
DIRAC - THE DISTRIBUTED MC PRODUCTION AND ANALYSIS FOR LHCB

A.Tsaregorodtsev, CPPM, Marseille, France
Ph. Charpentier, J. Closier, M. Frank, CERN, Geneva, Switzerland

V.Garonne, CPPM, Marseille, France
M.Witek, Henryk Niewodniczanski Institute of Nuclear Physics, Cracow, Poland

V.Romanovski, IHEP, Protvino, Russia
U.Egede, Imperial College, London, United Kingdom

V.Vagnoni, INFN, Bologna, Italy
I.Korolko, ITEP, Moscow, Russia

J. Blouw, MPI, Heidelberg, Germany
G.Kuznetsov, G.Patrick, RAL, Didcot, United Kingdom

M.Gandelman, UFRJ, Rio de Janeiro, Brazil
R.Graciani-Diaz, Universidad de Barcelona, Barcelona, Spain

R. Bernet, Universität Zürich, Zürich, Switzerland
N.Brook, University of Bristol, Bristol, United Kingdom
A.Pickford, University of Glasgow, Glasgow, Scotland

M.Tobin, University of Liverpool, Liverpool, United Kingdom
A.Saroka, I.Stokes-Rees*, University of Oxford, Oxford, United Kingdom
J.Saborido-Silva, M.Sanchez-Garcia, USC, Santiago de Compostela, Spain

Abstract

DIRAC is the LHCb distributed computing grid
infrastructure for Monte Carlo (MC) production and
analysis. Its architecture is based on a set of distributed
collaborating services. The service decomposition broadly
follows the CERN/ARDA-RTAG proposal, which should
allow for the interchange of the EGEE/gLite and DIRAC
components.

In this paper we give an overview of the DIRAC
architecture, as well as the main design choices in its
implementation.

The light nature and modular design of the DIRAC
components allows its functionality to be easily extended
to include new computing and storage elements or to
handle new types of tasks. The DIRAC system already
uses different types of computing resources - from single
PC's to a variety of batch systems and to the Grid
environment. In particular, the DIRAC interface to the
LCG2 grid will be presented.

INTRODUCTION
LHCb is a high-energy physics experiment at the future

CERN accelerator LHC that will start data taking in 2007
[1]. The amount of data (3.6 PB per year) and computing
power needed to process them (over 29 MSI2K) require
innovative solutions to building a distributed computing
system capable to serve these needs.

There are a large number of projects that are aimed at
providing grid computing systems capable of scaling to
the level of overall requirements of the LHCb experiment.
However, it would be naïve to think that all of the specific
needs of LHCb will be covered by general purpose grid

services. Therefore, we have started a project that should
combine LHCb specific components with general purpose
ones where it proves to be appropriate.

Background
The DIRAC project was started in autumn 2002 in

order to provide LHCb with a distributed MC production
system, which was sufficiently scalable and easy to
operate [2]. At that point we already gained some
experience with the EDG grid middleware [3]. This
experience suggested that the centralized push scheduling
paradigm is not sufficiently scalable to meet our needs
and is dependent on a reliable, dynamic information
system which is very difficult to build. Therefore, we
have chosen to explore the pull job scheduling approach
where the computing resources are “active” and demand
workload whenever they are free. A light component,
which we call the Agent, was developed to be deployed
on the LHCb production sites. The Agents interact with
the Central Production Database to get the jobs and
update the job status. The system was successfully used in
the Data Challenge of March-May 2003 validating the
basic scheduling paradigm [4].

 However, the DIRAC system was limited to just MC
production activity and did not support the reprocessing
or user analysis tasks. The latter activity necessitates a
very performant and functional Data Management System
(DMS), which is far more complex than any Workload
Management System (WMS) in the grid environment.
There were several projects aiming at providing DMS
services [2,5,6]. So, it was decided not to build yet
another DMS but to create an open system which will
easily accommodate third party products. This was in the

*Marie Curie Training Site Fellow at CPPM, Marseille, France

spirit of the Open Grid Services Architecture (OGSA)
elaborated by the Global Grid Forum and further
specified as Open Grid Services Infrastructure (OGSI)
[7]. At the same time an ARDA/RTAG working group at
CERN came out with a proposal for the next generation
grid middleware architecture based on a set of loosely
coupled services [8]. These two proposals were the main
sources of inspiration for the next stage of the DIRAC
project.

DIRAC design principles
DIRAC is conceived as a light grid system. It should

support a rapid development cycle to accommodate ever-
evolving grid opportunities. It should be easy to deploy
on various platforms. Updates, to fix bugs and/or
introduce new functionalities, should be transparent or
even automatic.

DIRAC is designed to be highly adaptable to the use of
heterogeneous computing resources available to the
LHCb Collaboration.

One of the main design goals is the simplicity of
installation, configuring and operation of various services.
This makes the threshold low for new sites to be
incorporated into the system. Once installed and
configured, the system should automate most of the tasks,
which allows all the DIRAC resources to be easily
managed by a single Production Manager.

The system should be robust and scale well to the
computing needs of the LHCb Collaboration. This scale
we roughly define for the moment as ~104 concurrent
jobs, ~105 jobs in the queue, processing ~107 datasets.

ARCHITECTURE
DIRAC follows the paradigm of a Services Oriented

Architecture (SOA).

Figure 1 General view of the DIRAC architecture

Services
All the DIRAC services are written in Python and

implemented as XML-RPC servers. The standard Python
library provides a complete implementation of the XML-
RPC protocol for both server and client part.

The more elaborated successor to XML-RPC, the
SOAP protocol that is commonly used in building Web
Services based applications is considered to be most
suitable for building services based grid middleware. It
was tried out and abandoned, at least for the time being,
for several reasons. It is heavier and presents a non-
significant overhead of parsing complex XML encoded
messages. Different implementations of SOAP servers
and clients suffer from interoperability problems.

A significant effort was taken to provide fault tolerant
services [9]. The crucial services are duplicated to
increase their availability. Many requests are repeated in
case of failures to overcome network outages or service
saturation. All the services are run using runit watchdog
tool [10], which insures restarting in case of failure or on
the machine reboot. It provides also many other useful
features for service manipulation and debugging.

Computing Element
The Computing Element (CE) in DIRAC is an API

abstracting common operations of job manipulation by
computing batch systems. It also provides access to the
state information of the computing resource, such as its
capabilities, environment or occupancy. The API is
implemented for various back-end batch systems: PBS,
LSF, NQS, BQS, Sun Grid Engine, Condor or standalone
PC. One particular case is access to the LCG grid, which
is realized as a standard DIRAC CE.

Workload Management System
The Workload Management System (WMS) consists of

the three main components: central Job Management
Service (JMS), distributed Agents running close to
DIRAC Computing Elements and Job Wrappers which
are encapsulating the user job applications.

The JMS itself is a set of services that provide job
reception from users, sorting jobs in task queues, serving
jobs to the Agent requests, accumulating and serving job
status information.

Agents continuously check the availability of the
respective CE, pull jobs from the JMS and steer job
execution on the local computing resource.
Job Wrappers prepare job execution on the Worker Node,
get the job’s input sandbox, send job status information to
the JMS, and upload the job output sandbox.

More detailed description of the DIRAC WMS can be
found in [11].

One interesting feature of the WMS is that services or
users can communicate with Agents and Job Wrappers by
means of an Instant Messaging (IM) protocol. In
particular, the Jabber/XMPP protocol is used in DIRAC.
It provides a reliable asynchronous bidirectional
communication channel that can be used to monitor
Agents and Jobs or even maintain interactive sessions
with running jobs. The many interesting opportunities and
advantages of this approach are discussed in [12].

Data Management System
The Data Management System (DMS) includes File

Catalog Services, which keep track of available data sets
and their replicas, as well as tools for data access and
replication.

File Catalogs. The LHCb Bookkeeping Database (BD),
which keeps track of the executed jobs and metadata of
the available datasets (what is usually called the Metadata
Catalog and Job Provenance Database) [13] also keeps
information about the physical replicas of the files. A
service was built as a front-end to this part of the BD,
which allows usual File Catalog operations (registering
files and their replicas, queries for file replicas for a given
location, etc). However, this File Catalog implementation
has rather limited functionality, and we looked for other
solutions that can be imported as a service into the
DIRAC.

We have chosen the File Catalog which is part of the
AliEn project [5] because of its rich functionality and
proven robust implementation. This catalog provides
almost all the necessary features that we would expect:
hierarchical structure following the file system paradigm,
ACL-like control of access, possibility to store metadata
associated with files. A front-end service was developed
to provide access to the AliEn File Catalog functionality.
This service maintains connection to the catalog and
translates incoming queries into the AliEn UI commands.

Interfaces of both File Catalog services are identical, so
that data management tools can use either of them (or
both simultaneously) by just setting the appropriate
configuration parameters.

Storage Element. The DIRAC Storage Element (SE) is
a combination of a standard server, like gridftp, and
information stored in the Configuration Service on how to
access it. The Storage Element API provides a possibility
to dynamically plug-in modules for transport protocols by
which the SE is accessible as described in its
configuration. Modules for most of the protocols are
available: gsiftp, bbftp, sftp, ftp, http, rfio, direct file
access. A special XML-RPC protocol allows transfer of
relatively small files encapsulated into an XML-RPC
message.

Reliable File Transfer Service. File transfer is a
fragile operation because of potential network and storage
hardware failures or errors in the associated software
services. It is not unusual to loose output of a long job
because of the failed data transfer that was never retried.
Therefore, a Reliable File Transfer Service (RFTS),
which allows retries of the failed operations until
complete success is a vital part of the DMS.

In DIRAC the RFTS is constructed using the same
building blocks as the WMS (Figure 2). Each site
maintains a Request Database (RDB) of data operation
requests. The requested operations can be data transfer,
replication or registration in a File Catalog. One request
can contain any number of operations. A special module
called the Transfer Agent is continuously checking the
contents of the RDB for outstanding requests and

attempts to execute them. In case of failures, the request
stays in the RDB for a later retry. Partially accomplished
requests are modified to retry only undone operations.

Transfer Agent

Requests DB

JobData ManagerData Optimizer

Local SE Remote SE
cache

Site Data
Management

Transfer Agent

Requests DBRequests DB

JobData ManagerData Optimizer

Local SE Remote SE
cache

Site Data
Management

Figure 2 On-site data management tools

The RDB can be populated either by a regular
production job executed on the site or by a special job the
only purpose of which is to set a data transfer request. In
both cases, the progress of the request execution can be
monitored by the standard job monitoring tools provided
by the WMS.

Application Software installation
One use of the DMS in DIRAC is the provision of
application software for installation on production sites.
The software is first packaged in binary distribution tar
files. These files are treated as any other file in the DMS
with possibly multiple available replicas. Standard tools
are then used to locate and download the distribution files
for local installation.

Information Services
The Configuration Service (CS) provides necessary

configuration parameters to other services, Agents and
Jobs to insure their collaborative work. The CS contains
endpoints of all the DIRAC services and resources, their
properties as well as policies for the current production
run.

The Job Monitoring Service receives status information
about the running jobs and provides it to the requests of
users, for example through a dedicated Web Portal, or to
other services. The Accounting Service accumulates
statistics of the usage of the computing resources and
generates reports that can be used to follow the
production progress or to apply policies and quotas while
job scheduling [14].

INTERFACING DIRAC TO LCG
In its present state, LCG already provides a large

number of computing resources. There are different
possible ways to exploit these resources.

The seemingly most straightforward way is to use the
standard LCG provided middleware for job scheduling.
However, these means are not yet reliable enough for
large scale production, so other possibilities have to be
explored. Another approach would be sending jobs
directly to the LCG CE. This approach was tried out

successfully in our DC 2003 [4] to gain access to
resources provided by the EDG testbed. However, in the
recent Data Challenge 2004 yet another approach was
realized.

The third approach is workload management with
reservation of computing resources. We took advantage
of having a light easily deployable “mobile” agent, which
is part of the DIRAC native WMS. The jobs that are sent
to the LCG Resource Broker (RB) are just executing a
simple script, which downloads and installs a standard
DIRAC agent. Since the only environment necessary for
the agent to run is the Python interpreter, this is perfectly
possible on all the LCG sites. The agent is configured to
use the hosting Worker Node (WN) as a DIRAC CE.
Once this is done, the WN is reserved for the DIRAC
WMS and is effectively turned into a virtual DIRAC
production site for the time of reservation. The
reservation jobs are sent whenever there are waiting jobs
in the DIRAC Task queue eligible to run on LCG.

There are many advantages to this approach. The
agents running on the WN are ensuring the minimally
sufficient environment (otherwise the agent itself would
not run) before scheduling the real jobs. If the agent fails
to start for whatever reason (failure of the RB, site
misconfiguration, etc), the DIRAC Task Queue is not
affected. This approach allowed the use of both LCG and
non-LCG resources in a consistent way. In fact, the LCG
middleware was used to dynamically deploy the DIRAC
infrastructure upon the LCG resources providing a
completely homogeneous system. The jobs running on
LCG resources were still steered, monitored and
accounted for in the same way and by the same services
as other DIRAC jobs. This way allowed for substantial
use of the LCG resources during the DC 2004 (over 5000
concurrent jobs at peak) with low effective failure rate
[15].

 The workload management with “resource
reservation” opens interesting opportunities for
optimization of job scheduling. While the resource is
reserved, it can be used flexibly, for example, running
multiple short jobs without repeated scheduling or
participating in a coordinated parallel work together with
other reserved resources. The latter mode of operation is
suitable for running interactive data analysis sessions on
the grid.

CONCLUSION
The DIRAC grid system of the LHCb experiment has

evolved into a complete system covering the whole
spectrum of the computing tasks to be performed in
distributed computing environment. The system
demonstrated good scalability properties for MC data
production. We are preparing now for the massive data
reprocessing and analysis phases.

The concept of the workload management which
combines a central task repository with a network of
dynamically distributed light agents proved to be very

promising. Its efficiency was well demonstrated during
the LHCb Data Challenge 2004. This concept opens new
interesting opportunities to explore like peer-to-peer
networks of agents redistributing the workload to adjust it
to the immediate dynamic state of the computing grid.

The paradigm of workload management with advanced
resource reservation allows reducing the impact of failed
scheduling on the task repository, which simplifies
significantly the task management.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the friendly help
of administrators at all the sites where the DIRAC
services were deployed insuring their stable operation. We
are also very thankful to our contacts in the LCG
deployment project, Flavia Donno and Roberto Santinelli,
whose help in integrating DIRAC with LCG was
essential.

REFERENCES
[1] LHCb, S. Amato et al, LHCb Technical Design

Report, CERN-LHCC-2003-030, September 2003.
[2] DIRAC, http://dirac.cern.ch
[3] European DataGrid Project,
 http://eu-datagrid.web.cern.ch/eu-datagrid.
[4] A.Tsaregorodtsev et al, “DIRAC – Distributed

Infrastructure with Remote Agent Control”, In
Proceedings of CHEP2003 Conference, La Jolla,
April 2003.

[5] AliEn, http://alien.cern.ch
[6] Storage Resource Broker,
 http://www.npaci.edu/DICE/SRB
[7] GGF, Open Grid Services Architecture,
 http://www.globus.org/ogsa/
[8] “Architectural Roadmap towards Distributed

Analysis “, CERN-LCG-2003-033, November 2003.
[9] I.Stokes-Rees et al, Developing LHCb Grid Software:

Experiences and Advances, In UK e-Science All
Hands Meeting, September 2004.

[10] G.Pape, Runit Service Supervision Toolkit,
 http://smarden.org/runit.
[11] V.Garonne, I.Stokes-Rees, A.Tsaregorodtsev,

DIRAC Workload Management System, these
proceedings [365].

[12] V.Garonne, I.Stokes-Rees, A.Tsaregorodtsev, Grid
Information and Monitoring System Using XML-
RPC and Instant Messaging for DIRAC, these
proceedings [368].

[13] C.Cioffi et al, File-Metadata Management System for
the LHCb Experiment, these proceedings [392].

[14] M.Sanchez Garcia et al, A Lightweight Monitoring
and Accounting System for LHCb DC04 Production,
these proceedings [388].

[15] J.Closier et al, Results of the LHCb Experiment Data
Challenge 2004, these \proceedings [404].

