
Building Global HEP Systems on Kerberos

Matt Crawford,∗ Fermilab, Batavia, IL, USA

Abstract

As an underpinning of AFS and Windows 2000,
and as a formally proven security protocol [1] in its
own right, Kerberos is ubiquitous among HEP sites.
Fermilab and users from other sites have taken advan-
tage of this and built a diversity of distributed appli-
cations over Kerberos v5. We present several projects
in which this security infrastructure has been lever-
aged to meet the requirements of geographically dis-
persed collaborations. These range from straightfor-
ward ”Kerberization” of applications such as database
and batch services, to quick tricks like simulating
a user-authenticated web service with AFS and the
”file:” schema, to more complex systems. Examples
of the latter include experiment control room opera-
tions and the Central Analysis Farm (CAF).

We present several use cases and their security
models, and examine how they attempt to address
some of the outstanding problems of secure dis-
tributed computing: delegation of the least neces-
sary privilege; establishment of trust between a user
and a remote processing facility; credentials for long-
queued or long-running processes, and automated
processes running without any user’s presence; secu-
rity of remotely-stored credentials; and ability to scale
to the numbers of sites, machines and users expected
in the collaborations of the coming decade.

INTRODUCTION

Approaching the building of secure distributed
computing environments, several problems com-
monly arise. Some are particular to large or far-flung
collaborations—the “Grid environment”—while oth-
ers must be addressed even for localized groups
of moderate size. This contribution to CHEP 2004
presents Fermilab’s solutions to a selection of these
common problems.

No claim is made that the solutions presented rep-
resent the last or best word in any of the areas ex-
plored. Indeed, the first example that will be shown is

∗Work supported by the U.S. Department of Energy under
contract No. DE-AC02-76CH03000.

no longer in use at Fermilab, and has been superseded
by X.509 certificate-based methods. Nevertheless, we
hope that these case studies will prove useful. Areas
for further development are occasionally pointed out
along the way.

Environment

A few words are in order about the environment
in which these security practices were developed.
This all took place without reference to the con-
cept of a Virtual Organization (VO). All comput-
ing activities discussed here were either localized at
Fermilab or performed remotely on systems with a
Fermilab-centered mission. Consequently, all users
of the systems were “enrolled” with a single organiza-
tion. (However, some of them were enrolled through
trusted third parties’ endorsements without visiting
the lab in a physical sense.)

Kerberos and PKI

Although all solutions presented here are imple-
mented using Kerberos, this paper is not to be con-
strued as an argument for the adoption of Kerberos
over other security protocols such as PK methods us-
ing X.509 certificates. Although no two security pro-
tocols are not entirely interchangeable, the significant
components of Kerberos and PKI can be mapped into
each other, as Table 1 attempts to show. The com-
parison makes it clear that some common general-
izations about the differences between authentication
systems based on symmetric-key cryptography and
those based on public-key methods don’t really hold.
Deployment decisions are properly based on consider-
ations other than the underlying cryptography. Those
considerations include the support available in the re-
quired applications or the details of the infrastructure
needed to build the complete security system.

In environments where the users of resources tend
to have working relationships with the managers of
those resources, Kerberos is more often the chosen
authentication technology. Where the users and the
resource managers are organizationally more distant,



Kerberos PKI

Long-term secrets are symmetric keys
(DES, AES)

Long-term secrets are asymmetric keys
(RSA, ECC)

Symmetric session keys negotiated by
communicating parties

Symmetric session keys negotiated by
communicating parties

Principal holds secret key End entity holds private key

KDC issues tickets asserting secret key
possession

CA issues certificates asserting public key
binding

KDC knows all parties’ keys CAs’ public keys known securely to all
parties

Ticket-granting tickets reduce the use of
long-term client secrets

Proxy certificates reduce the use of
long-term client secrets

KDC must be on-line with respect to clients Fresh CRLs or an OCSP server must be
on-line to clients & servers

Cross-realm trust configured by realm
managers

Trusted CA list configured by system
admins

Table 1: Kerberos to PKI correspondences

PKI systems are more often chosen. But it must be
stressed that at a fundamental level, either system can
be made to work in either environment. Credentials
can even be “translated” (issued in one system based
on possession of credentials in the other) [2] [3] [4] al-
though repeated translations are generally undesirable
due to information loss with each translation.

Problem Space

The following representative security problems
have been selected as examples for this presentation.

• Authentication and authorization of web clients.

• Authentication of a user’s unattended processes.

• Delegation of a subset of a user’s rights.

• Authentication of long-queued or long-running
batch processes.

• Authentication of an agent acting on a user’s be-
half, when that agent acts for many users.

Methods for scaling the solutions to some of these
problems to handle large and widely dispersed collab-
orations will be discussed at the end.

CASE STUDIES

Web Authentication

An old adage in the field holds that “when all you
have is a hammer, everything looks like a nail.” That’s
the sort of thinking led to the first (and perhaps the
least interesting) example of building an authenticated
distributed application on Kerberos. It was observed
that a mature authentication system and authoriza-
tion structure already existed in the laboratory’s AFS
cell and could be exploited for fine-grained web ac-
cess control. Linking to file:///afs/... URLs
brings the AFS ACLs to bear without having to repli-
cate and maintain user information in .htpasswd and
.htaccess files.

In the negative column, however, is the fact that
many useful features of the HTTP protocol are lost
in the process – features such as state maintenance,
query strings, server-side scripting and the POST
method. Better solutions exist now, such as kct [2]
and GridSite [5].

Unattended Processes

Even the moderately sophisticated computer user
will make use of system facilities like cron for start-
ing processes without the user’s attention or presence.



In some cases, these processes require authenticated
access to other resources over the network. When
these processes are part of an existing service, the ser-
vice’s credentials are generally suitable to use for this
purpose, but for the majority of users this is not the
case and some distinct mechanism is needed.

Any scheme to authenticate an unattended process
involves some stored secret available to that process.
Hence the security of the operation of that scheme de-
pends on the integrity of the storage of the secret. For
the user to store his password on the computer is com-
pletely unacceptable. And any alternative mechanism
that allows the process to obtain the user’s creden-
tials hides an element of risk from security and re-
source managers: namely, that the trustworthiness of
this user’s credentials depends on the integrity of a
particular computer.

Our solution starts with an extension to the permis-
sion structure of the Kerberos administrative server,
kadmind. This extension allows any principal
user@REALM to create and destroy principals named
user/cron/hostname@REALM. This is combined with
a setuid program that helps the user create a stored-
key file in a protected area of local disk on hostname.

At this point the user is able to add a single com-
mand to his job and have it obtain the credentials of
user/cron/hostname@REALM whenever it runs. This
identity, however, has no rights to any resources until
the user places its name into an access control list.

Since the principal’s name includes the host where
the its key lives, the user, the security manager and,
service managers can revoke or suspend the princi-
pal’s key or its access rights if a suspected security
incident requires such action.

Limited Rights Delegation

When authorizing an agent to act on her behalf, a
prudent user might wish to delegate a restricted sub-
set of her own rights. This would afford some pro-
tection against theft of credentials and malfeasance
by the agent, and against errors in the user’s instruc-
tions to the agent. Unfortunately this is a measure
seldom taken, for a variety of reasons. Foremost is
that it would be some considerable bother for the user
to work out in advance the minimal set of privileges
needed to carry out a task. Also, operating systems
have rather little support for the concept of some of a
user’s processes having reduced privileges compared
to others. Some storage systems have a bit more flex-
ibility, supporting credentials which specify a set of

access rights to a set of files.
The Kerberos “5-to-4 translator” service is able

to rewrite principal names in tickets according
to configured rules, as it reformats a Kerberos
v5 ticket for a Kerberos v4 service. Fermilab
users may request principals with names of the
form user/afs/hostname@REALM. These principals
obtain AFS credentials as if they were simply
user@REALM, thus obtaining user’s AFS access but
no other access (unless the user chooses to grant more,
through a .k5login file for example).

Both Kerberos tickets and X.509 certificates can
carry extension fields that could convey limited autho-
rization to a service. Where these extensions are de-
fined, there is either no provision for carrying a subset
of the user’s rights (Windows 2000), or only a single
bit’s worth of limitation (Globus “limited proxy” cer-
tificates). Both protocols allow the user to request or
insert specific authorization data, so there are oppor-
tunities for development in this area.

Batch Processing and Shared Agents

It is a common characteristic of batch jobs to be
queued or running longer than the lifetime of any dele-
gated credentials the submitting user can provide. The
cautious user may hesitate to delegate his full creden-
tials to the batch system, and may even be unaware
which batch facility will ultimately run his job. This
leads us again to the idea of a distinct authentication
entity to represent the user’s processes on the batch
facility.

The example of unattended process brought out the
dependence of one user’s special credentials on the in-
tegrity of one system. A batch processing cluster mul-
tiplies this concern in two ways – many users and the
many computers that the system comprises. But the
integrity of the computers in such a cluster is tightly
coupled and is generally considered as a unit. So
rather than multiply the number of principal identi-
ties by the number of machines, a single principal per
user per cluster is created.

To reduce the risk of one job’s identity being stolen
by another job, user processes do not have access to
the secret keys which obtain their credentials. Instead,
the batch system obtains credentials before and/or
during job execution, using the recorded identity of
the submitting user to select the corresponding princi-
pal to identify the job. (Delegated credentials from the
user are not required, only authentication of the user.)
This removes any requirement for each user to have a



separate system account for execution.

SCALING CONSIDERATIONS

We have taken the security managers and the
helpdesk out of the loop for creation and management
of users’ “cron principals” for unattended process au-
thentication. We had not done the same for the princi-
pals used for similar purposes on the batch farms. The
great increase in off-site analysis computing by Run
II experiments made that a necessity. Once again, we
introduced principal naming structure to control the
authority and reflect the trust implications of the new
principals.

The CAF [6], or Central Analysis Facility (origi-
nally CDF Analysis Farm), is a batch cluster design
developed by and for the CDF experiment. It devel-
oped further into DCAF (DeCentralized Analysis Fa-
cility), of which roughly 25 instances exist around the
world.

Each CAF (and by that term I include DCAF)
has a headnode, to which the lab security team
issues one special Kerberos principal called the
“headnode principal.” Its name is of the form caf-
name/cdfcaf/headnode-name@FNAL.GOV, where
cafname uniquely identifies a particular cluster,
and headnode-name is the fully-qualified domain
name of the headnode. The kerberos administra-
tive server for the realm grants authority to the
headnode principal to create, destroy, and manage
the keys for “CAF user principals” of the form
username/cdf/cafname@FNAL.GOV. When a user
registers to use a given CAF, the headnode will
create such a principal and add its key to a keytab
file inaccessible to the user. (The headnode also
impersonates each CAF user principal once every
few months for the purpose of changing its long-term
secret key.) In this way, central support personnel are
relieved of the task of managing CAF user principals
(which number over 5,000 at this time), while the
lines of trust and responsibility for the privileges of
those principals are clearly delineated.

When a job starts, the batch monitor obtains a ticket
for the job’s identity, it renews the ticket during job
execution, and it destroys the ticket upon exit. As in
previous examples, this CAF user principal has no ac-
cess rights except what the user explicitly grants. This
grant of rights will typically cover access to some file
server for delivery of results.

SUMMARY

Fermilab has built a number of custom security so-
lutions on Kerberos, which is a security framework
widely used in the HENP community. The solutions
are conceptually portable to public-key-based secu-
rity systems. The special authorization features are all
based on minimally structured names of entities, not
on newly-defined extensions to credentials. The latter
would have more expressive power, but would require
development of new client and server software. The
schemes presented here involve no protocol changes
and work with most vendors’ standard Kerberos v5
clients. Some extensions were made to the syntax of
the administrative server’s ACL file (kadm5.acl), but
those extensions are now part of the MIT Kerberos
distribution [7].

REFERENCES

[1] G. Bella and E. Riccobene, ”Formal Analysis of the
Kerberos Authentication System”. Journal of Univer-
sal Computer Science, vol. 3, no. 12 (1997), 1337-
1381.

[2] http://www.citi.umich.edu/projects/kerb pki/

[3] http://www.ietf.org/internet-drafts/draft-ietf-cat-
kerberos-pk-init-20.txt

[4] ftp://achilles.ctd.anl.gov/pub/kerberos.v5/README.sslk5

[5] A McNab and S. Kaushall, “The GridSite Authoriza-
tion System”. Proceedings of Computing in High En-
ergy and Nuclear Physics (CHEP) 2004.

[6] http://cdfcaf.fnal.gov/doc/cafDesign/cafDesign.html

[7] http://web.mit.edu/kerberos/


