
THE ARCHITECTURE OF THE ALIEN SYSTEM

P. Buncic, J. F. Grosse-Oetringhaus, A. J. Peters, P. Saiz, CERN, Geneva, Switzerland

Abstract To fulfil the above requirements, a new development

cycle was triggered during which the AliEn Catalogue has
been split into independent File and Metadata Catalogue
Services, a Package Manager Service was created out of
the former Package Manager Component and a Grid
Access Service was developed in compliance with the
EGEE security model.

AliEn (ALICE Environment) is a Grid framework
developed by the Alice Collaboration and used in
production for more than 3 years. This paper presents the
architecture of selected components of the AliEn system
and describes its evolution in context of the EGEE*
project.

SERVICES AND COMPONENTS INTRODUCTION
The rest of this paper will briefly describe these re-

factored AliEn services and show how they fit in the gLite
architecture.

Unlike most mainstream Grid-implementations at that
time, the AliEn system [1] has been from the very
beginning based on Web Services and standard protocols.
In a very short time, the ALICE collaboration [2] had a
prototype that, while constantly evolving, allowed large
distributed simulation and reconstruction vital to the
design of the experiment’s hardware and verification of
the off-line computing model.

User Interface and API
The user interacts with the system through a User

Interface layer. The interaction can be carried out from a
command line interface with the most common Unix shell
commands being implemented or via a Web portal which
provides a convenient way to submit, inspect and
manipulate a large number of jobs running at many sites.
The application level access to AliEn is provided through
an API. AliEn provides a Perl, C and C++ API.

The system has been deployed for ALICE users at the
end of 2001 for distributed production of Monte Carlo
data, detector simulation and reconstruction at over 40
sites located on four continents. Up to the present, more
than 400,000 ALICE production and analysis jobs have
been run under AliEn control worldwide during Physics
and Data Challenge exercises.

Following the report and recommendations of ARDA
Requirements and Technical Assessment Group [3] of the
LCG Project, the architecture of AliEn and its Web
Services model were re-factored, taking into account
input from other similar projects (EDG, VDT and others)
into an architecture that became the basis for the next
generation of middleware. This middleware, named gLite,
is currently being developed in the framework of the
EGEE project [4].

Grid Access Service (GAS)
The Grid Access Service (GAS) provides access to

different underlying Grid services (). It acts as an
adapter and exposes a flat interface to the collection of
service components: e.g. the File and Metadata catalogue,
Workload management, Data Management etc.

Figure 1

Figure 1 : Grid Access Service

This collection is exposed to the user via the user
interface or to the application by means of an API.
 In the gLite prototype, parts of AliEn are used to

provide an initial implementation of components and
services: the File and Metadata catalogue, Task Queue,
Package Manager, various user interfaces such as the
command line prompt, an application API and the
corresponding Grid Access Service (GAS).

The development effort is now focused on meeting the
specific needs of the EGEE project, implementing the
EGEE architecture and fulfilling the requirements of the
wider user community. Particular attention is being paid
to the conformity with a stringent set of security
requirements and the EGEE software development
process.

* EGEE is a project funded by the European Union under contract
number INFSO-RI-508833

FC

MC Clie
nt

GAS

WM

API

Since the changes to the interfaces of the underlying
services should not affect the interface of the GAS, the
client applications remain reasonably well isolated from
the changes in the middleware. Furthermore this allows
for a seamless migration from one service implementation

to another. For example, in the present gLite prototype,
the user can choose between AliEn Metadata Catalogue
and an alternative implementation of a Metadata
Catalogue, developed specifically for biomedical
application.
The GAS itself is a Web Service following the WSRF [5]
model and it runs under gContainer, a Web Service
Container supporting WSRF. The gContainer includes
service discovery and load management. For this
purposes it communicates with other instances of
gContainer. The core of the gContainer is a WSRF::Lite
Container which is a secure HTTP server that is part of
WSRF::Lite [6] toolkit and is suitable for running the
Web Services written in Perl. The gContainer instance
consists of a WSRF::Lite Container and a stateful
management service called gController. Other services
are created via the stateless factory service (gFactory).

Authentication and Authorization

Figure 2

Figure 2 : GAS login use case

 illustrates the login use case using the GAS.
The authentication follows the pattern often used to
implement Grid portals so that GAS can be seen as an ad-
hoc user portal.

Before connecting to GAS, a user creates a proxy

certificate (1) and stores it in the myproxy server (2). In
the next step, the user connects to the gFactory service
running under an arbitrary gContainer and submits a
session request (3). The gFactory queries the gController
for the best possible locations to create an instance of
GAS (4), retrieves the proxy from the myproxy server (5-
1A), creates the GAS (5-1B) and finally returns the
address to the user (6). Afterwards the user talks directly
to the newly created service (7-1).

If the service needs to be created within a different
gContainer the steps (5-1A) and (5-1B) are replaced as
follows: the gFactory connects to the gFactory service at
the remote gContainer (5-2A) and submits a session
request. The gFactory at the remote location follows the

sequence 5-2B to 5-2D and returns the address (5-2E) to
the initial gFactory which returns it to the user.

If in addition to myproxy service we also use Virtual
Organization Membership Service [7] (as will be the case
in gLite), the system will be able to take into account user
roles when creating the GAS interface.

Workload Management
In contrast to the push model traditionally implemented in
other Grid systems, the AliEn Workload Management is
based on pull architecture [8] which is also applied to
Data Management. The job description (JDL) in the form
of the Condor ClassAd, is kept in a Task Queue while
waiting for the Computing Elements to advertise their
status and capabilities and to request jobs. While the jobs
are waiting in the Task Queue, the Job Optimizers will
inspect the JDLs, optimize and order the requests. The
system can trigger a file replication in order to make a job
eligible to run on a specific site in order to balance the
overall load or enforce specific policies.
In a possible deployment scenario (), the AliEn
Workload Management can be integrated with the
EDG/LCG Resource Broker in complementary fashion
and allow a user to choose if he wants the job to be
inserted directly into the Task Queue and be handled by
the AliEn Workload Management based on the pull
model, or to hand over the job to the Resource Broker. In
the latter case, the Logging and Bookkeeping component
of WMS will notify the Task Queue about existence of a
new job and its status so that a new entry can be inserted
into the Task Queue which is essential for a consistent
view of the system from user perspective. Alternatively,
both systems can be deployed concurrently with no
mutual interaction but still sharing the resource (CE) and
user (GAS) entry points.

Figure 3

Figure 3 : Possible common deployment scenario of
AliEn Task Queue and EDG/LCG Resource Broker

gContainer myproxy
5-1A.

2. gController
1. 4.

3.
gFactory

6. Client5-1B.
GAS 7-1.

5-2A.
5-2E. 5-2C. gContainer gContainer

7-2.
gController gController

 5-2B.

WMSi push gFactory gFactory
5-2D.

GAS

L&B GAS

Notification TQ

 pull SUBMIT

C MONITOR
E

REQUEST

The AliEn Computing Element (CE) is effectively an
agent that provides an interface to the local batch system.
The task of a CE is to gather information about the status
of local CPU resources, installed packages and policies
and periodically advertise this information to the Job
Manager. Upon successful matchmaking, it will get the

job JDL, translate it to the syntax appropriate for the local
batch system and execute it. As a matter of strategic
choice, only the Condor interface is used in gLite. In turn,
Condor will provide reliable interfaces to multiple batch
system back-ends. Once sent to the batch system, each job
is wrapped up in another Web Service, the Job Agent,
allowing users to interact with the running job, send a
signal or inspect the output. Prior to job execution, the
Job Agent can automatically install the software packages
required by the job using the Package Manager Service.
The Job Agent has a large part of the CE functionality
built in and can autonomously advertise itself using the
approach similar to one pioneered by Dirac system [9].

File and Metadata Catalogue
The File Catalogue () is designed to allow each

directory node in the hierarchy to be supported by
different database engines, possibly running on different
hosts and even having different internal table structures
optimized for a particular directory branch. This assures
scalability of the system and allows growth of the
catalogue as the files accumulate over the years of data
taking. For example, the current File Catalogue for the
ALICE experiment already contains 9 million entries.

Figure 4

Figure 4 : AliEn File Catalogue, based on distributed set
of databases

The File Catalogue extends the familiar file system

paradigm to include information about running processes
in the system (in analogy to the /proc directory on Linux
systems). Each job inserted into AliEn Task Queue gets a
unique id and a corresponding /proc/id directory where it
can register temporary files, standard input and output as
well as all job products.

The directories and files in the File Catalogue have
Unix like privileges. This means that every user or a
group can have exclusive read and write privileges for his
portion of the logical file namespace (home directory). In
gLite, this will be extended into a full Access Control List
(ACL) model.

The File Catalogue keeps an association between the
Logical File Name (LFN), an immutable file identifier
(GUID) and Storage File Names (SURL). The system
supports file replication and caching and will use this
information when it comes to scheduling jobs for
execution. To improve scalability and responsiveness of

the system, the gLite implementation will require splitting
of the File and Replica Catalogue functionalities. Instead
of handling SURLs, the File Catalogue in gLite ()
will simply hold information about the list of Sites or
Storage Elements where information about SURLs is kept
in the Local Replica Catalogue.

Figure 5

Figure 5 : File, Metadata and Local Replica Catalogue in
gLite

Metadata Catalog Meta

GUID

The hierarchy of files and directories in the AliEn File
Catalogue is reflected in the structure of the underlying
database tables. It is possible to attach to a given directory
an arbitrary number of additional database tables, each
one having a different structure and possibly different
access rights and containing metadata information that
further describes the content of the files in a given
directory thus building the AliEn Metadata Catalogue.

Data Management
The Data Management services in AliEn have, in full

analogy to the Workload Management, a set of central
components (File Transfer Queue, Brokers and
Optimizers) and a site component (File Transfer Daemon,
FTD). The FTD runs typically on the same host as the
Storage Element and provides scheduled file transfer
functionality. In the context of gLite, this part will be
replaced by components coming from other projects but
will still follow the same architectural model.

The Storage Element (SE) in AliEn is responsible for
saving and retrieving files to and from the local storage. It
manages disk space for files and maintains the cache for
temporary files.

Figure 6 : Intelligent gLite Storage Element aggregating
POSIX and SRM interfaces

Figure 6

In the gLite implementation (), a set of services

that work together (gLite-I/O server, Local Replica
Catalogue and SRM based interface to Mass Storage
Systems) can be logically seen as an intelligent Storage
Element that will be a building block for deployment. It
offers a POSIX like I/O capability by means of the gLite-
I/O server, based on AIOD service of AliEn [10] and

MSS
(Casto

MSS
(dCac

Local
Replica
C t lAIOD

(gLite I/O)
Server Disk

cach

P
O
S
I
X

S
R
M

S
R
M

client

ALIC
USER

SI

Tier1
ALIC
LOCA

|--./
| |--cern.ch/
| | |--user/
| | | |--a/
| | | | |--admin/
| | | | |
| | | | |--aliprod/
| | | |
| | | |--f/
| | | | |--fca/
| | | |
| | | |--p/
| | | | |--psaiz/
| | | | | |--as/
| | | | | |
| | | | | |--dos/
| | | | | |
| | | | | |--local/

|--simulation/
| |--2001-01/
| | |--V3.05/
| | | |--Config.C
| | | |--grun.C

| |--36/
| | |--stderr

| | |--stdin
| | |--stdout
| |
| |--37/
| | |--stderr
| | |--stdin
| | |--stdout
| |
| |--38/
| | |--stderr
| | |--stdin
| | |--stdout

| | | |
| | | |--b/
| | | | |--barbera/

LFN File Catalog

data

Si
SID

SID

enhanced with GSI security and a control channel similar
to the SRM interface.

Package Manager
This service is a helper service that automates the

process of installing, upgrading, configuring, and
removing software packages from a shared area (software
cache) on a Grid site. The Package Manager Service does
not manage the installation of middleware software; it
manages the packages that are common for all users of a
VO and possibly packages provided by individual users.

The packages are installed on demand, when requested
by the Job Agent running on a worker node or upon an
explicit request by the VO Software Manager. The
Package Manager checks if the requested package is
already installed in the cache and if that is not the case, it
proceeds with the installation. The right version of the
package is downloaded from the File Catalogue and
installed in the directory specified as a service
configuration parameter. It will also install all the
dependencies required by the package. The Package
Manager returns a string with a command (a shell script)
that the client has to execute to configure the package and
all its dependencies. This script performs actions like
setting environment variables.

The package installation can be triggered by a process
running on the worker node or by a person with
appropriate privileges (identified by the certificate
subject). In both cases the requestor obtains the lease for
the package for a specified time. The Package Manager
manages the local disk cache and will clear the disk space
if it needs the disk space to install newer packages but it
will not remove the packages for which someone holds
the lease. The maximum lease time for the packages is a
configurable parameter. While any user or process can list
already installed packages, only the VO administrator can
remove a package from the local cache regardless of its
current lease status and in that case the currently running
jobs requiring that package might fail. Removing a
package does not remove the packages that depend on it.
If any of those packages are used, the removed package
dependency will be automatically installed again.

Auditing and Accounting
A distributed Logger Service provides a mechanism for

all services to report their status and error conditions. This
allows the Grid manager to monitor all exceptions in the
system and to take corrective action. Within gLite,
auditing and accounting records will be also passed to an
R-GMA [11] information system and logging service
based on the log4j model.

Monitoring
Since the AliEn Resource Brokers do not depend

directly on sophisticated monitoring information for
scheduling, we did not develop any special monitoring
tools. Instead, we deployed the MonALISA framework

[12] and used it extensively to understand the behaviour
of the system. In gLite, the information repository will be
based on the R-GMA model.

CONCLUSIONS
The AliEn Grid framework was developed during the past
three and a half years by a small team (between two and
four developers), working closely with an experiment and
deploying the software in rapid, extreme programming
cycles. The use of scripting language like Perl and its OO
features helped maintain this cycle and allowed for an
easy integration of external software components in the
form of reusable Perl modules. The result of this
development was a service oriented architecture and an
implementation that was continuously tested and
deployed to more than 40 ALICE computing sites.
Focusing on industry standards and trends, but always
leaving room for evolution and alternative solutions was a
good strategy as we could easily accommodate variations
of the technology (e.g. OGSI to WSRF transition). The
choice of Web Services as a core concept helped the quick
prototyping, but in a complex and large project like gLite
we are encountering interoperability problems with
handling of services implemented in different
programming languages. In addition, the observed
performance penalties seem to be large enough that in
certain cases it might be preferable to implement client-
server communication using alternative protocols. This is
a commonly recognized problem and the expectation is
that the initiatives like Fast Web Services [13] will
provide a solution.

REFERENCES

[1] P. Buncic et al.: The AliEn System, status and

perspectives, CHEP’03,
 http://arXiv.org/abs/cs/0306067
[2] http://www.cern.ch/alice
[3] http://lcg.web.cern.ch/LCG/peb/arda
[4] http://www.eu-egee.org
[5] http://www.globus.org/wsrf/
[6] http://www.sve.man.ac.uk/Research/AtoZ/ILCT
[7] http://hep-project-grid-scg.web.cern.ch/hep-project-

grid-scg/voms.html
[8] P. Saiz et al.: “AliEn Resource Brokers”, CHEP 03,
 http://arxiv.org/abs/cs/0306068
[9] N. Brook at al.: DIRAC - Distributed Infrastructure

with Remote Agent Control, CHEP03,
 http://arxiv.org/abs/cs.dc/0306060
[10] A. J. Peters at al.: AliEnFS - a Linux File System for

the AliEn Grid Services , CHEP 03,
 http://arxiv.org/abs/cs/0306071
[11] http://www.r-gma.org
[12] http://monalisa.cacr.caltech.edu
[13] http://java.sun.com

http://arxiv.org/abs/cs/0306067
http://www.cern.ch/alice
http://lcg.web.cern.ch/LCG/peb/arda/public_docs/ARDA_report_final.pdf
http://www.eu-egee.org/
http://www.globus.org/wsrf/
http://www.sve.man.ac.uk/Research/AtoZ/ILCT
http://hep-project-grid-scg.web.cern.ch/hep-project-grid-scg/voms.html
http://hep-project-grid-scg.web.cern.ch/hep-project-grid-scg/voms.html
http://arxiv.org/abs/cs/0306068
http://arxiv.org/abs/cs.dc/0306060
http://arxiv.org/abs/cs/0306071
http://www.r-gma.org/
http://monalisa.cacr.caltech.edu/
http://java.sun.com/developer/technicalArticles/WebServices/fastWS/

	THE ARCHITECTURE OF THE ALIEN SYSTEM
	INTRODUCTION
	SERVICES AND COMPONENTS
	User Interface and API
	Grid Access Service (GAS)
	Authentication and Authorization
	Workload Management
	File and Metadata Catalogue
	Data Management
	Package Manager
	Auditing and Accounting
	Monitoring

	CONCLUSIONS

