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Abstract

A vertex reconstruction algorithm was developed based
on the Gaussian-sum filter (GSF) and implemented in the
framework of the CMS reconstruction program. While lin-
ear least-square estimators are optimal in case all observa-
tion errors are Gaussian distributed, the GSF offers a better
treatment of non-Gaussian distributions of track parameter
errors when these are modelled by Gaussian mixtures. In
addition, this ensures better protection against outliers and
offers some robustness.

INTRODUCTION

The most often used algorithm for vertex reconstruction
is theKalman filter (KF, [1]). It is mathematically equiv-
alent to a global least-squares minimization, which is the
optimal estimator when the model is linear and all random
noise is Gaussian. For non-linear models or non-Gaussian
noise, it is still the optimal linear estimator.

One method that takes non-Gaussian distributions of
measurement errors better into account is theGaussian-
sum filter (GSF). In this method, the distributions of both
the measurements errors and the estimated quantities are
modelled by mixtures of Gaussians. The main component
of the mixtures describes the core of the distributions, and
the tails are described by one or several additional Gaus-
sians. The GSF is a non-linear estimator, as the weights of
the components depend on the measurements.

This approach has first been developed and tested for
track reconstruction [2], where it has been seen that in the
presence of large tails, the GSF has smaller variance than
the KF. It is particularly useful for electron reconstruc-
tion, as the Bethe-Heitler distribution of bremsstrahlung
energy loss is highly non-Gaussian and can be modelled
by a Gaussian mixture. This has been successfully imple-
mented in the CMS reconstruction software [3], where an
improvement of the track parameter resolution is seen.

THE GAUSSIAN-SUM FILTER

For the fit, as in the KF, an iterative procedure is applied,
where the estimate of the vertex is updated with one track
at the time. When one track is added to the vertex, each
component of the vertex state mixture is updated with each
component of the track measurement mixture by a KF, ef-
fectively doing an exhaustive combination of the compo-
nents of the two mixtures. In addition, the weight of each
combination has to be computed. The number of compo-
nents of the estimated vertex rises thus exponentially, as

at each step it is multiplied by the number of components
modelling the new track.

Validation

To validate the algorithm, a simplified simulation in a
fully controlled environment has been used. A single four-
track vertex is generated per event. The direction of the
jet is parallel to thex-axis, and the tracks are in a cone
of 0.5 rad. No track reconstruction is done, and track pa-
rameters are smeared according to a two-component Gaus-
sian mixture model. The component modelling the non-
Gaussian tails of the distribution (thewide component) has
a standard deviation ten times larger than that of the core
component (thenarrow component). Their relative weights
are 90% for the narrow component and 10% for the wide
component. The standard deviations of the impact param-
eters are 100µm and 1000µm, respectively.

The fit with the KF uses only one component. The
variance of the track parameters used is that of the domi-
nant (narrow) component1. The distributions of the vertex-
coordinate residuals and pulls (Fig. 1) have a Gaussian core
with tails, and 36% of the fits have aχ2-probability be-
low 0.01.

The GSF uses both components, each with the correct
weight and variance. In these first tests, the number of com-
ponents kept is not limited. The distributions of the resid-
uals (Fig. 2) have fewer outliers and the core, when fitted
with a Gaussian, has a smaller standard deviation (called
hereafter theresolution). The few outliers are due to ver-
tices with several track-outliers. The distributions of the
pulls do not show tails and are nearly perfectly Gaussian
with a standard deviation very close to 1. This indicates
that the errors on the track-outliers are correctly taken into
account and that a high weight is assigned to the correct
component.

The distribution of theχ2-probability shows a dip at 0,
large values ofχ2 occurring less frequently than expected.
This can be explained by the fact that the tails of the narrow
core component are well within the range of the wide com-
ponent. Observations in the tails of the core are therefore
interpreted as coming from the wide component, and their
contribution to theχ2 is accordingly small. Large values
of χ2 can occur only if all observations are in the tails of

1In case of a high percentage of tails, it is arguable what the best choice
for that variance would be. The position of the estimated vertex, and
therefore the residuals, are nevertheless independent of the scaling factor
of the variance used by the fit, whereas the uncertainty of the estimated
vertex, and thus the pulls and theχ2, are no longer independent of that
scaling factor.
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Figure 1: Residual (left) and pull (middle) of the y-coordinate of the reconstructed vertex and χ2-probability (right) of
the vertex fit using the Kalman Filter.
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Figure 2: Residual (left) and pull (middle) of the y-coordinate of the reconstructed vertex and χ2-probability (right) of
the vertex fit using the GSF, without limiting the number of components.

the wide component, and this has a very low probability
already with as few as four tracks.

Limitation of the number of components

As the number of components of the vertex state mix-
ture increases exponentially, it has to be limited to an ac-
ceptable number. This is achieved by clustering (collaps-
ing) components which are close, according to a defined
distance measurement, pair-wise until the desired number
of components is reached. Two distance measurements
are used, the Kullback-Leibler Distance [4] and the Ma-
halanobis Distance [5]. No significant difference has been
found when using either of the distance measurements. We
conclude that the GSF shows little sensitivity to the number
of components kept during the fit, and good results can be
achieved with even a small number of components.

ROBUSTNESS TESTS

The GSF is very efficient when outliers are accurately
described by the pdfs modelling the errors of the param-
eters, whereas, as is well known, LS-estimators such as
the KF are very sensitive to those same outliers. The ro-
bustness with respect to true outliers, i.e. tracks which are
not modelled correctly, can be tested by adding mismea-
sured tracks (type 1 outliers) or tracks from another vertex
(type 2 outliers) to the list of correct tracks. In this respect,

the GSF can be compared to another non-linear filter, the
Adaptive Filter (AF) [6]. The AF is an iterative re-weighted
KF which down-weights tracks according to their χ2 dis-
tance to the vertex. It has been shown that this filter is very
stable with a high break-down point. Both filters can ac-
tually be combined. Indeed, as in the AF the computation
of the vertex position is independent of the computation of
the track weights, the KF used in the default implementa-
tion can be replaced by a GSF. In this way, the complete
mixture modelling the track measurements is taken into ac-
count, instead of only a single component. This filter is
referred to as the Adaptive-GSF (A-GSF). The AF being
sensitive to only a single component, the variance used for
this filter is that of the narrow component.

For vertices without outliers, the distributions of the
residuals and of the pulls of the vertices fitted with the
AF and the A-GSF are similar to those obtained with the
GSF. To assess the improvement of the filters with respect
to the KF, the half-widths of the symmetric intervals cover-
ing 50% and 90% of the residual distribution (the 50% and
90% coverages) of the y-coordinate are used.Table 1 shows
that the results of the three non-linear filters are similar,
although the 90% coverage indicates that the residual dis-
tribution for the AF has slightly heavier tails. In addition,
some 19% of the fits performed with the AF still result in a
χ2-probability below 1%. The χ2-probability distribution
of the A-GSF is very similar to the one of the GSF.



Table 1: Comparison of the average χ2-probability, resolution, pulls, 50% and 90% coverages of the y-coordinate of
vertices estimated with the different filters.

Filter Mean P (χ2) Resolution [µm] Pull 50% Cov. [µm] 90% Cov. [µm]

KF 0.32 71 1.39 48 229
GSF 0.27 54 0.99 36 90
AF 0.30 59 1.08 40 113
A-GSF 0.27 54 0.94 36 91
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Figure 3: Resolution (left), pulls (middle) and 90% coverage of the y-coordinate of vertex fits for tracks with two compo-
nents for different number of outliers among the four tracks, and different ratios of their standard deviations between the
outliers and the inliers.

Type 1 outliers

Type 1 outliers have been simulated by smearing the
tracks parameters with a different mixture than the one used
in the vertex fit, the latter being the default mixture. Such
outliers simulate tracks with errors that have been seriously
underestimated. These tests have been done with four-track
vertices in which 1, 2 or 3 tracks out of the 4 are outliers.
These outliers are smeared with a two-component mixture
which is obtained from the default mixture by increasing
the standard deviations by factors of 2, 3 or 4.

The values of the resolutions, pulls and the 50% and 90%
coverages are summarized in Figure 3. Vertices fitted with
the KF are significantly degraded by the track-outliers, the
core of both the residual and pull distributions being sig-
nificantly broader with heavier tails. The non-linear filters
show a consistent improvement of the distribution of the
residuals with respect to the KF, both in terms of resolu-
tion and coverages. For vertices fitted with the GSF or the
A-GSF, the RMS of the cores of the residual distributions
are obviously somewhat broader than those found for ver-
tices without the outlier, with only a modest increase of the
number of outliers, and the pull distributions are nearly un-
changed. Vertices fitted with the AF feature broader resid-
ual and pull distributions, as can also be seen in the cov-
erages. The pull distributions of the GSF and in particular
those of the A-GSF are very stable, and the variance re-
mains close to 1. A large number of fits performed with the
KF have a χ2-probability below 1%, while for the AF this
number is approximately half as large. For the other two

filters, the distribution has no peak, but the distributions
are shifted to lower values with respect to those obtained
without outliers.

Type 2 outliers

To test the sensitivity to type 2 outliers, an outlying track
originating from a second vertex is added to the tracks from
the main vertex. This second vertex is displaced by dis-
tances varying between 1 and 5 mm in the direction (y)
transverse to the jet-axis of the main four-track vertex. The
track parameters of all tracks, both inliers and outliers, are
smeared with the default two-component mixture.

Vertices fitted with the KF are shifted towards the sec-
ond vertex, as can be expected by the configuration of the
tracks. The distributions of the residuals and pulls of ver-
tices fitted with either of the non-linear filters are hardly
affected by the presence of the outliers, and remain re-
markably stable. Again, the residual and pull distribu-
tions for fits with the AF have somewhat heavier tails, as
is confirmed by the 90% coverage. The χ2-probability dis-
tribution reveals a significant peak at 0. While the χ2-
probability distribution for the GSF is shifted to lower
values, the corresponding distribution for the A-GSF is
nearly unchanged. The values of the resolutions, pulls and
the 50% and 90% coverages are summarized in Figures 4
and 5.
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Figure 4: Means (left) and standard deviations (middle) of the residual distributions and standard deviations (right) of the
pull distributions of the y-coordinate of vertex fits for tracks with two components for different positions along the y-axis
of the vertex of the outlying track.

0

100

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5
Position second vertex (cm)

50
%

 C
ov

er
ag

e 
Y

 c
oo

rd
.(

µm
)

Kalman
GSF
Adaptive
A - GSF

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5
Position second vertex (cm)

90
%

 C
ov

er
ag

e 
Y

 c
oo

rd
.(

µm
)

Kalman
GSF
Adaptive
A - GSF

Figure 5: 50% (left) and 90% coverage (right) of the y-coordinate of vertex fits for tracks with two components for different
positions along the y-axis of the vertex of the outlying track.

CONCLUSION

A Gaussian-sum filter for vertex reconstruction has been
implemented in the CMS reconstruction software. It has
been validated with a simplified simulation, with different
distributions of track parameter errors. While these distri-
butions are not those obtained with a real track reconstruc-
tion, the results with the KF are very close to those ob-
served with fully simulated data, and indicate that similar
results could be obtained with the GSF.

These tests demonstrate the validity of the algorithm and
its efficiency in the presence of non-Gaussian noise. An
improvement of the resolution and error estimate of the fit-
ted vertex and of the χ2 of the fit with respect to the KF
when the track parameters errors have non-Gaussian tails
are obtained. In addition, when using electron tracks re-
constructed with the GSF, the full mixture can be used, in-
stead of only a single collapsed state. The GSF shows little
sensitivity to the number of components kept during the fit,
such that only a small number of these can be kept without
degrading the fit too much. This allows the filter to be used
without incurring a high performance penalty.

This filter also demonstrates a higher degree of robust-
ness than LS-estimators such as the KF in the presence
of outliers. These tests show the adaptive power of the

GSF, which, in case of an outlier, is able to assign a higher
weight to the track-components with the widest standard
deviation. This ensures better protection against outliers
and offers some robustness. Obviously, as the model does
not describe the data adequately, the χ2-probability will be
distorted. This distortion is nevertheless less severe than
for LS estimators. A more robust approach is to combine
the AF with a Gaussian-sum filter, as the combined filter is
able to both down-weight outliers and use the full mixture
for the remaining tracks.
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