
PREDICTING THE RESOURCE REQUIREMENTS OF A JOB SUBMISSION

Arshad Ali4, Ashiq Anjum4, Julian Bunn1, Richard Cavanaugh5, Frank van Lingen1, Richard
McClatchey3, Muhammad Atif Mehmood4, Harvey Newman1, Conrad Steenberg1, Michael

Thomas1, Ian Willers2

1California Institute of Technology
Pasadena, CA 91125, USA

Email: {fvlingen,newman,conrad,thomas}@hep.caltech.edu, Julian.Bunn@caltech.edu
2CERN, Geneva, Switzerland
Email: Ian.Willers@cern.ch

3University of the West of England
Bristol, UK

Email: Richard.mcclatchey@uwe.ac.uk

4National University of Sciences and Technology
Rawalpindi, Pakistan

Email: {arshad.ali, ashiq.anjum,atif.mehmood}@niit.edu.pk
5University of Florida, USA

Email: cavanaug@phys.ufl.edu

Abstract

Grid computing aims to provide an infrastructure for
distributed problem solving in dynamic virtual
organizations. It is gaining interest among many scientific
disciplines as well as the industrial community. However,
current grid solutions still require highly trained
programmers with expertise in networking, high-
performance computing, and operating systems. One of
the big issues in full-scale usage of a grid is matching the
resource requirements of job submission to the resources
available on the grid. Resource brokers and job
schedulers must make estimates of the resource usage of
job submissions in order to ensure efficient use of grid
resources. We prop ose a prediction engine that will
operate as part of a grid scheduler. This prediction engine
will provide estimates of the resources required by job
submission based upon historical information. This paper
presents the need for such a prediction engine and
discusses two approaches for history based estimation.

INTRODUCTION
Grid schedulers are responsible for allocating

distributed resources for job execution. To meet the user
requirements the scheduler must select the resources that
are capable of completing the job within constraints
provided by the user. For the purposes of this paper we
will consider the constraint of minimal job execution
time. This imposes the requirement that the grid
scheduler has the ability to estimate the execution time of
a job on all available execution sites and then to select the
one that has least estimated runtime. Our proposed
module prediction engine will be a part of such a
scheduler. In this pap er we will discuss the need for
estimation and offer a history based approach for

estimating the run time of job submissions. Based on this
approach two models for history maintenance will be
discussed and a proposal for a runtime estimator will be
presented.

NEED FOR PREDICTION

Job submissions on the grid are often represented by a
set of interdependent tasks arranged in a Directed Acyclic
Graph (DAG). The nodes of the DAG are the individual
tasks and the branches are the dependencies between
these tasks. The initial step for job submission involves
the generation of this DAG. The individual tasks, along
with their logical input and output filenames, and the
dependencies between these tasks are identified. The
result is an abstract workflow (AW) which identifies the
resource needs of the job. This process of abstract
workflow generation can be performed by a workflow
planner such as the Chimera virtual data system [1]. After
the creation of the DAG the resources identified in the
AW must be mapped onto the available grid resources
through a process of resource discovery and selection.
This task is performed by a concrete job planner such as
Pegasus [2]. The result is a concrete workflow (CW)
which is submitted to a job executor such as DAGMan
[3]. The transition from an abstract to a concrete
workflow requires a prediction engine module that helps
in selecting the optimum site or sites on which the tasks in
the AW should be run. The prediction engine will assist
the concrete job planner by selecting the optimum
execution site. For example, the prediction engine might
obtain load information at various available sites (through
historical data or monitoring services like MonALISA[4])
to estimate the run time and resource consumption of the
job. Based on these two pieces of information the

prediction engine will select the optimum site for
executing the job, i.e. the one that has the least load after
job scheduling and that will result in the shortest runtime.

The planner can utilize early or late binding of
resources to the job plan. With early binding the planner
makes an exact plan of computation based on the current
information about the system. It decides where the tasks
need to execute and the exact location from where the
input data needs to be accessed. The prediction engine
would assist the planner in making these decisions.
Similarly the prediction engine will assist in selecting the
replica location site with least transfer time. The planner
would then map the abstract workflow onto the resources
at the selected site. A concrete workflow would be
generated and passed to the job executor (Condor-
G/DAGMan).

With late binding the planner delays the process of
mapping the task’s resources to concrete grid resources
until the task is ready to execute. At the time the executor
is ready to run the task or perform data movements, the
executor can consult the information services and make
local planning decisions. Here also the prediction engine
would assist the planner in selecting the site executor
where the abstract work flow will be submitted.

The prediction will be part of the planning process by
facilitating efficient planning in performing the following
tasks:

• Predicting runtime time and resource (CPU,
bandwidth, and memory) requirements of a job.

• Predicting data transfer time from the available
file replica locations.

PREDICTING RUNTIME OF A JOB

Shonali, Seng and Arkady at Monsah University have
proposed a history based approach for run time prediction
[5]. This history based approach operates on the principle
that applications with similar characteristics have similar
runtimes. This requires maintaining a history of
applications that have executed along with their
respective runtimes. To estimate a future application's
runtime, similar applications in the history are identified
and a statistical estimate (such as the mean and linear
regression) of their runtimes is computed.

The fundamental problem with history based runtime
estimation is the definition of similarity; diverse views
exist on the criteria that make two applications similar.
For instance, we can say that two applications are similar
because the same user on the same machine submitted
them or because they have the same application name and
are required to operate on the same-sized data. Thus, we
must develop techniques that can effectively identify
similar applications. Such techniques must be able to
accurately choose applications' attributes that best
determine similarity. The obvious test for such techniques
is to measure the prediction accuracy of the estimates we
obtain by computing a statistical estimate of the runtimes
of the applications identified as similar. Thus, the closer

the predicted runtime is to the actual runtime, the better is
the technique's prediction accuracy.

 The history based algorithm for run time estimation is
based on Rough Sets [6] and operates as follows:

1. Maintain a history of the jobs that have executed
along with their respective run times. Partition
this history into decision and condition attributes
[6]. Condition attributes will be various job
parameters such as job owner, the queue to
which the job was allocated etc and decision
attribute will be the job runtime.

2. Compute equivalence classes [6] with respect to
all condition attributes ; these will be called
condition relative equivalence classes.

3. Compute equivalence classes with respect to all
decision attribute; these will be called decision
relative equivalence classes.

4. Compute the positive boundary region [6] with
respect to all condition attributes ; this will be the
union of all condition relative equivalence
classes which are the subset of any decision
relative equivalence class.

5. Compute the initial dependency of all condition
attributes by using the positive boundary region
computed in the previous step.

6. Compute the significance of each condition
attribute.

6-1. Compute the condition relative
equivalence classes by removing the
attribute (whose significance is to be
computed) from the list of condition
attributes.
6-2. Compute the positive boundary region
and dependency with respect to the resultant
condition relative equivalence classes.
6-3. Subtract the dependency computed in
the last step from the initial dependency of
condition attributes computed in step 5; this
will be the significance of current condition
attribute.

7. Compute the core [6] of the information system,
this will be minimal set of condition attributes
which are necessary for distinguishing objects in
information system.

8. Compute reduct [6]. A reduct is a minimal set of
attributes from Q (the whole attributes set) that
preserves the partitioning of information system
and therefore the original classes , in other words
reduct consists of only the non redundant
condition attributes.

8-1. Subtract core from the set of all
condition attributes.
8-2. Sort the resultant set of condition
attributes in descending order of
significance.
8-3. Add the condition attribute with highest
significance from the sorted list computed in
the last step in core. Repeat this process for
the entire sorted list until the dependency of

core becomes equivalent to the initial
dependency of condition attributes.
8-4. Remove redundant condition attributes
from reduct.

8-4-1. Iteratively remove the non core
attributes from reduct in ascending
order of significance. If the dependency
of reduct remains unchanged the
attribute is considered redundant and is
removed from reduct.

9. The reduct obtained from the last step is called
the similarity template (ST) on the basis of
which we will compare applications in history.
The similarity template will consist of condition
attributes that have a strong dependency with the
decision attribute (runtime) i.e. the condition
attributes that directly effect runtime.

10. Combine the current task T (i.e. for which the
run time is to be estimated) with the history H to
obtain new history H T.

11. Apply the similarity template ST from step 2 on
the history HT. This will partition the history in
to various equivalence classes.

12. Identify the equivalence class EQT to which the
job T belongs.

13. Compute the statistical estimate (mean) of the
run time of objects belonging to EQ T, this will be
the estimated runtime for input job T.

HISTORY MAINTENANCE

There are two ways to store the history information
from job execution. It can be stored in a central job
history database, or it can be decentralized with each
execution site maintaining its own job execution history.

Centralized History for all execution sites

In the centralized history approach the prediction
engine itself will maintain a central history of the jobs
that are being scheduled and completed successfully.
There will be a single history for the entire virtual
organization (VO) partition controlled by a grid
scheduler. When a job arrives for scheduling, the
scheduler will pass it to the prediction engine module.
The prediction engine will then analyze the centralized
job history data to identify similar jobs. The estimated
runtime of the requested job will be calculated based on
the runtime of similar jobs.

Decentralized History at each Execution Site

In the decentralized history approach the gatekeeper
node of every execution site will maintain the history of
jobs that were scheduled and successfully executed on
that site. The gatekeeper will contain a web service
module that provides this information to remote grid
schedulers. This predictive web service should provide a
method that takes job condition attributes as input and
returns the estimated run time as output. When a job
arrives for scheduling the scheduler will pass it to the

prediction engine, which will then contact the gatekeeper
node at each execution site. The condition attributes
comprising the similarity template will then be passed to
the predictive web service which will estimate the run
time of the job based on the history maintained at the site.
This estimated time will then be returned back to the
prediction engine. After receiving the estimated times
from all available sites the prediction engine can then
easily make a decision about the optimum site in terms of
the least estimated run time.

IMPLEMENTATION AND T ESTING

We are currently working on a prediction engine
module. We have decided to use the decentralized history
based approach because of two reasons:

1. For any job, the run time will be self estimated
by each execution site taking into account the
computational resources available at that site.

2. The percentage accuracy of the estimated time
will be greater, since each execution site has its
own history of previous runs rather than a single
history for all execution sites.

The predictive service will be implemented as a web
service hosted on a Clarens [7] web service host. The
Clarens server runs on the gatekeeper node of the
execution sites and also hosts the execution service.
When a job arrives at the scheduler the following
sequence of events will take place:

1. The planner will create an abstract workflow.
2. This workflow will be given to the prediction

engine.
3. The prediction engine will contact available

execution sites, and will pass the job attributes
that constitute the similarity template to the
Clarens server at every execution site.

4. The Clarens server will then estimate the run
time of job.

5. The estimated run time of step 4 will then be
returned back to the scheduler.

6. After getting estimates from every execution
site, the prediction engine will then contact the
MonALISA repository to get the status of the
load at execution sites.

7. Based on the estimated run time and load status
from step 6 and 7 the prediction engine will
select a site that has the least predicted runtime
i.e. product of site load and combined estimated
run time queue wait time.

8. The prediction engine will tell the planner about
the selected site. The planner will then map the
abstract work flow on to the selected site.

Two modules are required for runtime prediction:

1. The prediction Engine, which will be part of the
grid scheduler.

2. The Runtime Estimator, which will be a web
service method inside of Clarens.

We have implemented the Runtime Estimator as part of
the Clarens shell service. In order to test the Runtim e
Estimator we have used accounting data from the Paragon
Supercomputer at the San Diego Supercomputing Center.
This data was collected by Allen Downey in 1995. The
accounting data had the following information recorded
for each job: account name; login name; partition to
which the job was allocated; the number of nodes for the
job; the job type (batch or interactive); the job status
(successful or not); the number of requested CPU hours;
the name of the queue to which the job was allocated; the
rate of charge for CPU hours and idle hours; and the
task's duration in terms of when it was submitted, started,
and completed.

The history consisted of 100 jobs and the runtime for
20 jobs was estimated; figure 1 shows the log of
estimated and actual runtimes in each of the 20 cases:

Figure 1: Actual & Estimated Runtimes for 20 test cases

For each of the twenty cases, we computed the error in
estimation as:

Percentage Error =

The percentage errors for the twenty cases were then
used to compute the mean error of the runtime estimator.
The mean error for the run time estimator comes out to be
13.53%, this was computed by dividing the sum of
percentage errors in each of the twenty test cases by 20.

CONCLUSION
Our results show that the history based approach for

runtime estimation works with an accuracy of almost
80% , so the runtime estimator can assist the prediction
engine in the selection of an optimum site. In future we
plan to implement the Prediction Engine as part of the
runtime estimation and to integrate it with the runtime
estimator.

REFERENCES
[1] Chimera: A Virtual Data System for Representing,
Querying, and Automating Data Derivation Ian Foster1,
Jens Vöckler, Michael Wilde, Yong Zhao.

[2] Pegasus: Mapping Scientific Workflows onto the
Grid, Ewa Deelm an, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Sonal Patil, Mei-Hui Su,
Karan Vahi, Miron Livny, Across Grids Conference
2004, Nicosia, Cyprus

[3] Douglas Thain, Todd Tannenbaum, and Miron Livny,
"Condor and the Grid", in Fran Berman, Anthony J.G.
Hey, Geoffrey Fox, editors, Grid Computing: Making the
Global Infrastructure a Reality, John Wiley, 2003. ISBN:
0-470-85319-0

[4] H.B. Newman, I.C. Legrand, P.Galvez, R. Voicu, C.
Cirstoiu: “MonALISA: A Distributed Monitoring
Service”: CHEP 2003, La Jolla, California, March 2003

[5] Shonali Krishnaswamy, Seng Wai Loke, Arkady
Zaslavsky “Estimating Computation Times of Data-
Intensive Applications” IEEE DISTRIBUTED
SYSTEMS ONLINE Vol. 5, No. 4; April 2004

[6] Rough Sets: A Tutorial Jan Komorowski, Lech
Polkowski, Andrzej Skowron
http://www.folli.uva.nl/CD/1999/library/pdf/skowron.pdf

[7] The Clarens Web Services Architecture Authors:
(Conrad D. Steenberg and Eric Aslakson, Julian J. Bunn,
Harvey B. Newman, Michael Thomas, Frank van Lingen)
http://clarens.sourceforge.net/index.php/docs

0.0

0.5

1.0
1.5

2.0

2.5
3.0

3.5

4.0

4.5
5.0

1 3 5 7 9 11 13 15 17 19

Jobs

Lo
g

of
 R

un
ti

m
es

Actual Runtime
Estimated Runtime

100))((×÷− imeActualRuntuntimeEstimatedRimeActualRunt

