
H1OO - an analysis framework for H1

Judith Katzy for the H1 collaboration, DESY, Hamburg, Germany

Abstract

During the years 2000 and 2001 the HERA accelerator
and the H1 experiment performed substantial luminosity
upgrades. To cope with the increased demands on data
handling, an effort had been made to redesign and moder-
nize the analysis software. Main objectives were to unify
the physics related software and to lower turn-around time
for physics analysis by providing a single framework for
data storage, event selection, physics analysis and event
display. A new object oriented analysis environment was
developped using C++ and the RooT framework. Ad-
ditional persistent data layers for physics particles, event
summary information and user specific information were
defined. Links between all data layers and partial event
reading allow for correlating quantities of different abstrac-
tion levels with high performance. Binding on demand of
existing FORTRAN based libraries allows for (a) reuse of
existing utility functions and (b) access of the existing data
base. On this basis tools with enhanced functionality are
provided. This framework has become standard for data
analyses of previously and currently collected data.

MOTIVATION

The H1 experiment at the HERA electron proton col-
lider at DESY started taking data in 1992. Until 2000 H1
collected 120 pb−1 luminosity corresponding to 35TB raw
data and 3.5TB of reconstruction output. Analysis was
done based on FORTRAN and FORTRAN based pack-
ages BOS[2], fpack[3], hbook[4] and PAW[5]. In order to
reach higher luminosities a major accelerator and detector
upgrade was done in the years 2000-2002. This upgrade
provided a good opportunity for a software upgrade.

Main objective of the software upgrade is lowering the
turn-around time for physics analysis by

• modularisation and unification of the analysis soft-
ware

• centralisation of expert knowledge on physics algo-
rithms

• providing a common particle concept

• improved data access

Because of the large amount of data already recorded it
was required that the software is able to read previous data
formats and that established FORTRAN code may still be
used.

Since an object oriented framework suits best the re-
quirements H1OO is written in C++ and based on the RooT
analysis framework [1].

H1 DATA STREAM AND STORAGE
MODEL

Fig. 1 shows the data stream and storage model of H1
data. H1 data are recorded and directly reconstructed using
the FORTRAN reconstruction codes. The data are stored
in BOS/fpack format on raw data tapes, subsets are copied
on Data Summary Tapes (DST).

The DST files are converted into an Object Data Store
(ODS) containing cluster, track and BOS bank objects as a
1-1 copy of the DST in RooT format to be accessed in the
H1OO framework. The average event size in ODS format
is 13kB.

The H1OO physics algorithms run on the ODS data to
define physics particles that are stored in the µODS data
layer. This is the main data layer for physics analysis with
a size of 3 kB/event.

Event summary information that is used for event selec-
tion (“tagging”) such as the number of particles of a given
type, event kinematics, detector status etc. is stored as basic
types on the H1 Analysis Tag (HAT) data layer. It contains
0.4 kB/event.

If specific information is needed for analysis it can be
stored in so called User Trees that are filled with user spe-
cific code. ODS, µODS, HAT and UserTree are stored in
RooT format.

Due to the small event sizes the µODS and HAT data lay-
ers are stored on a file server with fast access using rfio[1].
In general, ODS files are not stored persistently, since the
access time to read ODS objects from disk is only increased
minimally in comparison to reading the DST files and con-
verting the information in memory. Due to its larger size,
DST data are stored on tapes and are accessed using dcache
[6].

DATA ACCESS

The different data layers are linked by the class H1Tree
that provides access to all data layers in a single event loop
transparent to the user. Since the DST file location is stored
together with the µODS and HAT data it is not needed as
input for the H1Tree.

Events can be selected using the information stored on
HAT in basic logic operations. However, if information
from other data layers or more complex calculations are



ODS

mODS

HAT

user Tree

DST

H1OO Physics
algorithms

BOS/FPACK
H1Tree/ROOT

User Code

Raw data

(FORTRAN)
 ConversionCopy of subsetReconstruction

Figure 1: H1 data stream and data layers. The reconstruction of tracks and clusters is done with the established FORTRAN
codes and stored in BOS/fpack format. Physics algorithms and particle finders are implemented in H1OO and the output
is stored in the new data layers µODS and HAT in RooT format.

Particle 
candidates

Electrons

Jets

Muons

J/Psis

Kaons

Cluster

Tracks

Figure 2: H1OO physics particles and their relation. Arrows indicate links between the different particle classes imple-
mented as smart pointers. Even the reconstruction output stored on ODS and used to build the physics particle can be
accessed transparent to the user.

needed for the selection, a separate selection program has
to be written. The output can then be stored as a list of se-
lected events, a so-called H1EventList. The list contains
the link to the selected events, the selection string, and
name and location of the associated files. This way sub-
samples of events can be stored without duplication of the
data files. For example, eventlists for standard H1 data sets
are provided together with the data.

The H1OO data are stored in RooT trees with one branch
for each class. H1OO software provides smart pointer
classes with a simple user interface that reads only the
demanded branches transparent to the user. In addition,
the pointer relation between objects stored in different
branches is made persistent by identification of objects and
tree branches with a unique integer ID. To keep the partial
event reading capability, the referred object is only loaded
when it is dereferenced.

With the H1OO extension to RooT I/O partial event
reading is possible (via smart pointers) within one data
layer and across different data layers which is crucial for
the particle concept discussed below.

PARTICLE CONCEPT

The particle information on µODS is available as particle
candidates, identified particles and composed particles see
Fig 2.

The particle candidates consist of a track, clusters or a
track-cluster link associated with one or more identified
particles or the hadronic final state. The 4-Vector of the
particle candidates correspond to the most probable parti-
cle hypothesis to avoid double counting of energy. The sum
of the energies of the particle candidates corresponds to the
energy of the final state. Each particle candidate stores the
link to the tracks and clusters on ODS that they’re build
from. In addition, a list of identified particles that are based
on this particle candidate is provided to allow for studies on
multiple particle hypothesis.

Identified particles store their 4-Vector and keep detailed
information related to the particle as used by the physics
finder or as needed for further classification. In addition,
they contain a link to the associated particle candidate that
allows to retrieve the reconstruction level information of
the particle. Composed particles store their 4-Vector and
the link to the particles they’re composed off. Among the
identified and the composed particles multiple particle hy-
pothesis based on the same tracks and clusters are allowed.



This way dependencies among the identified particles are
avoided and the list of identified particles is extendable i.e.
new particles can be added without effecting existing ones.

The links between the different particle classes are im-
plemented as smart pointers and allow to collect all infor-
mation related to the analysed particle even across the data
layers with partial event reading.

PHYSICS ALGORITHMS

The H1OO framework provides physics algorithms for
all aspects of physics analysis: particle finders used to fill
the different data layers, tools to calculate event kinematics
and luminosities, statistic tools such as neuronal networks,
3D event display with GUI, etc.. All physics algorithms
have all been re-written in H1OO based on the current ex-
pert knowledge. During the development of the algorithms,
the new H1OO implementations were first compared event-
by-event to the established FORTRAN. In the meantime,
the algorithms have been further developped and new algo-
rithms are added to the H1OO analysis.

The code has been divided into modules with special
care to keep it modular and extendable. The code is split
into 45 packages that compile into a shared library each.
Circular dependency between the core framework packages
are avoided. Steering of the physics algorithms and the data
handling is based on the RooT command line interpreter
CINT [7].

SUMMARY

The H1OO analysis framework has successfully been es-
tablished as the standard tool for physics analysis in H1.
The key of the success was the clear definition of the scope
of the project:

• A code development group takes care of the technical
challenges, such as encapsulation of the data handling.
The physics working groups develop algorithms and
add their code via well defined interfaces. Special
workshops are organised on the unification and im-
plementation of physics algorithms across different
working groups.

• The end users obtain a nice and easy-to-use product
integrating all analysis specific tools into one single
framework.

The physics analysis all greatly profit from the new and
enhanced analysis environment. The framework is widely
accepted within the Collaboration: most of the results pre-
sented in recent physics conferences were obtained using
the H1OO framework.

REFERENCES

[1] Rene Brun and Fons Rademakers, “ROOT - An Object Ori-
ented Data Analysis Framework”, Proceedings AIHENP96
Workshop, Lausanne, Sep. 1996, Nucl. Inst. Meth. in Phys.

Res. A 389 ,81-86(1997).
See also http://root.cern.ch/.

[2] V.Blobel, “The BOS System - Dynamic memory manage-
ment”, DESY Internal Report R1-88-01 (1988).

[3] V.Bloble, ”FPACK - a general standalone package for ma-
chine independent data input/output”, H1 internal report
(1991)

[4] http://wwwasdoc.web.cern.ch/wwwasdoc/hbook html3/hboomain.html

[5] http://wwwinfo.cern.ch/asd/paw/

[6] http://www.dcache.org

[7] M. Goto, “C++ Interpreter - CINT”, CQ publishing, ISBN4-
789-3085-3 (Japanese)
Rene Brun and Fons Rademakers, “ROOT: An object ori-
ented data analysis framework”, Linux Journal 998July Issue
51, Metro Link Inc, (English)


