
INTERACTIVE DATA ANALYSIS ON THE GRID USING GLOBUS 3 AND
JAS3

A.S. Johnson, V. Serbo, M. Turri, SLAC, Stanford University, Stanford, California 94309,USA

B. Anathan, D.A. Alexander , Tech-X Corp., 5621 Arapahoe Ave, Boulder, CO 80303, USA

Abstract

This paper provides a status report on the Dataset
Analysis Grid Service (DAGS) project. The aim of the
service is to allow fully distributed analysis of large
volumes of data while maintaining true (sub-second)
interactivity. The Grid related components are based on
OGSA style Grid services, and to the maximum extent
possible uses existing Globus Toolkit (GT3) services. All
transactions are authenticated and authorized using GSI
(Grid Security Infrastructure) mechanism - part of GT3.
JAS3, an experiment independent data analysis tool is
used as the interactive analysis client.

INTRODUCTION
In this paper we describe a toolset for performing

interactive data analysis on the Grid [1]. The goal of the
project is to allow data analysis to be performed in
parallel on a set of worker machines, to maximize the
amount of CPU power and IO capability that can be
delivered in a short time, while presenting results to the
user with a graphical client running on their desktop
workstation. Unlike most Grid projects which aim at
batch style submission of data analysis, where turnaround
time is typically from minutes to hours, our goal is to
provide sub-second response times, for example allowing
cuts to be changed dynamically and the resulting change
in plots to be seen immediately, or to allow plots to be
updated dynamically as a longer analysis task is
progressing. Ideally the details of how the analysis is run
on the Grid should be hidden from the user; we want them
to have the impression that their desktop machine has
seamlessly become capable of analysing more data in a
given time.

PREVIOUS WORK
 In an earlier phase of this project we took the existing

JAS2 [2] graphical data analysis system and extended it to
work in a distributed environment. With these extensions
JAS2 was able to work in three modes:

1. Local mode, where data to be analyzed,
analysis algorithms, and graphical user
interface (GUI) all run on the users desktop.

2. Client-Server mode, where data to be analyzed
lives on a remote server, and analysis code is
sent to the server to be run, but results are
presented to the user using their desktop GUI.

3. Distributed mode, where data and analysis are
distributed to a set of worker machines, where

the analysis runs in parallel, but results are still
presented on the user’s desktop

In this third mode, we use Globus 2 [3] to start services
on each of the worker nodes, and use Java Remote
Method Invocation (RMI) as the network protocol for
communication between the desktop machine and the
worker node. Communication between the client and
workers is mediated by a gateway node that combines
results from each worker machine and presents the
combined result to the client. Figure 1 shows the
components added to the JAS2 GUI to enable the
distributed mode.

Figure 1: The JAS2 wizard for creating a Grid job
prompts the user for their choice of data files to analyze
and then shows the user the status of the launch of the
servers on each of the worker nodes.

CURRENT PROJECT
The current project builds on the earlier work

performed with Globus 2 and JAS2, but attempts to
standardize on OGSA [4] web services, reusing standard
services provided by Globus 3 and others where they
exist, and implementing new services where necessary.
Considerable thought has been put into decoupling
services as much as possible, so that individual services
can be independently reusable.

In keeping with modern practice we have kept a clear
separation between the definition of the public interfaces
and the implementation of those interfaces. The interfaces
have been designed in consultation with the PPDG-CS11
group [5], while the reference implementation, which we
call Dataset Analysis Grid Service (DAGS), has been
developed by the authors.

Dataset Catalog Service
The first interface designed as part of the current

project was the Dataset Catalog Service (DCS). The
intention of this interface is to provide a public API for
use by physicists for finding data samples of interest. This
API can be used directly or indirectly via some graphical
or console based search tool. The interface allows datasets
to be arranged hierarchically so that they can be browsed
(like files in a file system), but also allows datasets to
have associated meta-data and provides a mechanism for
the user to perform searches based on the meta-data.

The interface does not make any assumptions about
how the datasets are stored, or how the meta-data is
stored, the explicit intention is to make it possible to
implement this catalog interface on top of any existing
dataset catalog, and thus to allow tools to search many
different dataset catalogs without having to have a custom
interface to each catalog. In order to provide maximum
flexibility, the result of a search is a list of DatasetID’s,
each consisting of an opaque string ID, and a Grid Service
Handle of a service which is able to interpret the ID and
make the data available for further analysis.

In addition to providing the definition of the DCS
interface we have produced a reference implementation
which uses a simple XML description of the available
datasets and meta-data, and provides a Java GUI for
browsing or searching for datasets (Figure 2). The dataset
query language supported by the reference
implementation is XPath [6].

Dataset Analysis Grid Service

The Dataset Analysis Grid Service (DAGS) builds upon

the design concepts of the Dataset Catalog Service to
build a complete distributed interactive dataset analysis
system. DAGS aims to allow a client to perform data
analysis in parallel on a farm of machines, to improve
data throughput, while presenting the results to the user
through a GUI which hides as much as possible of the
distributed nature of the system.

DAGS requires that a set of custom grid services are
installed on a single gateway node at each site. The only
initial requirements on the nodes used for data analysis
(the worker nodes) are that Globus Toolkit and a Java VM
be installed; everything else is deployed dynamically by
DAGS. There is no requirement that the worker nodes
have access to the internet, all communication with the
client takes place via the gateway node. On the client
node the only requirement is that JAS3 is installed, no
Grid software is required on the client node except for the

Java CoG kit [7] which is dynamically deployed by
DAGS as required using the JAS3 plugin mechanism.

Figure 2: The interface for the dataset catalog service.
This figure shows how users can browse the catalog, or
perform a meta-data query, resulting in the selected
datasets being highlighted.

Figure 3 shows the conceptual architecture of the

current DAGS system. Although the intention is to switch
to using OGSA interfaces throughout, currently the
system uses Java RMI in places, largely for historical
reasons. The intention is to remove all RMI interfaces in
future (but see the comments on performance below).

Conceptually the system works as follows: The user
first uses the JAS3 proxy login plugin to authenticate to
the Grid and obtain a proxy certificate. The user then
chooses one of more datasets to be analysed, using the
data chooser plugin in JAS3 (based on the Dataset
Catalog Service described earlier). The DAGS client is
then used to submit analysis tasks to the system which
work on the selected datasets. The analysis tasks can be
specified as scripts (currently Pnuts [8] and Python [9]
scripting languages are supported) or as compiled Java
code.

The Dataset Analysis Manager Service uses the
DatasetID’s sent be the user to locate the data using the
dataset locator service. The dataset locator service returns
a handle to a data splitter service, which knows how to
partition the data to be analysed into smaller parts which
can be analysed in parallel. Depending on the specific
type of data, the data splitter service may actually create
many small files containing subsets of the data, or it may
know that the dataset already exists as many component

files, or it may simply logically partition the data, for
instance by choosing different sets of records from a
database. The Dataset Analysis Manager Service then
chooses a set of worked nodes to be used for the analysis,
and uses the Globus Reliable File Transfer Service to
move the data and any required programs to the worker
nodes. An Analysis Server is then started on each worker
node, using the Globus Managed Job Service and the
analysis script or program provided by the user is
dynamically loaded into the analysis server.

As the analysis executes various results may be
produced, such as histograms, n-tuples, log files, etc.
These are fed via the Result Merging Service back to the
client. If the user chooses to view one of these results
while the analysis code is still executing, for example a
histogram, they will see the resulting plot update in real
time, as the merging service will (on request) continually
get the result components from each worker node,
combine them together, and feed them back to the client.

Figure 3: Conceptual diagram of the components comprising the Dataset Analysis Grid Service (DAGS).

STATUS AND PERFORMANCE
The DAGS system is currently installed as a prototype

on a small number of nodes at SLAC. One issue currently
being worked on is the performance of Globus OGSI
compared to Java RMI used earlier in the project. Some
results on performance for trivial operations are shown in
table 1. The times shown in the table are the total elapsed
times for 100 remote method calls over a 100Mbps LAN,

excluding the first call. For Globus we used Globus
Toolkit 3.2 running with the Globus Grid service
container. The test code is derived from the Auction
service example distributed with the Globus toolkit. For
RMI we used Java 1.4.2 with an implementation
functionally equivalent to the auction service used for the
Globus tests.

Possible causes for the relatively slow performance of
Globus is the overhead of marshalling and unmarshalling
XML messages, the overhead associated with GSI

WORKER NODE 1 WORKER NODE 2

 JAS3 Client

Dataset Analysis
Manager Service

Dataset Catalog
Service

 Index Service

Dataset Locator
Service

Data Splitter Service

Reliable File
Transfer Service

Analysis
Server

Analysis
Server

Managed Job
Service Reliable File

Transfer Service
Managed Job

Service

Analysis
Task Results

Analysis Job
Description

Results
Dataset ID Dataset query

Result Merging Service
(AIDA based)

Firewall

Caching Service

Data Chooser
Plugin

Proxy Login
Plugin

DAGS client

security, and the overhead of establishing an http
connection for each message. We are currently working
with members of the Globus team to try to fully
understand the overhead associated with OGSI, and
hopefully rectify or workaround the problem.

Table 1: Comparison of elapsed time for invoking a trivial
remote method call using different protocols. Each time

quoted is for invoking the remote method 100 times over
a 100Mbps LAN.

RPC Protocol Elapsed Time

Java RMI 96 ms

Globus 3.2 (non-secure) 22 seconds

Globus 3.2 (secure) 112 seconds

Once the performance problems have been ironed out
we plan to deploy the system with real users and real data.
Our initial plans are to target users doing simulation
studies for a future International Linear Collider. In
addition we are exploring interoperability with other
systems, in particular Clarens [10] and gLite [11].

ACKNOWLEDGEMENTS
Work supported by Department of Energy contracts

DE-AC03-76SF00515 and DE-FG02-03ER83856.

REFERENCES

[1] I.Foster and C. Kesselman, editors, The Grid:

Blueprint for a New Computing Infrastructure.
Morgan Kauffmann Publishers, 1998 (2nd edition, Nov
2003).

[2] http://jas.freehep.org/
[3] The Globus Toolkit, http://www.globus.org/
[4] Open Grid Services Architecture (OGSA)

http://www.globus.org/ogsa/
[5] CS11 is working group of the Particle Physics Data

Group (PPDG), http://www.ppdg.net/pa/ppdg-
pa/idat/index.html

[6] XML Path Language (XPath) 2.0. W3C Working
Draft 29 October 2004.
http://www.w3c.org/TR/xpath20/

[7] Java CoG Kit: http://www-unix.globus.org/cog/java/
[8] Pnuts scripting language: https://pnuts.dev.java.net/
[9] Python programming language:

http://www.python.org/
[10] C. Steenberg, The Clarens Grid-enabled Web

Services Framework: Services and Implementation,
presented at this conference.

[11] gLite, Lightweight Middleware for Grid Computing:
http://glite.web.cern.ch/glite/

http://jas.freehep.org/
http://www.globus.org/
http://www.globus.org/ogsa/
http://www.ppdg.net/pa/ppdg-pa/idat/index.html
http://www.ppdg.net/pa/ppdg-pa/idat/index.html
http://www.w3c.org/TR/xpath20/
http://www-unix.globus.org/cog/java/
https://pnuts.dev.java.net/
http://www.python.org/
http://indico.cern.ch/contributionDisplay.py?contribId=184&sessionId=7&confId=0
http://indico.cern.ch/contributionDisplay.py?contribId=184&sessionId=7&confId=0
http://glite.web.cern.ch/glite/

	INTERACTIVE DATA ANALYSIS ON THE GRID USING GLOBUS 3 AND JAS
	INTRODUCTION
	PREVIOUS WORK
	CURRENT PROJECT
	Dataset Catalog Service
	Dataset Analysis Grid Service

	STATUS AND PERFORMANCE
	ACKNOWLEDGEMENTS
	REFERENCES

