
MANAGED DATA STORAGE AND DATA ACCESS SERVICES FOR DATA 
GRIDS 

 
M. Ernst, P. Fuhrmann, T. Mkrtchyan, DESY, Hamburg, Germany 

J. Bakken, I. Fisk, T. Perelmutov, D. Petravick, FNAL, Batavia, IL 60510, USA 

 
Abstract 
The LHC needs to achieve reliable high performance 
access to vastly distributed storage resources across the 
network. USCMS has worked with Fermilab-CD and 
DESY-IT on a storage service that was deployed at 
several sites. It provides Grid access to heterogeneous 
mass storage systems and synchronization between them. 
It increases resiliency by insulating clients from storage 
and network failures, and facilitates file sharing and 
network traffic shaping.  
 
This new storage service is implemented as a Grid 
Storage Element (SE). It consists of dCache, jointly 
developed by DESY and Fermilab, as the core storage 
system and an implementation of the Storage Resource 
Manager (SRM), that together allow both local and Grid 
based access to the mass storage facilities. It provides 
advanced accessing and distributing collaboration data. 
 
USCMS is using this system both as Disk Resource 
Manager at the Tier-1 center and at multiple Tier-2 sites, 
and as Hierarchical Resource Manager with Enstore as 
tape back-end at the Fermilab CMS Tier-1 center. It is 
used for providing shared managed disk pools at sites for 
streaming data between the CERN Tier-0, the Fermilab 
Tier-1 and U.S. Tier-2 centers. 
 
Applications can reserve space for a time period, ensuring 
space availability when the application runs. Worker 
nodes without WAN connectivity can trigger file 
replication from a central repository to the local SE and 
then access data using POSIX-like file system semantics 
via the LAN. Moving the SE functionality off the worker 
nodes reduces load and improves reliability of the 
compute farm elements significantly.   

INTRODUCTION 
While standard Grid infrastructures provide distributed 
scientific communities with the ability to collaborate and 
share resources, additional capabilities are needed to cope 
with the specific challenges associated with scientists 
accessing and manipulating very large distributed data 
collections. These collections, ranging from terabytes 
(TB) to petabytes (PB), comprise raw (measured) and 
many levels of processed or refined data as well as 
comprehensive metadata describing, for example, under 
what conditions the data was generated, how large it is, 
etc. New protocols and services must facilitate access to 
significant tertiary (e.g. tape) and secondary (disk) storage 

repositories to allow efficient and rapid access to primary 
data stores, while taking advantage of disk caches that 
buffer very large data flows between sites.  

DATA GRIDS 
The computational and data management problems 
encountered in data intensive research include the 
following challenging aspects: 
Computation-intensive as well as data-intensive: 
Analysis tasks are compute-intensive and data-intensive 
and can involve hundreds or even thousands of computer, 
data handling, and network resources. The central 
problem is coordinated management of computation and 
data, not just data movement. 
Data and resource sharing: The data Grid has been 
introduced as a unifying concept to describe the new 
technologies required to support next-generation data-
intensive applications. Data Grids are typically 
characterized by the following elements: 
1. they layer sophisticated new services on top of 

existing local mechanisms and interfaces, facilitating 
coordinated sharing of remote resources, and 

2. they provide a new dimension of transparency in how 
computational and data processing are integrated to 
provide data products to user applications. This 
transparency is vitally important for sharing 
heterogeneous distributed resources in a manageable 
way. 

THE CMS DATA GRID 
CMS faces computing challenges of unprecedented scale 
in terms of data volume, processing requirements, and the 
complexity and distributed nature of the analysis and 
simulation tasks among thousands of physicists 
worldwide. The data storage rate is expected to grow in 
response to higher luminosity, new physics triggers and 
better storage capabilities, leading to data collections of 
20-30 PB by 2010 rising to several hundred petabytes 
over the following decade. 
The Data Grid architecture comprises two general classes 
of components: 
1. Resource services that provide Data Grid applications 

with access to individual Grid resources. Data Grids 
exploit standard protocols but benefit from 
specialized behaviours in the Fabric elements to 
which these services provide access. 

2. Higher-level collective services that support the 
management and coordinated use of multiple 



resources. Here, Data Grids introduce specialized 
requirements, in such areas as catalog services, 
replica management services, community policy 
services, coherency control mechanisms for 
replicated data and replica selection mechanisms. 

DATA SERVICES 
We now examine the basic resource-level services 
required for managing and accessing data sources. 
Within the scope of this work issues relating to data 
access and the rendering of data sources are considered as 
Grid services. Note that while data may reside physically 
on a variety of devices, we are concerned here primarily 
with the interfaces presented to users wishing to access 
data stored on the device and the performance 
characteristics advertised for those access methods. 

GridFTP as a File Access Service 
GridFTP [1] was designed as a fundamental data access 
and data transport service. Its designers sought to create a 
protocol that would provide a uniform interface to various 
storage systems, and storage brokers. Incompatible data 
access protocols used by these storage systems effectively 
partition the datasets available on the Grid. GridFTP was 
designed with the assumption that it would be mutually 
advantageous to both storage providers and users to have 
a common but extensible underlying data transfer 
protocol that provides interoperability between disparate 
storage systems. To facilitate interoperation with other 
Grid services, GridFTP uses the widely deployed Grid 
Security Infrastructure (GSI) for robust and flexible 
authentication, integrity, and confidentiality.  
GridFTP can be used both to access specific data values 
and to move data blobs from point to point. Its use as a 
data transport protocol is facilitated by third-party control 
of data transfer that allows a user or application at one site 
to initiate, monitor, and control a data transfer operation 
between two other sites. Third party transfers with 
GridFTP require the client to establish a control 
connection to both the source and the destination. 
However, in many Grid installations today, this is not 
supported, since worker nodes installed on private 
networks do not have outbound connectivity to the public 
Internet. 

Data Access and Integration 
Data access functionality in GridFTP is primarily directed 
toward file-oriented structured data with access primitives 
to return subsections of files. Although FTP’s extended 
data commands do make it possible to perform “get” 
operations with complex specifications, a higher-level, 
more direct query interface is desirable and would 
facilitate more uniform access to data sources.   

MANAGING DATA SOURCES 
Moving from data access to resource management 
functions used to manage the storage systems holding the 
data collections being accessed, we are interested, in 

particular, in managing storage space, which requires not 
only storage quotas, but also storage reservations, which 
ensures that agreed-upon amounts of storage are available 
for a specified duration of time. In addition we may also 
want to manage bandwidth and data throughput. Any data 
source must incorporate monitoring and auditing services 
to allow local and remote entities to keep track of the 
resource’s state (e.g. available free space), monitor the 
progress of individual operations, and track resource 
consumption of resources by users and services. 

dCache 
dCache [4] is a software-only Grid storage appliance 
jointly developed by DESY and Fermilab. To be useful in 
a Grid environment, storage appliances must provide two 
features. First, they must be able to make guarantees 
about storage availability so that wide-area schedulers can 
move large datasets without fear of resource revocation. 
Second, they must be self-cleaning to ensure that failed 
operations or misbehaving clients do not permanently fill 
the storage appliance and prevent other users from 
accessing it. 
dCache has proven to be capable of managing the storage 
and exchange of hundreds of terabytes of data, 
transparently distributed among dozens of disk storage 
nodes. One of the key design features is that, although the 
location and multiplicity of data is autonomously 
determined by the system, based on configuration, CPU 
load and disk space, the name space is uniquely 
represented in a single file system tree. The system has 
shown to significantly improve the efficiency of 
connected tape storage systems, through caching, i.e. 
gather & flush, and scheduled staging techniques. 
Furthermore, it optimizes the throughput to and from data 
clients as well as smoothening the load of the connected 
disk storage nodes by dynamically replicating files upon 
the detection of hot spots. The system is tolerant against 
failures of its data servers, allowing administrators to go 
for commodity disk storage components. Access to data is 
provided by various FTP dialects, including GridFTP, as 
well as a proprietary protocol, offering POSIX-like file 
system operations like open/read, write, seek, stat, close.   

Storage Resource Managers 
While the basic dCache components incorporate 
management functions into the storage system 
implementation, storage resource manager (SRM) [2] 
services manage associated storage via a range of 
techniques including cache management, pre-allocation 
and advance reservation of space for data transfers, 
staging of data from slow to fast storage in a hierarchical 
storage system, and scheduling of storage system 
requests. SRMs can also manage the file content of shared 
temporary space and use replacement policies to 
maximize file sharing. Since the functionality described 
here is essential for managed data storage and data access 
services a v1.1 compliant SRM component has been 
tightly integrated with the dCache. 



A SRM typically manages two types of shared resources, 
files and space. Its basic function is to allocate space to a 
client upon demand, check that the client has permission 
to use that space, assign the space to the client for a 
period of time according to its policy, and release the 
space either when the client requests its release or when 
the lifetime assigned to the space expires. When a file is 
moved into the space managed by SRM, the file can be 
pinned for a period of time to ensure that the space 
occupied by the file is not reclaimed before the client that 
requested the file can complete its operations on that file. 
By allowing subsequent requests for the same file from 
different clients to extend the duration of the pinning, the 
SRM promotes the sharing of files among clients of the 
storage system. In such cases, the SRM keeps track of the 
pin lifetime expiration and space consumed by the file 
with each user for each file.  
SRMs support file replication between Storage Elements 
(SE) which are carried out as third-party transfers. Unlike 
with GridFTP, where the client has to be able to connect 
to both the source and the destination, SRMs offer 
credential delegation between the client and the local SE. 
There is no need for a client running on a Worker Node 
for having full Internet connectivity.    
A SRM that manages a disk cache is referred to as a disk 
resource manager (DRM), to distinguish it from an SRM 
that manages access to a hierarchical mass storage 
system, which is called a hierarchical resource manager 
(HRM). SRMs are designed to communicate with each 
other using the same interfaces the client uses. DRMs 
have been designed to manage files on behalf of the client 
even when they do not support explicit space reservation. 
In the following scenario a client requests 500 files but 
can start processing as soon as one file is available. The 
client submits a single request for the 500 files to a local 
DRM that manages a shared disk pool manager. The 
DRM queues the request, allocates a default space to the 
client, and checks whether any of the files are in its disk 
cache. As soon as the first file is available the client starts 
processing and releases each file when it is done, so that 
the DRM can put another file into the released space. If a 
requested file is not in the disk cache, the DRM uses the 
information to get the file from its source location, using 
data transport protocols such as GridFTP. Once the 
application is done with the file, space is released either 
by the client explicitly or automatically with the 
expiration of the lifetime of the pin. Thus, DRMs perform 
automatic garbage collection. In order to maximize the 
sharing benefits files are not removed from the disk cache 
unless space is needed. 
HRMs are basically DRMs associated with a mass storage 
system (MSS), such as Enstore [3]. HRMs are designed to 
queue multifile requests for putting and getting files into 
and out of MSSs. They can make such requests 
concurrently but usually limit the number of concurrent 
requests to avoid overloading the MSS and other 
resources like data servers and the networks. Because 
they maintain a queue, they can reorder file requests so 
that files stored on the same tape can be read at the same 

time. This capability avoids unnecessary dismounts and 
mounts of tape cartridges. By using information collected 
by their monitoring capabilities HRMs can recover from 
temporary MSS failures. 

CMS DATA CHALLENGE DC04 
In the following paragraph the CMS Data Challenge 
DC04 [6] is taken as a representative example of an 
application that requires storage management as it is 
described above.   
DC04 is one of the milestones of the experiment scoped 
to ensure the experiment is ready with its global data 
distribution and analysis systems for the start of data 
taking at the Large Hadron Collider at CERN in 2007. 
The performance metrics for DC04 were to provide a 
baseline to give the experiment input to the Physics and 
Computing Technical Design Reports in the next two 
years. The goal of DC04 was to perform at 25% of the 
throughput needed at the start of data taking in 2007 (5% 
of the full LHC rate) including distribution of data from 
CERN to the Tier-1 regional centers for 2 months. 
Additional goals were to provide the software 
infrastructure to manage and distribute the data, to 
provide an end-to-end demonstration of event 
reconstruction and analysis, including the full chain of 
data processing, to show the state of the experiment’s 
readiness of the software infrastructure. 
A major focus of DC04 was to provide sustained and 
effective transfer of data between the CERN Tier-0 and 
distributed Tier-1 facilities across Europe and the US.  
The setup used by USCMS comprises an SRM/dCache 
based DRM at CERN serving as an Export Buffer for data 
to be sent to Fermilab and an SRM/dCache/Enstore based 
HRM at Fermilab. Data received by the HRM is 
transparently migrated off the caching disk to permanent 
storage (tape). 
 

 
Figure 1: SRM/dCache data distribution system used in DC04 

A typical data sample was transferred to Fermilab: 5.2 TB 
was transferred in 440k files. The average event size for 
the data challenge was about 100kByte, a factor 5 less 
than the final event size for the experiment. As a result the 



size of the files for distribution was too small to allow 
efficient management and data transfer. Despite the flood 
of small files the average transfer rate achieved for long 
periods was over 10 MBps, peaking at over 20 MBps. 

Figure 2: Number of daily transferred files to Fermilab  

This proved a challenging application of grid technologies 
for data management, with DESY/Fermilab SRM/dCache 
(among others) proving ultimately capable after 
integration and debugging. 

GRID SCHEDULING AND STORAGE 
RESOURCE MANAGEMENT 

The Grid is supposed to be capable of including various 
kinds of devices or resources such as computers, 
networks, data, software, storage etc. For local usage, 
most systems have job management systems, typically 
queuing systems, which are responsible for executing the 
job. However, in the context of the Grid coordination of 
multiple remote system entities is required. Therefore a 
Grid scheduler needs essentially to interact with lower 
level scheduling systems. Today, most of these local 
resource management systems just react to requests in a 
best effort fashion according to some priority list 
scheduling without additional information or guarantees 
when the requested resource will actually be available. 
This needs to be augmented by features like reservations 
for storage, network and CPU resources, deadlines or 
estimates about availability of data or the execution 

schedule. Grid scheduling should include capabilities that 
allow planning of the job execution. 
Uniform access to a variety of resource types will 
ultimately require that Grid scheduling is capable of 
coordinating the allocation of these resources for Grid 
jobs. 

 
Figure 3: Basic Grid scheduling architecture 

A working group under the umbrella of the GGF, called 
Grid Scheduling Architecture Research Group (GSA-RG), 
has been approved and is actively pursuing the goals 
mentioned above. The dCache collaboration is planning 
to take part in this work in the context of the D-Grid 
initiative, the latter being an e-science program in 
Germany. 

REFERENCES  
[1]   The Globus Project, 

http://www.globus.org/datagrid/gridftp.html 
[2]   The SRM Project, http://sdm.lbl.gov/srm-wg/ 
[3] The Enstore Mass Storage System at Fermilab, 

http://computing.fnal.gov/docs/products/enstore/ 
[4] The dCache Project, http://www.dcache.org 
[5]   The GGF Research Group on Grid Scheduling 

Architectures, http://www-ds.e-technik.uni-
dortmund.de/~yahya/ggf-sched/WG/arch-rg.html 

[6]   The CMS DC04 Data Challenge 
http://www.uscms.org/s&c/dc04/ 

 
 


