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Abstract 

Grid computing aims to provide an infrastructure for 
distributed problem solving in dynamic virtual 
organizations. It is gaining interest among many scientific 
disciplines as well as the industrial community. However, 
current grid solutions still require highly trained 
programmers with expertise in networking, high-
performance computing, and operating systems. One of 
the big issues in full-scale usage of a grid is matching the 
resource requirements of job submission to the resources 
available on the grid.  Resource brokers and job 
schedulers must make estimates of the resource usage of 
job submissions in order to ensure efficient use of grid 
resources. We prop ose a prediction engine that will 
operate as part of a grid scheduler. This prediction engine 
will provide estimates of the resources required by job 
submission based upon historical information. This paper 
presents the need for such a prediction engine and 
discusses two approaches for history based estimation. 
 

INTRODUCTION 
Grid schedulers are responsible for allocating 

distributed resources for job execution. To meet the user 
requirements the scheduler must select the resources that 
are capable of completing the job within constraints 
provided by the user. For the purposes of this paper we 
will consider the constraint of minimal job execution 
time.  This imposes the requirement that the grid 
scheduler has the ability to estimate the execution time of 
a job on all available execution sites and then to select the 
one that has least estimated runtime. Our proposed 
module prediction engine will be a part of such a 
scheduler. In this pap er we will discuss the need for 
estimation and offer a history based approach for 

estimating the run time of job submissions. Based on this 
approach two models for history maintenance will be 
discussed and a proposal for a runtime estimator will be 
presented. 

 
NEED FOR PREDICTION 

Job submissions on the grid are often represented by a 
set of interdependent tasks arranged in a Directed Acyclic 
Graph (DAG).  The nodes of the DAG are the individual 
tasks and the branches are the dependencies between 
these tasks. The initial step for job submission involves 
the generation of this DAG.  The individual tasks, along 
with their logical input and output filenames, and the 
dependencies between these tasks are identified.  The 
result is an abstract workflow (AW) which identifies the 
resource needs of the job. This process of abstract 
workflow generation can be performed by a workflow 
planner such as the Chimera virtual data system [1]. After 
the creation of the DAG the resources identified in the 
AW must be mapped onto the available grid resources 
through a process of resource discovery and selection. 
This task is performed by a concrete job planner such as 
Pegasus [2].   The result is a concrete workflow (CW) 
which is submitted to a job executor such as DAGMan 
[3]. The transition from an abstract to a concrete 
workflow requires a prediction engine module that helps 
in selecting the optimum site or sites  on which the tasks in 
the AW should be run. The prediction engine will assist 
the concrete job planner by selecting the optimum 
execution site.  For example, the prediction engine might 
obtain load information at various available sites (through 
historical data or monitoring services like MonALISA[4]) 
to estimate the run time and resource consumption of the 
job. Based on these two pieces of information the 



prediction engine will select the optimum site for 
executing the job, i.e. the one that has  the least load after 
job scheduling and that will result in the shortest runtime. 

The planner can utilize early or late binding of 
resources to the job plan.  With early binding the planner 
makes an exact plan of computation based on the current 
information about the system. It decides where the tasks 
need to execute and the exact location from where the 
input data needs to be accessed. The prediction engine 
would assist the planner in making these decisions. 
Similarly the prediction engine will assist in selecting the 
replica location site with least transfer time. The planner 
would then map the abstract workflow onto the resources 
at the selected site. A concrete workflow would be 
generated and passed to the job executor (Condor-
G/DAGMan). 

With late binding the planner delays the process of 
mapping the task’s resources to concrete grid resources 
until the task is ready to execute.  At the time the executor 
is ready to run the task or perform  data movements, the 
executor can consult the information services and make 
local planning decisions.  Here also the prediction engine 
would assist the planner in selecting the site executor 
where the abstract work flow will be submitted. 

The prediction will be part of the planning process by 
facilitating efficient planning in performing the following 
tasks: 

• Predicting runtime time and resource (CPU, 
bandwidth, and memory) requirements of a job. 

• Predicting data transfer time from the available 
file replica locations. 

 
PREDICTING RUNTIME OF A JOB 

Shonali, Seng and Arkady at Monsah University have 
proposed a history based approach for run time prediction 
[5]. This history based approach operates on the principle 
that applications with similar characteristics have similar 
runtimes. This requires maintaining a history of 
applications that have executed along with their 
respective runtimes. To estimate a future  application's 
runtime, similar applications in the history are identified 
and a statistical estimate (such as the mean and linear 
regression) of their runtimes is computed. 

The fundamental problem with history based runtime 
estimation is the definition of similarity; diverse views 
exist on the criteria that make two applications similar. 
For instance, we can say that two applications are similar 
because the same user on the same machine submitted 
them or because they have the same application name and 
are required to operate on the same-sized data. Thus, we 
must develop techniques that can effectively identify 
similar applications. Such techniques must be able to 
accurately choose applications' attributes that best 
determine similarity. The obvious test for such techniques 
is to measure the prediction accuracy of the estimates we 
obtain by computing a statistical estimate of the runtimes 
of the applications identified as similar. Thus, the closer 

the predicted runtime is to the actual runtime, the better is 
the technique's prediction accuracy.  

 The history based algorithm for run time estimation is 
based on Rough Sets [6] and operates as follows: 

1. Maintain a history of the jobs that have executed 
along with their respective run times. Partition 
this history into decision and condition attributes 
[6]. Condition attributes will be various job 
parameters such as job owner, the queue to 
which the job was allocated etc and decision 
attribute will be the job runtime.  

2. Compute equivalence classes [6] with respect to 
all condition attributes ; these will be called 
condition relative equivalence classes. 

3. Compute equivalence classes with respect to all 
decision attribute; these will be called decision 
relative equivalence classes. 

4. Compute the positive boundary region [6] with 
respect to all condition attributes ; this will be the 
union of all condition relative equivalence 
classes which are the subset of any decision 
relative equivalence class.  

5. Compute the initial dependency of all condition 
attributes by using the positive boundary region 
computed in the previous step. 

6. Compute the significance of each condition 
attribute. 

6-1. Compute the condition relative 
equivalence classes by removing the 
attribute (whose significance is to be 
computed) from the list of condition 
attributes. 
6-2. Compute the positive boundary region 
and dependency with respect to the resultant 
condition relative equivalence classes. 
6-3. Subtract the dependency computed in 
the last step from the initial dependency of 
condition attributes computed in step 5; this 
will be the significance of current condition 
attribute. 

7. Compute the core  [6] of the information system, 
this will be minimal set of condition attributes 
which are necessary for distinguishing objects in 
information system. 

8. Compute reduct [6]. A reduct is a minimal set of 
attributes from Q (the whole attributes set) that 
preserves the partitioning of information system 
and therefore the original classes , in other words 
reduct consists of only the non redundant 
condition attributes. 

8-1. Subtract core from the set of all 
condition attributes. 
8-2. Sort the resultant set of condition 
attributes in descending order of 
significance. 
8-3. Add the condition attribute with highest 
significance from the sorted list computed in 
the last step in core. Repeat this process for 
the entire sorted list until the dependency of 



core becomes equivalent to the initial 
dependency of condition attributes. 
8-4. Remove redundant condition attributes 
from reduct. 

8-4-1. Iteratively remove the non core 
attributes from reduct in ascending 
order of significance. If the dependency 
of reduct remains unchanged the 
attribute is considered redundant and is 
removed from reduct.  

9. The reduct obtained from the last step is called 
the similarity template (ST) on the basis of 
which we will compare applications in history. 
The similarity template will consist of condition 
attributes that have a strong dependency with the 
decision attribute (runtime) i.e. the condition 
attributes that directly effect runtime. 

10. Combine the current task T (i.e. for which the 
run time is to be estimated) with the history H to 
obtain new history H T. 

11. Apply the similarity template ST from step 2 on 
the history HT. This will partition the history in 
to various equivalence classes. 

12. Identify the equivalence class EQT to which the 
job T belongs. 

13. Compute the statistical estimate (mean) of the 
run time of objects belonging to EQ T, this will be 
the estimated runtime for input job T. 

 
HISTORY MAINTENANCE 

There are two ways to store the history information 
from job execution.  It can be stored in a central job 
history database, or it can be decentralized with each 
execution site maintaining its own job execution history. 
 
Centralized History for all execution sites 

In the centralized history approach the prediction 
engine itself will maintain a central history of the jobs 
that are being scheduled and completed successfully. 
There will be a single history for the entire virtual 
organization (VO) partition controlled by a grid 
scheduler. When a job arrives for scheduling, the 
scheduler will pass it to the prediction engine module. 
The prediction engine will then analyze the centralized 
job history data to identify similar jobs.  The estimated 
runtime of the requested job will be calculated based on 
the runtime of similar jobs. 
 
Decentralized History at each Execution Site 

In the decentralized history approach the gatekeeper 
node of every execution site will maintain the history of 
jobs that were scheduled and successfully executed on 
that site. The gatekeeper will contain a web service 
module that provides this information to remote grid 
schedulers. This predictive web service should provide a 
method that takes job condition attributes as input and 
returns the estimated run time as output. When a job 
arrives for scheduling the scheduler will pass it to the 

prediction engine, which will then contact the gatekeeper 
node at each execution site. The condition attributes 
comprising the similarity template will then be passed to 
the predictive web service which will estimate the run 
time of the job based on the history maintained at the site. 
This estimated time will then be returned back to the 
prediction engine. After receiving the estimated times 
from all available sites the prediction engine can then 
easily make a decision about the optimum site in terms of 
the least estimated run time. 

 
IMPLEMENTATION AND T ESTING 

We are currently working on a prediction engine 
module. We have decided to use the decentralized history 
based approach because of two reasons:  

1. For any job, the run time will be self estimated 
by each execution site taking into account the 
computational resources available at that site. 

2. The percentage accuracy of the estimated time 
will be greater, since each execution site has its 
own history of previous runs rather than a single 
history for all execution sites. 

The predictive service will be implemented as a web 
service hosted on a Clarens [7] web service host.  The 
Clarens server runs on the gatekeeper node of the 
execution sites and also hosts the execution service.  
When a job arrives at the scheduler the following 
sequence of events will take place: 

1. The planner will create an abstract workflow. 
2. This workflow will be given to the prediction 

engine. 
3. The prediction engine will contact available 

execution sites, and will pass the job attributes 
that constitute the similarity template to the 
Clarens server at every execution site. 

4. The Clarens server will then estimate the run 
time of job. 

5. The estimated run time of step 4 will then be 
returned back to the scheduler. 

6. After getting estimates from every execution 
site, the prediction engine will then contact the 
MonALISA  repository to get the status of the 
load at execution sites. 

7. Based on the estimated run time and load status 
from step 6 and 7 the prediction engine will 
select a site that has the least predicted runtime 
i.e. product of site load and combined estimated 
run time queue wait time. 

8. The prediction engine will tell the planner about 
the selected site. The planner will then map the 
abstract work flow on to the selected site. 

 
Two modules are required for runtime prediction: 

1. The prediction Engine, which will be part of the 
grid scheduler. 

2. The Runtime Estimator, which will be a web 
service method inside of Clarens. 

 



We have implemented the Runtime Estimator as part of 
the Clarens shell service. In order to test the Runtim e 
Estimator we have used accounting data from the Paragon 
Supercomputer at the San Diego Supercomputing Center. 
This data was collected by Allen Downey in 1995. The 
accounting data had the following information recorded 
for each job: account name; login name; partition to 
which the job was allocated; the number of nodes for the 
job; the job type (batch or interactive); the job status 
(successful or not); the number of requested CPU hours; 
the name of the queue to which the job was allocated; the 
rate of charge for CPU hours and idle hours; and the 
task's duration in terms of when it was submitted, started, 
and completed. 

The history consisted of 100 jobs and the runtime for 
20 jobs was estimated; figure 1 shows the log of 
estimated and actual runtimes in each of the 20 cases: 

Figure 1: Actual & Estimated Runtimes for 20 test cases  

For each of the twenty cases, we computed the error in 
estimation as: 

Percentage Error  =    

The percentage errors for the twenty cases were then 
used to compute the mean error of the runtime estimator. 
The mean error for the run time estimator comes out to be 
13.53%, this was computed by dividing the sum of 
percentage errors in each of the twenty test cases by 20.  

 

CONCLUSION 
Our results show that the history based approach for 

runtime estimation works with an accuracy of almost 
80% , so the runtime estimator can assist the prediction 
engine in the selection of an optimum site. In future we 
plan to implement the Prediction Engine as part of the 
runtime estimation and to integrate it with the runtime 
estimator. 
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