

User
Code

VMC

FLUKA VMC

G4 VMC

G3 VMC

FLUKA
 Transport

G4
Transport

G3
Transport

Fig. 1: The Virtual MC Concept

THE VIRTUAL MONTE CARLO: STATUS AND APPLICATIONS

R. Brun, F. Carminati, E. Futó, A. Gheata, P. Hristov, A. Morsch, CERN, Geneva Switzerland

A. Fassò, SLAC, Stanford, USA

M. Gheata, Institute of Space Science, Bucharest, Romania

I. Hřivnáčová, IPN, Orsay, France

Abstract

The current major detector simulation programs, i.e.
GEANT3, GEANT4 and FLUKA have largely
incompatible environments. This forces the physicists
willing to make comparisons between the different
transport Monte Carlos to develop entirely different
programs. Moreover, migration from one program to the
other is usually very expensive, in manpower and time,
for an experiment offline environment, as it implies
substantial changes in the detector description and
response simulation code. To solve this problem, the
ALICE Offline project has developed a virtual interface
to these three programs allowing their seamless use
without any change in the framework, the geometry
description or the scoring code. Moreover, a new
geometrical modeller has been developed in collaboration
with the ROOT team, and successfully interfaced to the
three programs. This allows the use of one description of
the geometry, which can be used also during
reconstruction and visualization. The paper will describe
the present status and future plans for the Virtual Monte
Carlo. It will also present the capabilities and
performance of the geometrical modeller.

CONCEPT AND CURRENT DESIGN
The Virtual MC (VMC) has already been described in

detail in Ref. [1]. Here we describe briefly the main
concepts (Fig. 1) and progress since then. The VMC
defines an abstract layer between the detector simulation
user code and the transport code. In this way the user

code for detector description, scoring and detector
response simulation becomes independent from the
specific MC and it is easy to use different transport codes,
GEANT3 [2], GEANT4 [3], FLUKA [4] within the same
simulation application.

The interface consists of four abstract classes that are
part of the ROOT [5] framework (Fig. 2). TVirtualMC is
the interface to the transport MC itself.
TVirtualMCApplication, TVirtualMCStack, and
TVirtualDecayer are used to make a concrete
implementation of the TVirtualMC independent from the
user specific simulation application.
TVirtualMCApplication represents an abstraction of the
run and event steering, TVirtualMCStack defines an
interface to a user defined particle stack and
TVirtualMCDecayer defines an interface to an external
particle decayer.

Two concrete implementations, TGeant3 and Geant4
VMC for GEANT3 and GEANT4, respectively have
already been described in Ref. [1]. Since then, these
implementations have been further tested and
consolidated. On user demand TVirtualMC has been
extended by a few new methods for user particle
definitions and for user run abortion. Our main efforts
have been concentrated on the implementation of the
TVirtualMC realisation of the FLUKA transport code,
TFluka. This work has been simplified by the introduction
of an additional level of abstraction provided by the class
TVirtualMCGeometry. It facilitates the interfacing of the
MC transport code to an external geometry modeller for
geometry description and navigation as discussed in the
following section.

GEOMETRY AND VIRTUAL MC

Geometry is a critical issue when implementing the
TVirtualMC interface. Mapping the TVirtualMC methods
for defining the geometry to the native geometry
definition and creation was a simple task only for
GEANT3. For GEANT4 the G3toG4 toolkit [6] is used.
In case of FLUKA it is practically impossible to convert
to its native geometry that is based on a flat structure
obtained by Boolean operations between basic shapes as

opposed to the tree structure used by GEANT3 and
GEANT4. For the first implementation of TFluka we used
FLUGG [7] in order to be able to run FLUKA together
with the GEANT4 geometry modeller. However, this was
unsatisfying since the combination TFluka+FLUGG was
completely unstable in tests with the ALICE detector
simulation. This is just one of the symptoms of the fact
that geometry modellers are deeply embedded within the
MC frameworks.

For this reason the ALICE Off-line Project in
collaboration with the ROOT team have proposed and
implemented a multi-purpose geometry modeller for
HEP, TGeo [5, 8], that is integrated within the VMC
infrastructure. TGeant3 has already been fully interfaced
to TGeo and will enter production next year. Also TFluka
uses TGeo. Testing of TFluka+TGeo is still ongoing. The
interfacing with TGeant4 turned out to be difficult so far
due to the lack of abstraction of the GEANT4 navigation.
However the situation has improved and a strategy has
been defined for the complete integration of TGeo into the
GEANT4 VMC implementation. We expect that the
implementation will be finished in 2005. At present, the
TGeo model is supported in GEANT4 VMC via the
roottog4 tool by converting directly from the TGeo model
to the GEANT4 native geometry model. In addition, a
generalized version of the converters [9] has been
developed in order to facilitate the use of VMC for
GEANT4 users by providing a tool for transition from the
GEANT4 native geometry to TGeo.

STATUS OF GEANT3 and GEANT4 VMC

GEANT3 VMC
TGeant3 is used by ALICE in production. Further

developments concentrated on the use with TGeo and
testing. Comparisons between TGeo and GEANT3 native
geometry on the hit level do not show any relevant
differences. Step-by-step comparisons are ongoing.
Especially transport close to boundaries needs further
detailed testing and fine-tuning. Timing benchmark tests
show that TGeo is in all tested cases faster then the native
GEANT3 geometry modeller [8].

GEANT4 VMC
GEANT4 VMC is in maintenance, i.e. it is regularly

tested with each new GEANT4 and ROOT releases and
updated if needed. The main new features are the
enabling of user defined physics lists, the consolidation of
the rootog4 converter (support for positioning with
reflection and for composite shapes) and extension of
g4toxml to the GDML scheme [10].

FLUKA VMC STATUS
The main components and communication lines for the

TFluka implementation are shown in Fig. 3.

Initialisation and Configuration
In the initialisation phase the TGeo geometry is created

and TFluka collects the user physics and transport
configuration in objects of type TFlukaCutsOption and
TFlukaConfigOption. Using this information TFluka
writes a standard FLUKA configuration file that contains
the user configuration, the material definitions and the
material to region assignments. TFluka calls FLUKA only
through its main steering routine flukam. This routine is
called once for the FLUKA initialisation in which
FLUKA reads the configuration file and then for every
event. During the processing of events, FLUKA calls
back TFluka through the FLUKA user routines. These
have been written in C++ and have the task to pass
intermediate information about the transport status from
the argument list to TFluka and to delegate the FLUKA
calls to corresponding methods in TFluka,
TVirtualMCApplication and TVirtualMCStack.

Primary Particles

The routine responsible for fetching new primary
particles and putting them on the FLUKA stack is source.
Our version of source takes particles one by one from the
TVirtualMCStack. It also checks whether there are any
un-transported primaries on the stack. This can happen in
the case particles have been put on the stack by the user.
Finally source is responsible to call for each primary the
following methods of TVirtualMCApplication:
BeginPrimary() and PreTrack() at the beginning of
transport and FinishPrimary() and PostTrack() at the end.

TVirtualMCApplicationTVirtualMCApplicationTVirtualMCStackTVirtualMCStack TVirtualMCTVirtualMCTVirtualMCDecayerTVirtualMCDecayer

UserApplicationUserApplicationUserStackUserStack TGeant3TGeant3User User DecayerDecayer TGeant4TGeant4TFlukaTFluka

TVirtualMCGeometryTVirtualMCGeometry TGeoMCGeometryTGeoMCGeometry

Fig. 2: The Virtual MC class design.

TFluka

TVirtualMCTVirtualMC Geometry interface
with TGeo

TFlukaMCGeometry

TFluka TFluka

TFluka
Common building

methods

TGeoMCGeometry

TFlukaTFlukaCutOption
TFlukaTFlukaCutOption

TFlukaTFlukaCutOption
TFlukaTFlukaCutOption

TFlukaTFlukaConfigtOption
TFlukaTFlukaConfigtOption

TFlukaTFlukaConfigtOption
TFlukaTFlukaConfigOption

FLUKAFLUKA
User RoutinesUser Routines

particle sourceparticle source
scoring / steppingscoring / stepping
stackingstacking
optical propertiesoptical properties
magnetic fieldmagnetic field

FLUKAFLUKA
NavigationNavigation

FLUKAFLUKA

Text
Input

flu
ka

m
TVirtualMCApplicationTVirtualMCApplication TVirtualMCStackTVirtualMCStack

TFlukaTFluka

TVirtualMCTVirtualMC Geometry interface
with TGeo

TFlukaMCGeometry

TFluka TFluka

TFlukaTFluka
Common building

methods

TGeoMCGeometry

TFlukaTFlukaCutOption
TFlukaTFlukaCutOption

TFlukaTFlukaCutOption
TFlukaTFlukaCutOption

TFlukaTFlukaCutOptionTFlukaTFlukaTFlukaCutOption
TFlukaTFlukaCutOptionTFlukaTFlukaTFlukaCutOption

TFlukaTFlukaCutOptionTFlukaTFlukaTFlukaCutOption
TFlukaTFlukaCutOptionTFlukaTFlukaTFlukaCutOption

TFlukaTFlukaConfigtOption
TFlukaTFlukaConfigtOption

TFlukaTFlukaConfigtOption
TFlukaTFlukaConfigOption

TFlukaTFlukaConfigtOptionTFlukaTFlukaTFlukaConfigtOption
TFlukaTFlukaConfigtOptionTFlukaTFlukaTFlukaConfigtOption

TFlukaTFlukaConfigtOptionTFlukaTFlukaTFlukaConfigtOption
TFlukaTFlukaConfigOptionTFlukaTFlukaTFlukaConfigOption

FLUKAFLUKA
User RoutinesUser Routines

particle sourceparticle source
scoring / steppingscoring / stepping
stackingstacking
optical propertiesoptical properties
magnetic fieldmagnetic field

FLUKAFLUKA
NavigationNavigation

FLUKAFLUKA

Text
Input

flu
ka

m
TVirtualMCApplicationTVirtualMCApplication TVirtualMCStackTVirtualMCStack

Figure 3: TFluka Implementation

Stepping
User stepping is called through the FLUKA routines

mgdraw, bxdraw, usdraw and endraw for normal steps,
boundary crossings, interactions and energy depositions,
respectively. In order to minimize the stack size FLUKA
transport follows first the secondaries arising from
interactions like bremsstrahlung or δ-electron production

and resumes the transport of the mother particle after the
daughters have been finished. The pausing and resuming
of the mother particle is signalled to the stepping routine
in order to guarantee that the user hit generation
algorithms can handle this situation.

Stacking

TVirtualMCStack does not replace the native FLUKA
stack but acts as a monitor. The FLUKA routines stupre
and stuprf that have the responsibility to copy secondaries
from the stacks for electromagnetic and hadronic
interactions, respectively, to the main stack, are used to
copy particles to the VMC stack. A special case is
Cerenkov photon production. Cerenkov photons are
recorded at production in the FLUKA routine crnkvp.

Geometry

An important milestone in the development of the
TFluka implementation has been the replacement of the
FLUGG interface to the GEANT4 geometry modeller by
an interface to TGeo. Tests with the ALICE geometry
have shown that FLUGG+GEANT4 is unstable and

suffers frequent crashes. The interface to TGeo has been
implemented through the class TFlukaMCGeometry. This
class wraps the FLUKA geometry navigation routines that
delegate their tasks to corresponding TGeo methods.
TFluka itself delegates all geometry related tasks to
TFlukaMCGeometry, for example the writing of the
material to region assignments for the FLUKA input.

PEMF Data Files

For the simulation of electromagnetic processes
FLUKA needs a data file created by the PEMF pre-
processor program. This file contains pre-processed data
for all materials assigned to regions. Since the
development to automate this procedure inside FLUKA is
still ongoing we use TFlukaMCGeometry to prepare
automatically and on demand the PEMF input files and
run the pre-processor.

Optical Properties

FLUKA does not manage and store detailed user data
on material optical properties but delegates this task to
user routines, abscff, dffcff, queffc, rflct, rfrndx, for
respectively, absorption coefficient, diffusion coefficient,
quantum efficiency, reflectivity, and refraction index. An
elegant way to manage optical properties in FLUKA
VMC is to attach for those materials that have user
defined optical properties objects of type TFlukaCerenkov
to the TGeo class TGeoMaterial (Fig. 4).

Fig. 4: Storing material optical properties.

Validation
Validations of TFluka+TGeo within the AliRoot

simulation framework and within a specialized test-suite
implemented as a TVirtualApplication have started.
Within AliRoot we performed first comparisons on the hit
level between TFluka and TGeant3. This allows us to test
that the program is technically working correctly. Very
stringent testing of the TFluka+TGeo geometry has
started on point-by-point comparisons between TFluka
and FLUKA at boundary crossings. As shown in Fig. 5
first results with a vacuum-filled geometry are very
satisfying as we find differences on the level of the
floating-point machine accuracy. More tests will be
necessary before the geometry can be considered
validated and they are ongoing.

CONCLUSIONS
Implementations of the Virtual MC for the three main

transport codes GEANT3, GEANT4 and FLUKA have
been almost completed. TGeant3 is used in production by
the ALICE collaboration. The GEANT4 VMC
implementation is complete, but ALICE plans
to implement a GEANT4 navigation layer based
completely on the TGeo modeller in order to use the
TGeo modeller in an uniform way with all three VMC
implementations. Most of our effort went into the
implementation of TFluka and in particular in its
interfacing with TGeo. TFluka is already used within the
AliRoot framework in which it will undergo stringent
testing.

REFERENCES
[1] I. Hřivnáčová et al., Proceedings of Computing in
High Energy and Nuclear Physics, La Jolla (2003).
[2] R. Brun et al., GEANT3 User Guide, CERN Data
Handling Division, DD/EE/84-1 (1985).
[3] S. Agostinelli et al., Nucl. Instrum, and Methods A506
(2003), 250-303.
[4] A. Fassò et al., Proc. of the MonteCarlo 2000
Conference, Lisbon, Springer Verlag Berlin (2001) p.
159-164 and p. 955-960.
[5] http://root.cern.ch/root/doc/RootDoc.html.
[6] I. Hřivnáčová, “GEANT4 in the AliRoot framework”,
Proc. of Computing in High Energy and Nuclear Physics
2001, Science Press Beijing New York, p. 534.
[7] M. Campanella et al., ATLAS Internal Note, ATL-
SOFT 98-039 (1998).
[8] A. Gheata, M. Gheata, and R. Brun, Proceedings of
Computing in High Energy and Nuclear Physics, La Jolla
(2003).
[9] I. Hřivnáčová, “The Virtual Geometry Model”, these
proceedings.
[10] R. Chytracek, ”The Geometry Description Markup
Language'', CHEP'01, Beijing, September 2001, 8-009.
http://gdml.web.cern.ch/gdml/.

TFlukaTGeoMediumTFlukaTGeoMaterial TFlukaCerenkov

Fig.5: Exemplary result of a point-by-point
comparison between TFluka+TGeo and FLUKA
boundary crossings. v

r is the particle direction and
rd
r the difference between the FLUKA and TFluka

crossing points.

