
THE CONDOR BASED CDF CAF

I. Sfiligoi, INFN LNF, Frascati, Italy
E. Lipeles, M. Neubauer, F. Würthwein, UCSD, La Jolla, CA, USA

Abstract
The CDF Analysis Facility (CAF) has been in use since

April 2002 and has successfully served 100s of users on
1000s of CPUs. The original CAF used FBSNG as a
batch manager.

In the current trend toward multisite deployment,
FBSNG was found to be a limiting factor, so the CAF has
been reimplemented to use Condor instead. Condor is a
more widely used batch system and is well integrated
with the emerging grid tools. One of the most useful
being the ability to run seamlessly on top of other batch
systems.

The transition has brought us a lot of additional
benefits, such as ease of installation, fault tolerance and
increased manageability of the cluster. The CAF
infrastructure has also been simplified a lot since Condor
implements a number of features we had to implement
ourselves with FBSNG. In addition, our users have found
that Condor's fair share mechanism provides a more
equitable and predictable distribution of resources.

In this paper we present the new implementation of the
CAF based on Condor as well a general description of the
CAF principles and the Condor batch system itself.

THE CDF ANALYSIS FARM

The CDF Analysis Farm (CAF) [1] is a portal which
allows a user to easily perform physics analysis on remote
computing clusters. It was originally designed primarily
for the CDF computing cluster at Fermilab but has since
been deployed at many sites around the world. The basic
functionality and user interaction is as follows:
1) Users develop and debug their applications on their

desktops or laptops anywhere in the world.
2) When the user produces the desired executable, he

submits it to the CAF, splitting the dataset in several
independent subsets called sections. The user's
working directory, containing the executable(s) and
auxiliary files, is automatically archived and
transferred by the submission tool.

3) At the execution site, the submitted directory is
recreated and the user startup script is executed.

4) The user output is copied to a user specified location;
usually to a central file system pool, but in principle it

could be anywhere in the world, including the
submission node.

5) After all the sections terminate, a comprehensive e-
mail is sent to the user.

For user convenience, both a command line interface
and a GUI interface are available for submission. A Web
service portal is also envisioned but not yet implemented.

In addition to the simple submission interface, the
system provides tools to easily monitor a section as if it
was running on a local computer. The above is obtained
by both a command line interface and via a set of Web
pages. In particular, the CAF implements the following
commands:
● jobs - Shows the list of your jobs/sections.
● top, ps, dir, and tail – Perform these standard

commands on a worker node/working directory
specified by a job and section id.

● debug – Runs a debugger (gdb) session on a running
process of a specific section (see Fig. 2)

Figure 1: CAF job life

Exe
Shared libraries
Config files

User PC

CAF

File, nr. instances

Head node

Exe
Shared libraries
Config files

Exe

Log files

W
or

ke
r

no
de

Data handling
system

Output location

A set of administrative tools available to the user are
also implemented. Due to authentication, the
administrative actions are implemented only via
command line tools, while the administrative monitoring
is implemented also as a set of Web pages. The
administrative tasks are:
● system status – Shows the load and memory

consumption of a node or of the whole system
● slot occupancy – Shows which section is running on a

given resource
● kill – Kills a specific job/section
● hold - Holds a job.
● release - Releases a job.
● chprio - Changes the relative priority of a users jobs.

THE CONDOR BATCH SYSTEM

Description

The Condor [2] batch system is a widely deployed
system aimed at solving the High Throughput Computing
[3] problem. It is a very modular and scalable system,
able to perform well on both a dedicated cluster and on
opportunistic resources. Condor is based on a
marketplace paradigm; jobs ask for resources and the
resources sell themselves.

A Condor pool consists of 3 logical node classes, as
described in Fig. 3:
1) submission nodes,
2) worker nodes, and
3) a central manager node.

In CDF, we use a configuration with just one
submission node and lots of worker nodes. The central
manager must be unique by design and is the part that
characterizes a Condor pool.

The jobs are submitted to the schedd process which
stores them in a permanent storage and advertises their
needs. On the other hand, the startd processes on worker
nodes advertised their resources to the collector process.

The negotiator process regularly fetches these
advertisements (ClassAds) from the collector and from
the schedd, and assigns jobs to virtual machines (VM).
For every such association, a shadow and a starter
process are created and all further communication is
between these two entities.

Fair share is maintained based on recently consumed
wall clock time. Condor keeps track of total wall clock
time consumed by each user in a pool, including an
exponential decay of past consumption. The user who has
used the least gets the largest share of the available
resources. For more details see [1].

In addition, the administrator can define a
multiplicative factor which allows different (classes of)
users to have different shares of the resources.

The CDF pool at Fermilab

The CDF pool at Fermilab is composed of about 340
worker nodes, each having two Xeon processors.
Enabling the HyperThreading and using a little bit of
overcommitment, we allocate six VMs for each node,
creating a pool of over 2k VMs. Not all the VMs are
allowed to be used all the time; one is reserved for test
jobs allowing them immediate access to resources, while
the others accept new jobs only if the load of the system
is not too high and there is enough memory available for
efficient running.

The Condor pool is used mainly for user analysis, and
presently has 785 registred users, out of which 40 to 100
are active at any given moment in time.

Figure 3: Condor overview

Negotiator Collector

Central manager

Schedd

Shadow

Submission node
Startd

Starter

Worker node

Shadow

Shadow

...
Starter

...

ClassAds

Startd

Starter

Worker node

Starter

User Exe

Figure 2: Debugging a CAF section

All authentication is based on Kerberos. On the head
node, an automated submitter daemon runs under one
account and uses kerberos credentials for authentication.
On the worker nodes, jobs run under nobody-like
accounts, one account for every VM of the node. This
prevents different jobs from interfering with each other.
In particular, this mechanism protects both a single user,
running on two different VMs on the same node, from
himself, and a user from another, since the two sections
are always running under two different UIDs.

We also use kerberos for authentication between
Condor daemons, making possible secure data transfers
between them.

THE CONDOR BASED CAF

Job submission

The CAF infrastructure essentially serves as a portal to
the Condor batch system. The submitter process listens
on a well known port and establishes kerberized python
sockets. Once the user is authenticated:
1) A staging directory is created.
2) The user tar ball is uploaded.
3) Condor submit files are created.
4) A DAGMan job is submitted.

When the Condor DAGMan starts, it submits the user
sections as Condor jobs. We use a flat DAG, with just the
SAM start section as a dependecy. For more details about
DAGMan see [1].

We also have a mailer process that looks after the
DAGMan jobs and acts after any of them terminate; the
main tasks are cleanup and sending a mail to the user.

The reason to have a separate mailer process instead of
doing this as part of the DAG, is because we want to run
those tasks after every DAGMan job. If you kill a
DAGMan job, no more nodes are executed in the DAG.

Section execution

The assignment of sections to virtual machines is
handled directly by Condor. We also rely on Condor to
transfer all the necessary data, including the CAF
wrapper, to the worker nodes and to transfer the log files
back to the head node. Some files, like the kerberos
keytab file, are encrypted during the transfer due to
security issues, while others are transferred in clear to
keep the system load low.

Once the files are on the worker node:
1) The user kerberos ticket is extracted from the keytab file.
2) The keytab file is deleted.
3) The user tar ball is unpacked into the local directory.
4) The tar ball is deleted (to save space).
5) The user provided startup script is executed.
6) The exit code is recorded in a log file.

7) The local directory is tarred and sent to the user
specified output location (via kerberized rcp), logging
the success or failure in the log files.

8) All the local files, apart from the log files are
removed.

Condor transfers back any remaining files.

Moreover, our wrapper does also a little bit of
monitoring. In particular, it monitors the processes that a
user runs during the lifetime of his job and log them in a
local log file to preserve this information.

System monitoring

The CondorCAF has two processes to do the system
monitoring: the monitor process and the xml_monitor
process. Both of them use the same monitoring libraries,
but talk different protocols; the first communicates over
kerberized python sockets while the later uses XML over
the telnet protocol.

These monitoring processes allow access to
information about jobs, VMs, and user priorities. This
information is gathered both by parsing log files and by
querying the Condor batch system:
1) The user priorities are gathered by calling

condor_userprio.
2) The information about the VMs is obtained by calling

condor_status.
3) The information about the jobs is gathered by parsing

log files. We cannot use condor_q since this easily
overloads Condor's schedd. Unfortunately, the log files
lack information about which VM a job is running, so
we use the information gathered by condor_status and
write this information into yet another log file.
In addition, we also parse the IO logs, provided by
some applications, and the process logs, provided by
the CAF wrapper.

Interactive monitoring

One of the most outstanding services of the CAF is the
interactive monitoring which is implemented by means of
handshaking between the CAF wrapper and a CAF router.
The whole process looks like this (see also Fig. 4):
1) The user contacts the monitor process via a kerberized

python socket.
2) The monitor process contacts the local cafrout

process and obtains an ID.
3) The monitor process starts a Condor CoD (Computing

on Demand) session to the section's worker node. The
CoD session writes the ID and the desired command
to a local unix pipe on the worker node and exits.

4) The unix pipe is read by the CAF wrapper which calls
back the cafrout process on the head node (the head
node name and cafrout port are given at job
submission time).

5) After handshaking, the user command is executed and
both input and output are linked to the open socket.

6) On the head node, the cafrout process routes the data
between the CAF wrapper socket and the monitor
socket. On the other hand, the monitor process does
the routing between the cafrout socket and the user
kerberized python socket.

Web monitoring

Apart from the command line monitoring, the
CondorCAF comes with a ready to use Web site software.

The Web software works in polling mode. Every few
minutes (configurable) a snapshot of the system is taken,
by talking to the xml_monitor process, and stored on the
Web server. Any request from a Web client is thereafter
served by analysing the data stored locally.

In addition, the full information about any finished job
is also stored on the web server. So there is really never a
query to the head node due to a HTTP query, insulating
the head node from the Web activity.

CONCLUSIONS

The new Condor based CAF was developed 10 months
ago and has been in production now for more than 6
months. After the initial problems with the Condor batch
system due to the size of our pool and the number of
queued jobs, solved by successive versions of the
package, Condor has been working very smoothly. Most
of our users are very happy with the transition from the
FBSNG-based CAF to the Condor-based CAF, especially
due to the much more “fair” negotiation policy.

The Condor system has also significantly simplified the
CAF software; most of the file transfers now performed by
Condor were previously the task of the CAF infrastructure
and in particular the kerberos keytab file transfer was a
problem and required suid executables on the worker nodes.

However, we do have still some problems with Condor.
The fist problem is the difficulty to optimally configure the

pool. Condor has only a few levers to limit the load on the
submitter node. Since we use a single submitting node, it is
relatively easy to overload it if not properly configured.

The second, larger, problem, is the lack of group
priority policies. In the Condor system, every user is like
any other user and all the negotiation is based on the
priority numbers of the individual users; the user with the
best priority number wins. There is no way to impose
quotas or other group policies.

We are however working closely with the Condor
group to solve all the problems, including the inclusion of
a Hierarchical Fair Share (HFS) mechanism, and we are
very satisfied by the collaboration. Although sometime
the desired extensions do not come as fast as we would
like, they are doing a terrific job considering the number
of customers they are serving.

FUTURE DIRECTIONS

At Fermilab we still have in production the old
FBSNG-based CAF. This was done for two reasons:
1) To have a ready-to-use backup solution in case the

Condor-based CAF were fail during its first months of life
2) Condor is not able of managing groups, while in our

FBSNG-based CAF we have implemented a
mechanism to handle that

We expect to have a first version of HFS available in a
few weeks time frame. As soon as we have it, we will
implement the groups in the Condor-based CAF. After we
are confident it is working for us, all the nodes of the old
CAF will be transferred to the new one.

The next obvious step is to run user analysis on
resources distributed all over the world. We are taking an
incremental approach to this. At this point in time, we
have CAFs replicated in several sites; refer to [4] for
more details. Moreover, we are trying to run Condor-
based CAF on a generic Grid site by using Condor Glide-
Ins submitted via a Global Gatekeeper. We, then, want to
link all this sites together using Condor-C. The exact
details about job brokering have not yet been defined, but
we hope to have a working system by next summer.

BIBLIOGRAPHY

[1] T.H.Kim et.al., The CDF Analysis Farm, IEEE NSS
2003 proceedings.

[2] The Condor Project Homepage,
http://www.cs.wisc.edu/condor/

[3] High Throughput Computing,
http://www.cs.wisc.edu/condor/htc.html

[4] A.Sill et.al., Globally Distributed User Analysis
Computing at CDF, CHEP2004 proceedings.

Figure 4: Interactive monitoring

Worker node

Wrapper

Write pipe

gdb

Monitor

Cafrout

Head node

Condor COD
Only outgoing
connections from
worker node

