√

2

∣∣∣∣ImM12

M12

∣∣∣∣ ' 1√
2

∣∣∣∣ImM12

ReM12

∣∣∣∣ . (2.81)

The dependence on the hadronic matrix element 〈K0| [s̄γµ(1− γ5)d]
2 |K0〉 cancels in the ratio,

and we are left with

|ε0| '
1√
2

ImΦ

ReΦ
, (2.82)

where
Φ =

∑
i,j

ξiξjF (xi, xj). (2.83)

In this case we are no longer allowed to neglect the contributions from top quarks in the loop,
since it is the only ones which carry a dependence on the complex phase of the CKM matrix.
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Taking into account the numerical values of quark masses and CKM entries we find, in the
Wolfenstein parametrization,

|ε0| '
1√
2

F (xt, xt)

4xc

Im ξ2
t

ξ2
c

=
1√
2

F (xt, xt)

4xc

A2λ3η(1− ρ). (2.84)

Recalling that

ρ̄+ iη̄ =

(
1− λ2

2

)
(ρ+ iη), (2.85)

we see from eq. (2.84) that a measurement of |ε0| ' |εK | corresponds to an allowed region in the
ρ̄, η̄ complex plane given by

η̄

(
1− ρ̄

1− λ2

2

)
= K ±∆K, (2.86)

where K is a function of various measured quantities: λ,A, the charm and top quark masses, the
W mass and εK itself. One can see that this is in fact appoximately the shape of the constraint
marked εK in fig. 1.

3 Lecture Three: Neutrinos

In the original formulation of the standard model, neutrinos are assumed to be massless. This
assumption has its historical motivation in the direct experimental upper bounds on neutrino
masses:

mνe ≤ 3 eV; mνµ ≤ 0.19 MeV; mντ ≤ 18.2 MeV, (3.1)

Today we know that neutrino masses are in fact non-zero; nonetheless, the approximation mν �
mf , where f is any fermion in the standard model spectrum, is extremely accurate for most
applications. However, it is mandatory to discuss the possible ways to introduce neutrino mass
terms.

The absence of neutrino mass terms in the standard model is related to the absence of right-
handed components for the neutrino fields, which belong to the singlet representation of SU(2),
and would have zero hypercharge. One may nevertheless assume that right-handed neutrinos do
exist. This assumption brings us outside the standard model, and has far-reaching consequences.
We restrict ourselves to the case of only one lepton generation, and we introduce a right-handed
neutrino through the term

ν̄R iD/ νR ≡ ν̄R i∂/ νR. (3.2)

In the presence of a right-handed neutrino field, a Dirac mass term is generated through the
Higgs mechanism by a Yukawa coupling similar to that of up-type quarks:

− hN

[
¯̀
Lφ̃νR + ν̄Rφ̃

†`L

]
, (3.3)

which develops a mass term

−m (ν̄LνR + ν̄R νL) ; m =
hNv√

2
(3.4)
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after spontaneous symmetry breaking, in analogy with the case of quarks. As observed in Lecture
One, the Yukawa coupling in eq. (3.3) cannot be generated by radiative corrections, because it
breaks explicitly the global accidental symmetry

νR → eiφνR (3.5)

of the kinetic term eq. (3.2), the only other term in the Lagrangian density where νR appears.
From the experimental bounds in eq. (3.1), we conclude that the constant hN must be smaller

than the corresponding constants for charged leptons by several order of magnitudes. For ex-
ample

hN

he

=
m

me

∼ 10−6. (3.6)

This large hierarchy seems rather unnatural, since mass differences within the other SU(2)
doublets are much smaller:

mu

md

∼ 1;
mc

ms

∼ 10;
mt

mb

∼ 40. (3.7)

There are however additional mass terms that can be included in the case of neutrinos. Because
of its transformation properties with respect to gauge transformations, a right-handed neutrinos
also admit a Majorana mass term

− 1

2
M (ν̄c

R νR + ν̄R ν
c
R) . (3.8)

where
νc

R = Cν̄T
R = iγ2γ0ν̄

T
R , (3.9)

the charge-conjugated spinor. This possibility is not shared by any other fermion field in the
standard model, because of the limitations imposed by gauge invariance. In particular, it is not
possible to build a Majorana mass term for left-handed neutrinos by means of renormalizable
terms in the Lagrangian density. The Majorana mass parameter M , contrary to the Dirac mass
m, can assume arbitrarily large values, since no extra symmetry is recovered in the limit M = 0.
Furthermore, Majorana mass terms violate lepton number conservation; thus, we must assume
that M is large enough, in order that lepton number violation effects, typically suppressed by
inverse powers of M , are compatible with observations. It is natural to assume that M is of
the order of the energy scale characteristic of the unknown phenomena (e.g. the effects of grand
unification) experienced by right-handed neutrinos.

The most general neutrino mass term can therefore be written in the form

Lν mass = −1

2
(ν̄c

L ν̄R)

(
0 m
m M

)(
νL

νc
R

)
+ h.c., (3.10)

where we have used ν̄c
L ν

c
R = ν̄R νL. The mass matrix in eq. (3.10) can be written in the diagonal

Majorana form

Lν mass = −1

2
(ν̄c

1 ν̄2)

(
m1 0
0 m2

)(
ν1

νc
2

)
+ h.c., (3.11)
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with

ν1 = i(cos θ νL − sin θ νc
R); ν2 = cos θ νR + sin θ νc

L; tan 2θ =
2m

M
(3.12)

and

m1 =
1

2

(√
M2 + 4m2 −M

)
; m2 =

1

2

(√
M2 + 4m2 +M

)
. (3.13)

For m�M

θ ' m

M
; m1 '

m2

M
; m2 'M ; ν1 ' iνL; ν2 ' νR. (3.14)

This mechanism, usually called the see-saw mechanism, provides a natural explanation of the
observed smallness of neutrino masses: one of the two mass eigenstates in the neutrino sector
is extremely heavy, and has no observable effects on physics at the weak scale, while the other
one has a mass which is suppressed with respect to typical fermion masses m by a factor m/M .
In this way, light neutrinos arise without the need of assuming unnaturally small values of the
Yukawa couplings.

The see-saw mechanism can be generalized to the case of n different species of left-handed
neutrinos and an undetermined number k of right-handed neutrinos. For simplicity, we will
consider the case k = n, when there are as many right-handed as left-handed neutrinos. In this
case, the Yukawa interaction introduced in Lecture One must be modified as follows:

Llept
Yukawa = −

[
`LφhLeR + ēRφ

†h†L`L
]
−
[
¯̀
Lφ̃hNνR + ν̄Rφ̃

†h†N`L

]
, (3.15)

where we have introduced an array νR
α; α = 1, . . . , n, and hN is a generic complex constant

matrix. The neutrino mass term takes the form

Lν mass = −1

2
(ν̄c

L ν̄R)

(
0 v√

2
hN

v√
2
hN M

)(
νL

νc
R

)
+ h.c., (3.16)

where now the entries of the mass matrix are n× n blocks, and M is a matrix in lepton flavour
space which, without loss of generality, can be chosen real, diagonal and positive.

If the eigenvalues of M are much larger than |vhij
N |, the (Majorana) mass terms for light

neutrinos are

− 1

2

(
µij ν̄

c
LiνLj + µ∗jiν̄Liν

c
Lj

)
, (3.17)

where the indices i, j are lepton flavour indices; the light neutrino fields νLi only approximately
coincide with neutrinos with definite leptonic flavour. One finds that to a very good approxima-
tion

µ ' v2

2
(hN)T M−1hN = U †µ̂U∗, (3.18)

where µ̂ is a diagonal real matrix and the unitary matrix U is such that

µµ† = U †µ̂2U. (3.19)
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The matrix U , usually refferret to as the Pontecorvo-Maki-Nagakawa-Sakata (PMNS) matrix,
is identified up to three phases associated with the ν ′Li’s, which can be freely chosen due to the
lepton flavour conservation property of the electroweak Lagrangian. Hence, U depends on six
parameters: three angles and three complex phases. It is the leptonic analogous of the CKM
matrix, and gives rise to the lepton flavour mixing (and, possibly, CP violation). It is usually
parametrized as

U =

 c12c13 s12c13 s13e
iδ

−s12c23 − c12c23s13e
iδ c12c23 − s12s23s13e

iδ s23c13e
iδ

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13e
iδ

 1 0 0
0 eiα 0
0 0 eiβ

 (3.20)

where cij = cos θij and sij = sin θij.
Neutrinos are produced in weak-interaction processes with a definite flavour: for example, β

decays of nuclei in the Sun produce electron neutrinos. Denoting flavour eigenstates by Greek
indices, and mass eigenstates by Latin indices, we have

|να〉 =
n∑

i=1

U∗
αi |νi〉. (3.21)

Let us consider a neutrino beam of definite flavour, produced at the origin L = 0. Each definite-
mass component of the beam propagates at the distance L as

|νi(L)〉 = eipiL |νi(0)〉, (3.22)

where

pi =
√
E2 − µ̂2

i ' E − µ̂2
i

2E
, (3.23)

since neutrinos are almost massless. Hence,

|να(L)〉 ' eiEL

n∑
i=1

U∗
αi exp

(
−i µ̂

2
i

2E
L

)
|νi(0)〉, (3.24)

where E is the energy of the beam, which is assumed monochromatic for the time being.
The probability amplitude of observing the flavour β at a distance L from the source is given

by

〈νβ|να(L)〉 ' eiEL

n∑
i=1

U∗
αi exp

(
−i µ̂

2
i

2E
L

) n∑
j=1

Uβj 〈νj|νi〉

= eiEL

n∑
i=1

ξαβ
i e−iεiL, (3.25)

where we have defined

ξαβ
i = U∗

αi Uβi; εi =
µ̂2

i

2E
. (3.26)
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The corresponding probability is given by

Pαβ(L) =
n∑

i=1

n∑
j=1

ξαβ
i ξ∗αβ

j ei(εj−εi)L

= δαβ − 4
n∑

i=1

n∑
j=i+1

Re
(
ξαβ
i ξ∗αβ

j

)
sin2 1

2
(εj − εi)L

−2
n∑

i=1

n∑
j=i+1

Im
(
ξαβ
i ξ∗αβ

j

)
sin(εj − εi)L, (3.27)

where we have used the unitarity of U . Observe that Pαβ is unchanged if one replaces U → U∗

and α↔ β:
P (να → νβ;U∗) = P (νβ → να;U). (3.28)

On the other hand, CPT invariance implies

P (νβ → να;U) = P (ν̄α → ν̄β;U). (3.29)

Hence,
P (να → νβ;U∗) = P (ν̄α → ν̄β;U), (3.30)

or in other words neutrino oscillation probabilities can only differ from anti-neutrino oscillation
probabilities if U 6= U∗, which is also a condition for CP violation.

In real situations eq. (3.27) requires important corrections for three reasons. First, neutrino
beams are not monochromatic. This implies that the particles in the beams are not associated
with plane waves as in eq. (3.22). Rather, their states must be described by wave packets
whose space extension is approximately 1

∆E
, ∆E being the energy resolution of the beam. The

components of the wave packets associated with different mass eigenvalues move along the beam
with different velocities:

|vi − vj| ∼
|εi − εj|
E

, (3.31)

and hence different components cease overlapping after a distance D ∼ E/(∆E|εi − εj|). More
precisely, the exponential in the first line of eq. (3.27) is replaced by

ei(εj−εi)L → ei(εj−εi)Le−
(εj−εi)

2(∆E)2L2

8E2 →
L→∞

δij (3.32)

and therefore neutrino oscillations are damped after a distance which is approximately equal to
the oscillation length times E

∆E
. In some instances, e.g. the case of athmospheric neutrinos, ∆E

E

is of order one; in such cases, what is observed is not oscillations, but a continuous monotonic
transition between

Pαβ(0) = δαβ and Pαβ(∞) =
∑

i

|ξαβ
i |2. (3.33)

In other cases, e.g. in the case of solar neutrinos with energy of order 10 MeV, ∆E
E

is relatively
small, but the observer-source distance L is statistically distributed over millions of kilometers.
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In these situations, oscillations average to zero, and what is in fact measured is Pαβ(∞) anywhere.
Finally, eq. (3.27) was obtained under the assumption that neutrino propagation takes place in
empty space; in principle, there might be sizable corrections due to the interaction of neutrinos
with matter.

In the case of solar neutrinos, which are produced in the electron flavour state (α = e) and
detected in the same flavour state, one finds a flux reduction factor

Pee(∞) =
∑

i

|Uei|4 = 0.58± 0.07 (3.34)

in the 1 MeV energy region. A different flux reduction, Pee(∞) ' 0.3, is instead measured for
solar neutrinos in the 10 MeV energy region. This difference cannot be explained by eq. (3.33),
which is manifestly independent of the neutrino energy.

An elegant explanation of this effect is based on the possibility that oscillations in matter
be different from those in empty space. This might look surprising since neutrinos interact very
weakly. However, it has been suggested that in certain conditions of neutrino energy and electron
density, and for certain values of the relevant neutrino squared mass differences, a resonance
mechanism can take place, the so-called the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism,
which may modify the first (electron) line of the PMNS matrix setting in particular Ue2 = 1
in matter.2 In these conditions, electrons would be created in the Sun in a mass eigenstate,
and the beam would remain in the same mass eigenstate also emerging from the Sun into the
vacuum.3 In this situation one would find a flux reduction factor equal to the vacuum value of
|Ue2|2, which might fairly well be close to 1/3. Given the solar electron density and the neutrino
energy, the resonance hypothesis favours a squared mass difference ∆m2

� ∼ 7 · 10−5 eV2.
An important source of experimental information on neutrinos is the study of the multi-GeV

atmospheric neutrinos produced by the interactions of primary cosmic rays with the atmosphere.
One observes a reduction by a factor about two in the muon neutrino flux when the neutrino
azimutal angle varies between zero (particles coming from above) and 180◦ (particles from below),
and hence L varies between few times 10 km and 2 · 104 km. One observes about five damped
oscillations corresponding to an L of 13000 km, the diameter of the earth; for an average energy
of about 8 GeV, eq. (3.27) gives ∆m2 ∼ 3 · 10−3 (eV)2.

The choice of the ordering of the mass eigenstates is, of course, arbitrary. The parametrization
of the PMNS mixing matrix given in eq. (3.20) is motivated by the fact that the solar problem
seems to involve two mass eigenstates, which are conventionally identified with the first two
eigenstates:

∆m2
� = ∆m2

21. (3.35)

On the other hand, since most of the atmospheric neutrinos (∼ 2/3) are µ neutrinos, it is natural
to identify the mass difference ∆m2

A measured in atmospheric neutrino experiments with ∆m2
31.

Because ∆m2
A � ∆m2

�, we conclude that ∆m2
31 ' ∆m2

32.
Further important experiments originate from the anti-neutrino flux generated by the nuclear

power stations, which can be measured at distances of few kilometers, and from long baseline

2In the case of solar neutrinos the matter particles are electrons which have different forward scattering
amplitudes with the neutrinos of different species due to the presence of charged current interactions.

3This is a consequence of the quantum mechanical version of the adiabatic theorem.
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experiments based on high-energy artificial (anti)-neutrino beams, which will be crucial in order
to detect possible CP violating phases in the PMNS matrix.

The analyses of the anti-neutrino flux generated by the nuclear power stations at distances of
the order of one kilometer can put into evidence oscillations in the electron anti-neutrino survival
probability Pee(L) corresponding to ∆m2

31 ' ∆m2
32. Indeed, using eq. (3.27) and eq. (3.20), one

has

Pee(L) = 1− sin2(2θ13) sin2 ∆m2
31L

4E
, (3.36)

and for E ∼ 3 MeV, the tipical average value of antineutrino energy, one has an oscillation length
L ∼ 600 m and a damping length few times larger. Recently, a tiny effect has been detected,
which can be interpreted in terms of a small, but non zero, value of sin2 θ13 ' 0.025.
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