
A DYNAMICALLY RECONFIGURABLE DATA STREAM PROCESSING
SYSTEM

J.M. Nogiec#, K.Trombly-Freytag*, FNAL, Batavia, IL 60510, USA

Abstract
This paper describes a component-based framework for
data stream processing that allows for configuration,
tailoring, and runtime system reconfiguration. The
system’s architecture is based on a pipes and filters
pattern, where data is passed through routes between
components. A network of pipes and filters can be
dynamically reconfigured in response to a preplanned
sequence of processing steps, operator intervention, or a
change in one or more data streams. This framework
provides several mechanisms supporting dynamic
reconfiguration and can be used to build static data stream
processing applications such as monitoring or data
acquisition systems, as well as self-adjusting systems that
can adapt their processing algorithm, presentation layer,
or data persistency layer in response to changes in input
data streams.

INTRODUCTION
Software developers frequently face the challenge of

quickly developing an application of high quality. At the
same time they are expected to reduce the costs of
maintenance and improve reliability. One of the ways to
achieve these goals is to use a technology that offers a
high level of reuse such as component-based
development. In this technology, applications are
assembled from previously developed components [1].
The partitioning of the processes of programming and
application building achieved with components allows for
increased reuse and rapid development. The separation of
concerns between programmers and application
developers results in a clear distinction between the
application structure and programming details, which in
turn improves maintainability.

Another challenge faced by software developers is the
fulfilment of functional requirements, especially when
systems may be required to perform different functions
depending on changing environment or requirements.
This cannot always be satisfied with writing new
applications or modifying existing code. An alternative to
this old and costly approach is to build into the systems an
ability to evolve or change over time. Component based
technology provides this ability by creating a foundation
for both static and dynamic reconfiguration of the system,
where components can be exchanged, removed or added
to the system either at configuration time or at runtime
[2]. In recent years, there has been an increased interest in

dynamic reconfiguration techniques, including component
based reconfigurable systems [2][3][4][5].

The data sequences produced in real-time by such
utilities as stock tickers, news feeds or data acquisition
systems are known as data streams and the applications
which such process continuous data flows are known as
data stream processing systems. Many applications utilize
data streams to pass information between components,
processes and subsystems [1][6][7]. Data stream systems
can be easily modelled using components as dataflow
systems. The resulting architecture offers low coupling
between components, upgradeability, scalability, and
extensibility[8].

The Extensible Measurement System (EMS)
framework developed at Fermilab is an exercise in the
component-based technology, allowing for
experimentation with dynamic reconfiguration in a data
flow system.

DYNAMISM IN SOFTWARE SYSTEMS
Software systems can be developed as highly

specialized single purpose systems, but increasingly often
software systems are required to adapt to changes in their
environment, new user requirements or conditions that
were difficult or impossible to predict at design time. To
deal with these and similar problems, a dynamic system
that is more flexible and adaptable can be designed.

One can begin introducing flexibility to an application
by adding the ability to configure it prior to running. Thus
a framework capable of creating many applications that
form a product line based on a common architecture can
be developed. The next step in flexibility is to allow for
some aspects of an application, such as user interface
preferences, to be modified at runtime, which is
sometimes referred to as tailoring [9]. Finally, an
application can be changed, or change itself, at runtime,
which is referred to as dynamic reconfiguration.

 Dynamic reconfiguration can be characterized as either
open or closed based on whether changes to the system
can be predicted.. At runtime, a closed dynamic system
performs changes that were predicted at build time,
whereas an open dynamic system is capable of
performing changes that were not anticipated at build
time.

Dynamic reconfiguration is the only acceptable solution
in the case when continuity of operation and preservation
of the application’s state and presentation aspects are
required. Reconfiguration can also be used to dynamically
extend base application functionality with services not

 # nogiec@fnal.gov
* kfreytag@fnal.gov

pertaining directly to the application’s core function (such
as enhanced debugging when problems are detected).
Moreover, it can happen autonomously, that is, without
the user’s intervention.

In the case of a dataflow system, reconfiguration can
include the following:

• Modification of the data flow topology
• Activation/deactivation of data sources or data

processing paths
• Addition/removal/exchange of data processing

components
• Modification of components’ properties
• Activation/deactivation of various tasks

(activities, computations, subsystems, etc.).

EMS FRAMEWORK
EMS is a component-based framework designed to

build data acquisition or data processing applications
[10]. Its architecture is based on a pipes and filters
pattern, where data is passed through routes between
components. EMS provides for applications to be built
through assembly of components that then form a
network of processing elements. The topology
(connections between components) is defined separately
for the data, control, debug, exception, and property types
of communication. The initial configuration of an
application is described using a specialized configuration
language that is based on XML [11][12]. The purpose of
this configuration language is to specify components and
their interactions, and it includes descriptions of
components, routes, and initial control signals.

Components
Components are the fundamental building blocks of

applications. Each component has a number of properties,
which can be examined and/or set externally by other
components. One such property is the component’s state,
which can be manipulated by sending control events to
the component. In response to control events, components
perform requested actions and eventually change their
states. Some components are purely data driven, and
while in the running state, their actions depend solely on
the received data. These components process data and
add, substitute, and/or remove named data items from a
data stream. They can also manipulate data streams by
buffering data, compressing or decompressing individual
streams, and combining, splitting, or synchronizing
multiple data streams. Components, depending on their
functionality, range from a highly specialized to fairly
universal ones. EMS consists of configurable general-
purpose components for manipulating streams,
visualizing data, persisting data, and reading data from
various standard data sources, and many application
specific components, such as DSP, scripting, or
instrumentation-specific components [13].

Events
Components can be recipients and/or sources of events.

A single component can be a recipient of one type of
event and a source of another. There exist also translator
components that can translate between different types of
events and serve as junction points for flows of different
events. Typical data processing components are recipients
of data and control events and sources of data, exception,
and debug events. A typical control component is the
recipient of control events and source of control, property,
exception, and debug events. Data acquisition
components serve as data event sources, with data events
being collections of named data items. Data persistence
and visualization components provide the output of the
system, and are typically destinations of data, control,
exception and debug events, while being the source of
only exception and debug events.

Routes
Routes are unidirectional connections between

components. They are specified separately for each type
of event defined in the framework; that is the data,
control, debug, exception, and property events. Both
multicast and broadcast communications can be
implemented via these routes, and they can be inspected
graphically with the help of a configuration tool [13].

RECONFIGURATION TECHNIQUES
There are several techniques that could be employed to

alter the behaviour of an EMS-based system:
• Modification of component properties
• Modification of data paths
• Activation/deactivation of components
• Use of gate components
• Addition/removal of components
• Colouring of data
• Use of source routing.

Modifiable Component Properties
A component’s functionality can be altered via changes

to the component’s properties, either by the user
(tailoring) or the system itself (adaptation). Properties can
“fine-tune” the actual processing performed by a
component, possibly including a complete change of the
algorithm within the component [11][12].

Modifiable Data Paths
Changes to the routing can cause the algorithm of the

application to change dramatically. This could, for
example, supply data for debugging purposes or provide a
shuttle around parts of the system that are currently not
working to alternative sub-systems.

Activation/Deactivation of Components
Each component can be brought to the inactive state by

sending a special control event to it, in which state it will
ignore all incoming data.

Gate Components
The data paths to a component can be opened or closed

using specialized gate components. All components
downstream from the gateway will cease to receive data.

Colouring of Data
The data colouring method is modelled on the decorator

pattern, where data driven components act only on the
“interesting” data. Data is marked (using additional data
items as markers), and each set of uniquely marked data is
processed by a different set of components on their path
through the system.

Adding/Removing Components
Components can be added, removed or replaced by

other components in order to directly alter the data
processing. Custom loaders can be employed to
dynamically load code from various available code
repositories.

Source Routing
 Source routing allows a component to send its results

to a dynamically chosen component, rather than, or in
addition to, those components connected to it via
configured data routes. The addresses of recipients can be
redefined at runtime as properties of the source
component.

RECONFIGURATION PROCESS
Data stream processing systems are naturally modelled

as dataflow systems, which in turn can be easily
implemented using component-based technology. In such
systems the interdependencies among data processing
steps and their boundaries are explicitly defined, thus
providing a transparent structure of the system, and
therefore simplifying the implementation of dynamic
reconfiguration.

EMS was designed to implement this class of systems.
In EMS, where components are stateful and their
dependencies are explicitly defined, recognizing and
verifying a valid reconfiguration state is easily
achievable. Because the state of each component is
known, reconfiguration strategies do not have to deal with
the state of the entire system, but rather only with the
state at the specific point of reconfiguration. This allows
for quicker reconfiguration, as well as less disruption of
the entire system.

Specialized Reconfiguration Components
The component-based architecture of EMS allows for

easy separation of the application’s functional and non-
functional aspects, specifically including the aspect of
reconfiguration. One can introduce a set of dedicated
reconfiguration components to an application that will
manipulate the topology, act on the states of various
components, or load and start new components. This
approach separates the reconfiguration specific concerns
from the functional code.

While the EMS offers reconfiguration capabilities, it
doesn’t enforce any specific reconfiguration strategies or
techniques. Various reconfiguration strategies can be
implemented, and decisions on the type of strategy to use
are left to the application designer. This allows each
application to choose the reconfiguration strategy most
applicable to its particular set of requirements and quality
of service measures.

Reconfiguration with Scripting
The scripting capabilities of EMS can be used for

controlling the application and the sequencing of its
actions. It allows for rapid modifications to the behaviour
of the system and rapid development of specialized
applications [13]. In addition to these typical scripting
uses, one can employ this mechanism to dynamically
tailor or reconfigure a running application. One can use
scripting to program known sequences of actions and
corresponding changes of the configuration. At runtime,
the system will go through the pre-programmed
configurations and perform the requested computations or
data acquisitions for each of them.

Scripts can directly inspect and modify the properties of
components, manipulate the components’ states, and add
or remove components and routes from the application.
Property manipulations and control requests are sent as
events to the appropriate recipient components. When
applying scripts to reconfiguration, one also guarantees
the desired separation of concerns between the functional
code and the code responsible for configuration. A script
contains only control and property operations that
stimulate, sequence and control the application, rather
than containing any data processing code.

The use of an interpreted scripting language indicates
there is no imposition of compile-time linking of
components and therefore allows for the dynamic
specification of components at runtime. Conditional
structures can be used to reconfigure the application
according to the runtime environment. Therefore, an
interpreted scripting language is an easy to use and to
maintain reconfiguration tool, well suited to closed
dynamic systems.

CONCLUSIONS
The demand for dynamicity in software systems is one

of the key challenges facing developers today.
Component-based systems form a good foundation for
building configurable and dynamically reconfigurable
systems. At the same time, a configuration-based
framework provides a solid basis from which to describe
the organization of an application. Both allow for building
dynamic applications capable of keeping up with
changing requirements and demands. Data stream
processing systems, due to their lack of cyclic
dependencies, can be modelled with pipeline architecture,
and when implemented with components are well suited
to dynamic reconfiguration.

EMS is a configuration-driven component-based
system, which offers both static configuration and
dynamic reconfiguration capabilities and is suitable for
building data stream processing applications. The EMS
framework provides the mechanisms needed to
accomplish dynamic reconfiguration, whereas the actual
dynamic reconfiguration can be directed by the
interpreted scripting language or by specialized
reconfiguration components. The reconfiguration can be:
a) a result of the adaptation process, in which the
application itself responds to the changing environment or
changes in data, b) a result of an operator-initiated
transformation, or c) a part of the normal lifecycle of an
application, wherein different processing is needed at
different phases.

EMS, through its flexible and powerful reconfiguration
mechanisms proved to be a useful test-bed in the area of
coordination, adaptation, dynamic reconfiguration and
data flow processing. It has already has already been used
to build production quality systems that have been
successfully deployed [11][12].

ACKNOWLEDGEMENTS
The author would like to thank his colleagues Dana

Walbridge, Sergey Kotelnikov, and Gene Desavouret for
their contributions to the magnetic measurement systems
built with the EMS framework.

REFERENCES
[1] A. Lui, M. Grigg, T. Au, M. Owen, “Component

Based Application Framework for Systems Utilising
the Streaming Data Passing Semantic,” 37th
International Conference on Technology of Object-
Oriented Languages and Systems, Sydney, 2000.

[2] T. Batista, N. Rodriguez, “Dynamic Reconfiguration
of Component-based Applications,” Proceedings of
the International Symposium on Software
Engineering for Parallel and Distributed Systems,
June 2000, pp 32-39.

[3] A. Rasche, A. Polze, “Configuration and Dynamic
Reconfiguration of Component-based Applications
with Microsoft .NET,” Proceedings of the Sixth
International Symposium on Object-Oriented Real-
Time Distributed Computing, 2003.

[4] K. Hawick, H. James, P. Coddington, “A
Reconfigurable Component-based Problem Solving
Environment,” Proceedings of the 34th Hawaii
International Conference on System Sciences,
Hawaii, 2001.

[5] A. Ketfi, N. Belkhatir, “Open Framework for the
Dynamic Reconfiguration of Component-based
Software,” SERP’04, Las Vegas, 2004.

[6] D. Abadi et al., “Aurora: a new model and architecture
for data stream management,” The VLDB Journal,
August 2003.

[7] The STREAM Group, “STREAM: The Stanford Data
Manager,” IEEE Data Engineering Bulletin, Vol. 26
No. 1, March 2003.

[8] J. Guo, S. Edwards, D. Borojevic, “Implementing
Dataflow-based Control Software for Power
Electronics Systems,” CPES Seminar 2003, pp. 429-
434, Blacksburg, VA, 2003.

[9] I. Mejuev, A. Kumagai, E. Kadokura, “Tailorable
Software Architectures in the Accelerator Control
system Environment,” ACAT2000, Batavia, 2000.

[10] J.M. Nogiec, J. Sim, K. Trombly-Freytag, D.
Walbridge, “EMS: A Framework for Data
Acquisition and Analysis,” ACAT2000, Batavia,
2000.

 [11] J.M. Nogiec et al., “An XML Driven Framework for
Test Control and Data Analysis,” ICALEPCS 2001,
San Jose, 2001.

[12] J.M. Nogiec et al., “A Flexible and Configurable
System to Test Accelerator Magnets,” PAC’01,
Chicago, 2001.

 [13] J.M. Nogiec, E. Desavouret, S. Kotelnikov,
K.Trombly-Freytag, and D. Walbridge, “Configuring
Systems from Components: The EMS Approach,”
ACAT’03, Tsukuba, 2003.

