
DØ data reprocessing within EDG/LCG

Torsten Harenberg∗, Peter Mättig† , Bergische Universität Wuppertal, 42097 Wuppertal, Germany
Kors Bos‡ , David Groep§ , Willem van Leeuwen¶, Jeff Templon‖,
NIKHEF, P.O.Box 41882, 1009 DB Amsterdam, The Netherlands
Rob Byrom∗∗, Steve Fisher††, Rutherford Appleton Laboratory, U.K.

Abstract

The DØ experiment at the Tevatron is collecting some
100 Terabytes of data each year and has a very high need
of computing resources for the various parts of the physics
program. DØ meets these demands by establishing a world
wide distributed computing infrastructure - increasingly
based on GRID technologies.

Distributed resources are used for DØ MC production
and data reprocessing of 1 billion events, requiring 250 TB
to be transported over WANs. While in 2003 most of this
computing at remote sites was distributed manually, some
data reprocessing was performed with the EDG. In 2004
GRID tools are increasingly and successfully employed.

We will report on performing data reprocessing using
EDG’s Application Testbed. We will explain how the DØ
computing environment was linked to this GRID platform,
and will discuss some lessons learned (for both Grid com-
puting and preparing applications for distributed operation)
from the DØ reprocessing on EDG, subjecting a generic
Grid infrastructure to real data for the first time.

An outlook on plans for applying LCG within DØ is
given.

INTRODUCTION

In September 2003, the DØ experiment at Tevatron has
launched a reprocessing effort of part of its Run II data,
which were taken since March 2001. The effort was partly
done at remote sites (around 20% was calculated outside of
Fermilab’s own resources) [2]. In total, 519,212,822 events
were reprocessed during this efford. Out of these events,
97,619,114 at remote sites [1]. Besides the more manually
driven operation, the EDG Application Testbed was used
for the first time to take part in an efford like this, where
data from a running experiment is processed.

A high-level overview of this reconstruction process we
established is as follows:

1. the cluster team receives a reconstruction assignment
from the production manager. The assignment comes
as a list of “projects”, each project containing on the

∗harenberg@physik.uni-wuppertal.de
† maettig@physik.uni-wuppertal.de
‡ bosk@nikhef.nl
§ davidg@nikhef.nl
¶a03@nikhef.nl
‖ templon@nikhef.nl
∗∗r.byrom@rl.ac.uk
††sm.fisher@rl.ac.uk

order of seventy data files that require processing.
Each data file contains on average 700 MB of infor-
mation. Processing a file takes about twelve hours on
a one-gigahertz Pentium machine.

2. The cluster team contacts the DØ Data Management
System (called SAM [5], for Sequential data Access
via Metadata) and retrieves a project, meaning all the
files are transferred to the cluster site.

3. Jobs are submitted to process the files belonging to a
project.

4. The cluster team uses SAM to store the files produced
by the reconstruction program.

INTEGRATING DØ SOFTWARE

DØ specific infrastructure

DØ is using its own data management system called
SAM to access the data to be re-processed. Furthermore,
the re-processed data have to be stored back into that sys-
tem for collaborative wide use. In order to cope this condi-
tion, we set up the following process:

1. making the input data files available on the EDG Data
Management System (DMS) [6];

2. adaptation of the DØ reconstruction software and en-
vironment to work on EDG resources, and its distribu-
tion to worker nodes running the reconstruction jobs;

3. monitoring progress of the jobs and bookkeeping of
the results;

4. declare the reprocessed results back into the SAM sys-
tem.

Processes 1 and 4 above both require some sort of chan-
nel between the Data Management Systems of EDG and
DØ. We chose to approach this by arranging for a cer-
tain storage area, physically present on a back-end server
machine, to be visible both from a SAM-enabled machine
(“SAM Station”) and from EDG machines at the same site
(see figure 1).

This “gateway” was established at NIKHEF and works,
allthough it requires much manual work.



SAM station EDG UI machineEDG Storage Element

NFS mounts

D0 SAM Domain EDG Domain

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	


 
 
 
 


 
 
 
 

� � � � �
� � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�






















�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1: The gateway between SAM and EDG

Adaption of DØ software

The DØ software for running reconstruction consists of
four packages:

• The DØ reconstruction executables and libraries,
along with the necessary run-time environment such
as configuration files;

• Themc runjob package which is a script system for
steering the execution and loading the proper configu-
ration files;

• The pyxml package, required bymc runjob, used
in the DØ monitoring system. This system was not
used by the EDG runs, but its removal would have re-
quired major surgery in themc runjob system, and
mc runjob complains if the package is not installed.
However it was possible to turn off the actual invoca-
tion of the monitoring;

• Python version 2.1, required bymc runjob. The
EDG testbed has both Python versions 1.5.2 and 2.2.2
but the DØ software required version 2.1.

The DØ software required little adaptation to run on
EDG nodes. We benefited from the fact that there are
several other groups in DØ that are attempting to run on
generic computing facilities, such as GridKa in Germany
and WestGrid in Canada. The main problems we en-
countered were discovering which options to “turn off” in
mc runjob, these options corresponding to things that only
work in a DØ-specific setup, as well as deleting certain
copies of system libraries shipped with the DØ distribution
(e.g. libc.so) that caused interaction problems with native
libraries.

The DØ distribution was still converging at the start of
the evaluation, with one new release per week. Given this
relatively frequent update, we did not want to use the usual
mechanism from EDG where RPMs were made, pushed to
remote sites as part of a new EDG release, and installed on
worker nodes during the upgrade. We chose to make com-
pressed tar archives of each of the four packages and regis-
ter them as Grid files, meaning they were stored on an SE
and registered in the Replica Location Service (RLS) [7].
Jobs were programmed to retrieve the four packages (using
the EDG replica manager client tools [8]) and install them
before actually starting any DØ work.

One side effect of this setup is that we ran the recon-
struction in a subdirectory of /tmp, instead of in the pooled
account directory. The reason is that when one appends
the rather long DØ pathname to the even longer GASS
working directory for the job, the resulting directory path-
name exceeds 100 characters, which is a hard limit some-
where within the DØ executables. The job fails to find
several important files located in this long directory, and
then aborts. The temporary space we created had names
like /tmp/@1423.d0reco which fall well within the 100-
character limit. The disadvantage is that the automatic
cleanup mechanisms of GASS do not apply, so that a job
encountering an unrecoverable error may leave a couple gi-
gabytes of junk in /tmp on the worker node.

We have reported this bug to the DØ software team, but
on the timescale of this validation project it was not possi-
ble to get a proper fix to the problem.

Monitoring and Bookkeeping

As in every distributed environment, job monitoring and
bookkeeping is very important. While EDG provides ba-
sic infrastructure to monitor a job, bookkeeping is not im-
plemented in EDG at all. Furthermore, monitoring is lim-
ited to job states, e.g. “running”, “waiting”, “scheduled”,
“done” or “aborted”.

However the R-GMA[3] system of EDG allows users
and their programs to publish information into the general
information system of the testbed. This information can be
inspected by users at other sites, or archived in a database
for later analysis. We used this functionality to generate a
monitoring system for the DØ reprocessing.

R-GMA uses an SQL model, so that all information is
published to some SQL table. We constructed four tables
for DØ monitoring:

• a “submission table” that records the submission of
jobs to the resource broker. This records the jobID
returned, the submission time, and the user interface
machine from which the job was submitted.

• a “job start table” holding information published when
a job starts to execute on a worker node. This table
includes a unique hash for the particular instance of
the job, the jobID, the job start time, the worker node
on which the job is running, the input LFN for the
job, the SAM process ID (see below), information on
the worker-node CPU (cpu type, cpu frequency, real
memory and swap space). The unique hash is con-
structed from concatenating the jobID and the start
time. It is needed because one jobID may correspond
to multiple table entries, if a job aborts for some rea-
son and is restarted by the EDG workload manage-
ment system.

• a “job end table” for which information is published
immediately before the job stops executing on the
worker node. This table includes the same unique
job instance hash as the start table, the job execution



ending time, the processor and wall times taken by
the job, the number of DØ events processed, the out-
put physical file name (including the SE host name),
and the GUID of this file, which is the unique key by
which the EDG Replica Location Service can locate
the file or one of its replicas.

• a “command table” that is used for job failure diagnos-
tics. Critical commands are run by a wrapper script
– if the command returns normally, no special ac-
tions are taken. If the command fails, a failure record
is published in this table. This record contains the
unique job instance hash, a further hash formed from
the command name plus the job instance hash (this
serves as the primary SQL key in the table, but other-
wise serves no function), the time at which the com-
mand started execution, the command that failed (in-
cluding arguments provided), the exit status returned,
and the last 255 characters of the command’s output.
Records in this table allow us to recognize which com-
mand was responsible for a failed job. Linking the
information in this table with that from other tables
provides further information, for example the name of
the worker node on which the command failed. This
provides a powerful facility for debugging the system
– a poorly configured worker node may generate what
appears to be an intermittent failure of the DØ job,
but analysis of these logs will show that all failed jobs
failed on the same machine.

THE DØ JOB SCRIPT

A Python script was written to manage the job setup,
publishing of monitoring information into R-GMA tables,
running the DØ reconstruction, and recording the results.
The script takes the following actions (commands run un-
der the logging command wrapper are marked with an as-
terisk):

1. records the start time of the job
2. creates a temporary working directory (TWD) in /tmp

in which the software and data will be unpacked
3. copies some files from the input sandbox into the

TWD
4. instantiates the job start table object, fills the data, and

publishes the start record into R-GMA
5. for each of the four software packages needed:

(a) retrieve a copy* of the package from the DMS.
(b) unpack the package* (untar it) into the TWD.

6. Some links are made (needed by the DØ machinery)
within the TWD

7. run the m4 preprocessor* to fill a template macro (in-
put for themc runjob program) with specific values
for the data file being reprocessed.

8. invoke* mc runjob with the resulting macro, which
runs the reconstruction program

9. create a tar archive* containing all the important out-
put files

10. place the resulting archive in the EDG DMS* using
edg-rm copyAndRegisterFile

11. interrogate the DMS* (using the edg-lrc command) to
find the physical name of the registered copy

12. instantiate the job-end table, fill the values, and pub-
lish the job-end record to R-GMA

13. remove the TWD
14. exit.

RESULTS

Comments on the usability

The system provided the neccessary functionality for
production work. Jobs submitted from NIKHEF were dis-
tributed over the available resources inside EDG. The data
management and the information system allowed us to pro-
gram the job script in a generic fashion.

However, several components or subsystems were lack-
ing functionality or stability. In particular:

• The WP5 Storage Element was not working most of
the period in which EDG/ DØ software was being de-
veloped. As this was critical to us, we installed a so-
called “SE Classic” at NIKHEF.

• We had to build our own versions of some of the EDG
replica manager client commands. This was necessary
since the EDG versions check for existence of a re-
quested file before trying to transfer it. In general this
is a good thing, but in this specific case the existence
check is made using Globus tools that fail if invoked
from machines lacking inbound IP connectivity. The
largest fraction of the available worker nodes indeed
lacks this connectivity, so these commands were un-
usable for us.

• The R-GMA system was unstable and has being
restarted as often as four times per day, with a to-
tal down time per restart of approximately one hour.
During downtimes, no new jobs could be submitted.
Furthermore, R-GMA did not check version compati-
bility between clients and servers.

• Job throughput is quite slow, mostly because of di-
rect queries made by the WM machine to local GRIS
(MDS information) servers on each participating CE
machine.

• The getBestFile and copyFile commands of
EDG’s Data Management system both a Globus rou-
tine for file-existence checking that tries to start an
“active” FTP connection. Such connections require
the originating computer (in this case a worker node)
to allow inbound IP connections. Most large computer
facilities forbid such connections for their worker
nodes, as do the largest EDG farms (at RAL and
NIKHEF during this evaluation).



• Replication of files is asynchronous. If ten jobs show
up at a site and all try to access the same file via
getBestFile, and the file hasn’t previously been reg-
istered at the local SE, one can potentially wind up
with ten independent replicas of the file on the local
SE.

More details can be found in [10].

Conclusions

The EDG production testbed provided the necessary
functionality to do production high energy physics work
for the first time in a full-scale generic grid infrastructure.
The stability of the information system turned out to be
the limiting factor. This limited also our contribution to
the DØ reprocessing efford. But we proofed that generic
grid infrastructure is able to provide a reasonable amount
of computing resources even to the allready running high
energy physics experiments.

The problems and instabilities we saw have been re-
ported to the developers of the grid middleware and most
of them have been fixed. This prooves that a test with the
requirements of the running experiment is essential for a
generic infrastructure to proove its functionality.

Outlook

After the European DataGrid project has been ended at
the end of March 2004, we continued our work in the con-
text of the LHC Computing GRID “LCG” [4], which used
the EDG software as its basis. The R-GMA information
system, which turned out to be the critical part of EDG,
had been replaced with MDS [9]. Meanwhile, R-GMA has
been reintegrated into LCG since release LCG-22 0, but
MDS is still the basis for the information system.

We have continued to work on the integration of SAM
into our projects to establish a more sophisticated interac-
tion between these two systems. This could replace the
interface described earlier and would save the optimization
SAM does on the disk and tape access for the DØ jobs in-
side the LCG infrastructure. We allready ran successfully
Monto-Carlo production.

For the next reprocessing efford, which is planned for
the end of November 2004, we’re planning to contribute
significantly.

REFERENCES

[1] http://www-d0.fnal.gov/computing/reprocessing/p14/

[2] Daniel Wicke, Michael Diesburg: Data reprocessing on
worldwide distributed systems; Proceedings of the 2004 Con-
ference on Computing in High Energy Physics (CHEP 2004),
Interlaken, Switzerland.

[3] http://www.r-gma.org

[4] http://lcg.web.cern.ch/LCG

[5] http://d0db.fnal.gov/sam/

[6] http://edg-wp2.web.cern.ch/edg-wp2/

[7] http://edg-wp2.web.cern.ch/edg-wp2/replication/replica-
location-service/index.html

[8] DataGrid: User Guide for EDG Replica Manager v1.5.4.
DataGrid-02-ERM-USER-GUIDE

[9] Grid Information Services for Distributed Resource Shar-
ing. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman.
Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), IEEE
Press, August 2001.

[10] Report on the results of Run #2, Final application report.
DataGrid-08-D8.4-0126-1-2.


