
G-PBox: A Policy Framework for Grid Environments

V. Ciaschini, A. Ferraro, A. Ghiselli, G. Rubini, R. Zappi, INFN CNAF, Bologna Italy
A. Caltroni, INFN PD, Padova, Italy

Abstract

A key feature of Grid environments is sharing comput-
ing and storage resources among multiple Virtual Organi-
zations (VOs). This process needs a comprehensive policy
framework. Policy management tools have been developed
for single farms, but Grids need a more flexible and distrib-
uted policy concept.

Usually VOs and local systems share contracts to reg-
ulate resource usage, hence complex relationships among
these entities implying different types of policies may ex-
ist: VO-oriented, local systems-oriented, and a mix of the
two. We propose an approach to the representation and
management of such policies: the Grid Policy Box (G-
PBox) framework. Our approach is based on a set of data-
bases belonging to hierarchically-organised layers distrib-
uted on the Grid and VOs structures. Each layer contains
at least policies regarding itself. Layers must communicate
to each other to accomodate for mixed policies, originating
the need for a secure communication service framework –
for privacy reasons – with the ability to sort and dispatch
various kind of policies to the involved parties.

In this paper we present our first implementation of the
G-PBox, and its architecture details, and we discuss the
plans for G-PBox-related application and research.

INTRODUCTION

The primary motivation for using the Grid is sharing re-
sources, data and application services. This approach is
supported by the concept of Virtual Organization (VO),
which is a set of individuals and/or institutions defined by
resource sharing rules. However institutions are reluctant
to participate in collaborative multi-domain trust environ-
ments due to policy enforcement problems. Current soft-
ware middleware allows organizations to control only re-
sources owned by themselves, typically farms or local sys-
tems, and this makes it difficult to enforce policies regard-
ing VOs. In a Grid context it is necessary to manage poli-
cies regarding both VOs and resource providers which of-
ten have complex relationships based on agreements that
regulate resource usage.

In this paper we propose an approach for the repre-
sentation and management of policies for Grid infrastruc-
tures: the Grid Policy Box (G-PBox) framework. The
G-PBox design is based on a set of policy repositories
hierarchically-distributed to independent administrative-
based layers where each layer contains only policies re-
garding itself. There are at least two layers: the top layer

regarding VOs and the bottom one regarding local farms.
There are three different possible kinds of policies: local

policies, set by a farm for its own usage, external policies,
set by some external entity (e.g. a VO) to regulate farm
allocation, and mixed policies, set by the form for its lo-
cal usage but that also have repercussions at higer layers,
e.g. ban-lists. Policies of the latter two types clearly re-
quire that there is some form of communication between
differen layers.

The approach proposed is focused on security and pri-
vacy, so the communication service framework is imple-
mented using the Globus Security Interface (GSI) standard
APIs.

The solution proposed does not require hard changes to
the current Grid architecture. What is needed is to imple-
ment a Policy Enforcement Point (PEP) for each service
that wants to be managed by the G-PBox framework.

PROBLEM STATEMENT

The emergence of large-scale grids brings about the need
for VOs to tightly regulate both access from the users and
the capabilities the users have once logged in on the system.
Furthermore, the use of automated systems like resource
brokering and job management also needs to be regulated.
The obvious solution is to set up a number of access, man-
agement and accounting policies.

Existing policy systems have been created for environ-
ments where all the resources belong to a single adminis-
trative domain, while in a grid infrastructure we have many
separate administrative domains. Each one has its own set
of policies (local policies) that contain the whole of the
agreements with users and VOs. These policies do not need
to be known outside the site that originated them, and in-
deed they may be considered private.

Thus, to present a unified environment to its users, a
grid-enabled and grid-aware policy systems requires the
presence of external policies, that need to be distributed to
a wide subset of all the sites comprising the grid.

REQUIREMENTS

A policy system must be capable of handling at least the
following cases.

Handling site policies A site administrator should have
absolute control on resources he ownes. He should
have a unique interface to enforce policies for his
users and he should be able to take actions ranging



from setting a banner list to balancing the use of its
resources.

Handling VO policies A VO might want to set policies af-
fecting subsets of its resources and subsets of its users.
The policy system should be capable to distribute this
kind of policies to local sites, but the sites should have
the last word on whether to accept or refuse them.
These policies may be highly mutable and need to be
distributed to the various farms.

Adding a farm to a grid The policy system should allow
adding farms and resources to an already established
Grid environment. Furthermore, it should be able to
recognize and interface to the added farm’s resources.

Adding a new VO to the grid The policy system should
be capable of adding new VOs to those already
known. However, local sites should be able to choose
whether or not to recognize this addition depending
on local policies.

Providing granularity The current middleware does not
allow any granularity in its policy decisions. It can
just accept/deny VO users. The policy system should
also be capable of recognizing the internal group or-
ganization of a VO like the one defined by an attribute
authority, e.g. VOMS. It should be able to force a bias.

Joining different grids It should be possible to join to-
gether different working grids, each with their own
policy system.

Adapting to new technologiesThe policy system should
be able to manage the new capabilities that will appear
when new software is developed or integrated into the
grid (Maui over PBS, etc. . . )

PREVIOUS ART

Below you can find a brief overview of some tools cur-
rently available and the reason why they do not cover all
the features of G-PBox.

PRIMA

PRIMA (the System for Privilege Management and Au-
thorization in Grids developed at Virginia Tech) is a combi-
nation of three elements: a privilege-based security model;
a dynamic enforcement model based on the combination
of the user’s privileges with the resource’s security policy
prior to the assessment of the user’s request (dynamic be-
cause this combined policy is then valid only for the current
request); an enforcement mechanism based on the manage-
ment of user accounts on-demand via the execution envi-
ronment (e.g. through file system access control lists and
file system quota mechanisms).

PRIMA’s focus is on access control i.e. authorization
policies.

CAS: Community Authorization Service

CAS is a security service built on the Globus Toolkit
Grid Security Infrastructure(GSI).

An administrator acquires a GSI credential to represent
a community and runs a CAS server with that identity. Re-
source providers grant privileges to the administrator us-
ing local mechanisms (e.g. gridmap files and disk quotas,
filesystem permissions, etc.) after authentication and veri-
fication that the community’s policies are compatible with
the resource provider’s own policies. Administrators use
the CAS to manage the community’s trust relationships
(e.g. to enroll users and resource providers into the com-
munity) and grant fine-grained access control to resources.

A user requesting access to a resource contacts the CAS
server which, after authentication, issues a GSI restricted
proxy credential with an embedded policy. The user em-
ploys the credentials to connect to the resource. The re-
source then applies its local policy to determine the amount
of access granted to the community, and further restricts
that access based on the policy in the CAS credentials.

CAS disadvantages are that it completely removes con-
trol from site administrators and that it requires a VO to
know everything about the layout and internals of its farms.

LCAS: Local Center Authorization Service

LCAS handles authorization requests to a site and the
Local Credential Mapping Service (LCMAPS) and pro-
vides all local credentials needed for jobs allowed into the
site’s computing resources. There are three standard autho-
rization modules checking (1st) if a user is allowed to use
the resources (via the gridmap file), (2nd) if a user should
be banned (3rd) if the grid is open to job submission.

LCAS disadvantages are that it is only a static access
control list and that there is no hierarchy because it is de-
ployed on local sites only. VO policies cannot be taken into
consideration.

GACL

GACL is a library to manipulate access control lists in a
Grid environment.

GACL limitations are the same as LCAS.

ARCHITECTURE

Bird’s Eye View

The G-PBox architecture is based upon a composition of
modular objects, Policy Boxes (PBox), as shown in picture
??.

As you can see, there are PBoxes at various levels: VO
level, Domain Level, Site level, Farm Level, possible sub-
Farm levels, etc. . .

This helps to clearly limit the scope of a particular group
of policies. The VO PBox is the authoritative source for
VO-wide policies, the Grid PBox is the authoritative source



PBOX PBOX PBOX

PBOX PBOX PBOX

PBOX

VO

GRID GRID GRID

SITE RSRC. SITE

PBOX PBOX PBOX

VO Administrators

Grid Administrators

Local Administrators

P
E
E
R
S

Slaves

Figure 1: Architecture of G-PBox

for Grid-wide policies, while the Farm PBox is the author-
itative source for policies specific to a particular farm. It
is also possible, in case of large farms, to use sub-PBox
that will serve only a subset of the farm, or in case of a
large Grid, to have national or regional PBoxs that will be
authoritative for only a subset of the Grid itself.

Each and every client that wants to be policy-aware (RB,
CE, SE, etc. . . ), also known as a Policy Enforcement Point
(PEP)[?] has a configured PBox that will be contacted
whenever a policy decision is required. This PBox will at
this point make its own decision and communicate it back
to the resource.

This behaviour assure the robustness of the architecture.
Even if all the rest of the grid becomes unreachable, a farm
is still able to function. However, this also outlines a sim-
ple need: a Farm PBox must have knowledge of all the
applicable policies, whether they be local, farm or VO poli-
cies. For this reason, a PBox can send new policies to the
PBoxes at other layers, and those PBoxes may then behave
in one of two different ways:

1. If the sender PBox is known as apeer, then the re-
ceived policies are put in a waiting queue until the lo-
cal administrator reviews them and decides whether to
accept or refuse them.

2. If the sender PBox is known as amaster, then the re-
ceived policies are immediately accepted.

The decision is then communicated to the sender PBox,
and if the policies were accepted they become immediately
valid and are communicated to lower level PBoxes.

By default, PBoxes consider other PBoxespeers, and so
a very important goal is achieved. They permit uniform
behaviour among themselves (via the hierarchical commu-
nication) and leave total control on the local administrators
(via the requirement of an esplicit administrative authoriza-
tion).

Themastersettings exist because in some situations, like
a very large farm, it makes sense to have a multiplicity of
PBoxes to lighten the load, while keeping one as the central
administration point.

A PBox View

The PBOX is the basic building block of this infrastruc-
ture. As can be seen from picture??, a PBox itself is com-
posed by several modules:

PAT

PRPEP PDP
P
C
I

PBOX

ADMIN

PBOX
OR

Figure 2: Architecture of G-PBox

PDP The Policy Decision Point (PDP) is the module
that receives requests for policies and sends back re-
sponses. It uses the XACML 1.0 language to express
both policies and requests/responses. This allows us
to use custom adaptations of standard and well-proven
software tools for this part of the architecture.

PAT The Policy Administration Tool (PAT) is the module
that the administrator of a PBox normally uses. It is
used to create, review and send policies, and to take
decisions on policies received from other PBoxes.

PR The Policy Repository (PR) is the module that stores
all the policies, both locally-created or received from
remote, along with such information as status (ac-
cepted, refused), origin (from which PBox it origi-
nated), etc. . .

PCI The Policy Communication Interface (PCI) is a layer
that surrounds the PBox and is used for all its com-
munications with the outside, whether they be other
PBoxes or PEPs. The communication itself may be
unencrypted or protected by GSI, depending on the
configuration. By default, communications between
PBoxes are secure, confidential and mutually authen-
ticated, while communication between a PBox and a
PEP is unencrypted.

A Resource View

From the resource point of view, the G-PBox appears
as a black box, and there is no knowledge of the connec-
tions between PBoxes. Indeed, there is no knowledge of
the whole structure of G-PBox.

The resource needs only to implement a PEP, to which it
will delegate the policy related tasks. It will be the PEP’s
responsibility to contact its PBox to send requests, to obtain
responses and to translate them in a format its resource can
understand, while the resource itself should be capable of
interpreting these resource and acting based upon them.



The policies

Policies are defined in the XACML[?] language. How-
ever, they are included as part of a PBOXPolicy schema
that also associates to them additional informations: an
internal status (accepted, rejected, pending), an originator
and a set of couples (PBox, status) that record the status of
the policy on the peer PBoxes to which it has been sent.

Extensions of XACML XACML, as defined by Oasis,
sets its scope to policy decision on authorization issues.
However, this is not a problem in practice because, using
the concept of Obligation and some wisdom, the language
can be used to implement all kind of policies, even manage-
ment ones. As an (informal) example, the policy:Infngrid
jobs should be moved to the igrid queuecan be expressed,
minus the exact syntax, like:Infngrid can submit jobs here,
but (Obligation) move them to the igrid queue.

It is clear though that there is a need for additional ac-
tions, and indeed we defined (and are still defining, based
on actual needs) a new set of actions, of which one repre-
sentative is:uri:pbox:1.0:submit.

SCALABILITY EXAMPLE

The G-PBox architecture best shows its capability with
complex multi-layered structures.

Figure?? shows also another example of scalability of
the PBox policy system. In many cases, a site can be ex-
tremely complex. So it’s not rare to divide the site in sev-
eral sub-sites. The figure shows FARM1, composed by two
sub-farms (SubFARM1 and SubFARM2) with their own
PBoxes placed in a layer lower than the FARM1 PBox.

SubSub
FARM1 FARM2

PBOXPBOX

PBOXFARM1

Figure 3: Grid scalability

It would also be possible to “join” two different grids,
while keeping them separate, by sharing some of their re-
spective resources. This can be done by exhanging relevant
policies between the two grid-PBoxes, it becomes possible
for users belonging to one of the two grids to access a sub-
set of resources belonging to the other grid according to the
exchanged policies.

OPEN ISSUES

There are at least three problems that are still open:

• There are situations where to properly evaluate poli-
cies about resource consumption on the whole grid, it
is necessary to have a global view of the grid. E.g.
“Allow the job if the user has run less than a total of
50 jobs.” To deal with this kind of policies a working
accounting system is necessary.

• In case of heavy policy exchange on the system, since
administrators need to explicitly accept or refuse a
new policy, they also need to be particularly respon-
sive. A foreseen workaround is to configure the send-
ing PBoxes amaster.

• Since not all VO-wide policies need to be known by
the local sites, by direct submission to them it may be-
come possible to bypass them by directly submitting a
job. There are two possible solutions: 1) to distribute
VO-wide policies to local sites, so that they are aware
of them, and 2) to require job subsmission through
some kind of policy-aware submission Broker.

CONCLUSIONS AND
ACKNOWLEDGEMENTS

While the system described in this paper seems to be
capable of tackling this problem, development and test-
ing is still ongoing. A prototype version is available at
http://infnforge.cnaf.infn.it/projects/pbox

The authors wish to thank the EGEE and Grid.IT
projects for their support and funding of this work.

REFERENCES

[1] L. Pearlman, V. Welch, I. Foster, K. Kesselman and
S. Tuecke, A Community Authorization Service for Group
Collaboration, IEEE Workshop on Policies for Distributed
Systems and Networks, 2002.

[2] Guide to LCAS: http://www.dutchgrid.nl/DataGrid/wp4/lcas/edg-
lcas-1.0.3/lcas.html

[3] M. Lorch, D. Adams, D. Kafura, M. Koneni, A. Rathi,
S. Shah, The PRIMA System for Privilege Management, Au-
thorization and Enforcement in Grid Environments, 4th Int.
Workshop on Grid Computing - Grid 2003, 17 November
2003 in Phoenix, AR, USA

[4] Architectural design and evaluation criteria: WP4 Fabric
Management, DataGrid-04-D4.2-0119-2-1, 2001.

[5] The Oasis eXtensible Access Control Markup Lan-
guage TC, eXtensible Access Control Markup Lan-
guage (XACML) Version 1.1, http://www.oasis-
open.org/committees/xacml/repository/cs-xacml-
specification-1.1.pdf

[6] R. Yavatkar, D. Pendarakis, R. Guerin, A Framework for
Policy-based Admission Control, RFC 2753,

[7] GACL — A Grid ACL manipulation Library,
http://www.gridpp.ac.uk/authz/gacl/


