
The Athena Control Framework in Production, New Developments and
Lessons Learned

C. Leggett, P. Calafiura, W. Lavrijsen, M. Marino, D. Quarrie, LBNL, Berkeley, CA 94720, USA

Abstract

Athena is the Atlas Control Framework, based on
the common Gaudi architecture, originally developed by
LHCb. In 2004 two major production efforts, the Data
Challenge 2 and the Combined Test-beam reconstruction
and analysis were structured as Athena applications. To
support the production work we have added new features
to both Athena and Gaudi: an ”Interval of Validity” ser-
vice to manage time-varying conditions and detector data;
a History service, to manage the provenance information of
each event data object; and a toolkit to simulate and anal-
yse the overlay of multiple collisions during the detector
sensitive time (pile-up). To support the analysis of simu-
lated and test-beam data in Athena we have introduced a
python-based scripting interface, based on the CERN LCG
tools PyLCGDict, PyRoot and PyBus. The scripting in-
terface allows to fully configure any Athena component,
interactively browse and modify this configuration, as well
as examine the content of any data object in the event or
detector store.

ATHENA AND GAUDI

Athena is the object oriented control framework used by
the ATLAS experiment at CERN, which is based on the
Gaudi architecture. The Gaudi framework, originally de-
veloped by LHCb, is now also shared by ATLAS, GLAST,
HARP and OPERA. It is written in C++, and is designed
with a modular component architecture, consisting of a
handful of core packages, such as the kernel, services and
various tools, and supplemented by external libraries such
as POOL, SEAL, PI and Geant.

The framework is designed to maintain a strict separa-
tion between transient and persistent data, where compo-
nents code to abstract interfaces. This allows individual
components to be easily replaced as technologies evolve,
which is essential for an experiment which will run for sev-
eral decades.

Athena comprises the ATLAS specific extensions to
Gaudi, most notably

� StoreGate - the data store [1]
� Interval of Validity Service - managing time depen-

dent data
� Pileup - combining multiple events in the detector
� History Service - maintaining a multi level record of

data provenance
� Python scripting

NEW DEVELOPMENTS

Interval of Validity Service

The Interval of Validity Service (IOVSvc) makes associ-
ations between user data and time dependent data that re-
sides in specialised conditions databases. It is designed to
be transparent to the average user, with low overhead on
the system. Two access patterns are offered: registration of
a handle to user data with a specific entry in a conditions
database, where the data is automatically updated where
necessary, and registration of a callback function with a
specific entry in the conditions database, where the call-
back function is triggered when the data enters a new va-
lidity region.

In order to minimise unwanted database access, the data
is only read from the database when the handle is derefer-
enced.

Hierarchical registration is possible, so that it is possible
to register handle B against a previously registered handle
A, or function F2 against function F1. Callback functions
are assembled into an acyclic graph, and are triggered in
the appropriate sequence. It is possible to register a handle
or function against multiple objects.

Both the validity information, and the time dependent
data can be preloaded on a job or run basis, for specialised
applications such as triggers or test beam setups, where
continuous database access is unwanted.

Detector Pileup in DC II

For Data Challenge II, over 1000 minimum bias events
are overlaid over the original physics stream. The main re-
quirement was that the digitisation algorithms should run
unchanged. Many optimisations of data structures and ac-
cess patterns were necessary in order to allow pileup to run
on a standard node, as original memory consumption was
extravagant. Current memory requirements are � 1 GB.

The Tuple Event Iterator manages multiple input
streams. Random permutations of events are selected from
a circular buffer of minimum bias events. Since the vari-
ous subdetectors have different data integration times, they
require individual cache retention policies. By using a two-
dimensional detector and time-dependent event caching
policy, memory utilisation has been significantly reduced.

Pileup is an excellent mechanism to stress test the archi-
tecture. Small problems which would normally pass un-
noticed, are enormously magnified, and become visible far
sooner. It is also an excellent tool to expose memory leaks,
as they become 1000 times larger.



History Service

It is essential that the provenance of data be assured.
Users must be able to see the full history of processing and
reconstruction, in order to make meaningful decisions on
data quality and cuts, and to be able to reproduce calcu-
lations at a later data. The History Service keeps track of
multiple levels of linked provenance information:

� job environment
� full job configuration
� Services instantiated
� instantiated Algorithms, AlgTools, and SubAlgo-

rithms
� DataObjects

When a DataObject is recorded in the event store, a His-
toryObject is created and associated with it, with the same
retention policy. The HistoryObject contains links back to
the HistoryObject of the Algorithm which created it, which
links to the HistoryObject of the job.

The service is invisible to the user, but can be switched
off for specialised situations such as the High Level Trig-
ger, where it is unnecessary.

Python Scripting

Python has been woven throughout the Athena frame-
work, being used both for scripting, and for interactive ac-
cess to C++ objects. We have replaced the flat text based
configuration files of Gaudi with files, which are executable
Python fragments. This allows us to do dynamic job con-
figuration with full access to Python functionality, such as
variable manipulation and conditional branching. By using
this system, it has become very easy to turn detectors and
reconstruction or data processing tasks on and off in a two
dimensional matrix.

Python has also provided us with the ability to do
interactive analysis, allowing users to individually cycle
through events and providing access to C++ objects from
the Python prompt. It also allows histograms and ntuples
to be generated and accessed in an interactive and dynamic
manner.

ATHENA IN PRODUCTION

Data Challenge II

Atlas is currently in the midst of its second Data Chal-
lenge. It consists of:

� Phase 1:

– Event generation: �� Physics channels, 10s of
millions of events

– Detector simulation: using Geant 4, track parti-
cles through the detector and record interaction
of particles with sensitive elements in the detec-
tor

– Pileup and Digitisation: output bytestream raw
data

– Data transfer to CERN: �� TB in 4 weeks
– Event mixing: combine physics events in ad-hoc

proportions

� Phase 2: reconstruction and real time distribution of
data to Tier 1 institutes

� Phase 3: worldwide distributed analysis using the
Grid

Phase 1 is currently running on 3 grids: LCG (Eu-
rope, Japan, FNAL and TRIUMF), NorduGrid, and Grid3
(US). The main difficulties encountered to date have been
grid configuration, use of certificates, access to conditions
database over the grid, and the debugging of production
systems.

Combined Test Beam

Atlas has been recording data from its Combined Test
Beam since July, with various detector configurations, dur-
ing which time over a terabyte of data has been written
from about 5000 runs. We are using evolving releases of
Athena to make use of new features and fixes, such im-
provements to the multithreaded architecture, and advances
in the conditions databases. The Geant4 simulation and
reconstruction of the CTB setup are occurring in parallel,
with continual comparison between the two. Conditions
databases are now if production mode, being used for both
reading and writing.

We are currently preparing for phase II of the Combined
Test Beam plan, which involves a massive reconstruction
effort of all real data and production of Monte Carlo data.

LESSONS LEARNED

In the course of putting Athena into production, we have
become aware of several issues, few of which were partic-
ularly surprising. As always, requirements changed dur-
ing the course of the development cycle, requiring several
shifts in the design of the framework. In certain circum-
stances, such as for pileup, it was very important to design
the architecture and access patterns with performance in
mind. Furthermore, pileup proved to be an excellent test
bed for stress testing the architecture in general.

Database access, especially over networks and on the
grid, continues to be problematic. Where local testing ran
unimpeded, when used in production mode many issues
were encountered. This showed how spanning the gaps be-
tween component and integration tests is very often hard to
accomplish.

Persistency is always a concern, and we have been forced
to redesign our persistency mechanism several times. De-
spite attempts to maintain a clear separation between tran-
sient and persistent layers, certain objects and container
classes had to be rewritten while paying close attention to
the persistency mechanisms.



While running the Combined Test Beam, we have dis-
covered that better support for realtime monitoring is es-
sential. Python scripting has proved invaluable in this re-
gard, being able to examine objects interactively, but work
still needs to be done. Python in general has made dynamic
job configuration much less painful.

Finally, while we are pleased with the current design and
progress of Athena, we still need more feedback from users
and developers to better understand if sufficient functional-
ity has been built into the system.

ACKNOWLEDGEMENTS

We would like to thank all ATLAS collaborators who
contributed to the design and prototyping of Athena, as
well as the Gaudi developers on LHCb.

This work was supported in part by the Office of Science,
High Energy Physics, U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

REFERENCES

[1] P. Calafiura, C. G. Leggett, D. R. Quarrie, H. Ma
and S. Rajagopalan, eConf C0303241 (2003) MOJT008
[arXiv:cs.se/0306089].

[2] M. Cattaneo et al. , “Status of the GAUDI event-processing
framework”, CHEP 2001: Proceedings. Edited by H.S. Chen.
Beijing, China, Science Press, 2001. 757p.


