Aspect-Oriented Extensions to HEP Frameworks

P. Calafiura *, C. E. Tull , LBNL, Berkeley, CA 94720, USA

Abstract

In this paper we will discuss how Aspect-Oriented Pro-
gramming (AOP) can be used to implement and extend
the functionality of HEP architectures in areas such as per-
formance monitoring, constraint checking, debugging and
memory management. AOP is the latest evolution in the
line of technology for functional decomposition which in-
cludes Structured Programming (SP) and Object-Oriented
Programming (OOP). In AOP, an Aspect can contribute to
the implementation of a number of procedures and objects
and is used to capture a concern such as logging, memory
allocation or thread synchronization that crosscuts multi-
ple modules and/or types. Since most HEP frameworks
are currently implemented in c++, for our study we have
used AspectC++, an extension to c++ that allows the use
of AOP techniques without adversely affecting software
performance. We integrated AspectC++ in the develop-
ment environment of the Atlas experiment, and we will dis-
cuss some of the configuration management issues that may
arise in a mixed c++/AspectC++ environment. For each of
the concerns we have examined we will discuss how tradi-
tional programming techniques compare to the AOP solu-
tion we developed. We will conclude discussing the short
and medium term feasibility of introducing AOP, and As-
pectC++ in particular, in the complex software systems of
the LHC experiments.

ASPECT ORIENTED PROGRAMMING

Aspect Oriented Programming[1] is a methodology in-
troduced by Xerox PARC in the late 90s to decom-
pose problems into functional components (e.g. Object-
Oriented classes) and aspects that crosscut functional com-
ponents, such as message logging, thread synchronization,
execution tracing. AOP goal is to localize the implemen-
tation of these crosscutting concerns. This is of particu-
lar interest to developers of large software systems, such
as HENP frameworks, allowing framework developers to
evolve the design of the framework explicit and implied in-
terfaces without disrupting the work of component devel-
opers.

AspectC++

There are about ten actively supported tools available for
aspect oriented software development. For this study we

* pcalafiura@lbl.gov
T cetull @1bl.gov

choose to use AspectC++[2], an aspect oriented extension
to c++, modeled on the popular aspect] language[3]. The
AspectC++ compiler, ac++, weaves aspect code into the
original c++ sources, and emits standard c++ with a struc-
ture suitable for component-based software development.
ac++ is an open-source, actively developed and supported
project which is near to its first production release’.

Overview of ac++ syntax

There are several excellent introductions to AOP
concepts[4] and to AspectC++ in particular[5]. Here we
can only provide a quick overview of ac++ syntax, and in-
troduce its fundamental concepts:

aspect: An aspect captures a crosscutting concern.
Otherwise behaves very much like a c++ class, defining a
scope with access control to its data members and methods
that can be overloaded or virtual.

aspect RedirectOstream:
virtual public IProperty {
private:
ISvcLocator* m_locator;
public:
const MsgStream& log() const;
s

advice and joinpoint: An advice adds behaviour
to an aspect defining what to do before, after, and
around certain joinpoints in the control flow. A
joinpoint is the locus of the code where a certain ac-
tion occurs (a method is called, a function is executed, a
variable is set,...).

aspect RedirectOstream {

advice

call("ostream &

ostream: :operator <<(const char*&)") &&
args (what) :

around(const char*& what)

{

log() << what;
}

}; //streamlined example

Ifor this study we used release 0.9prel

pointcut and JoinPoint API: A pointcut is a set
of logically related joinpoints that defines when a certain
advice will run. A pointcut is often virtual allowing to
abstract the definition of when a certain aspect (for example
execution Tracing) will be applied.

aspect Trace {
pointcut virtual methods() = 0;
public:
advice methods () : void before () {
printf ("before \"%s\"\n",
JoinPoint: :signature ());
}
advice methods () : void after () {
printvalue(thisJoinPoint->result(),
JoinPoint: :resulttype());
}
I
aspect TraceInAlgs : public Trace {
pointcut methods() =
execution("} %::%(...0") &&
within(derived ("IAlgorithm"));
};

The Trace aspect above also illustrate part of
the rich joinpoint API, which includes static reflec-
tion information such as JoinPoint::signature or
JoinPoint: :resulttypeas well as handles to active ob-
jects such as caller and called objects (this and that),
function parameters (arg) and return values (result).

Introductions: An aspect can introduce in c++ classes
new methods, data members and even base classes. For ex-
ample one can force a set of classes defined in the pointcut
mapkeys to inherit from the class ThreadNo:

pointcut mapkeys()="String || UnsignedLong";
aspect threadSafe {
private:

advice mapkeys() : baseclass(ThreadNo);

};

EXAMPLES OF HEP CROSSCUTTING
CONCERNS

We tried to apply AOP concepts and techniques to our
problem domain: large scale HEP software systems. We
choose Gaudi[6] as a representative HEP component-based
architecture because it has been successfully adopted by
several HEP experiments including the Atlas athena frame-
work [7] that we contributed to develop.

Logging

In athena/Gaudi all messaging is supposed to happen via
a MsgStream class. MsgStream allows to classify mes-
sages according to their origin and severity level. The un-
derlying IMessageService implementation will use this

information e.g. to control job verbosity or, in on-line ap-
plications, to send messages to the relevant logging pro-
cesses.

We experimented with a RedirectOstream aspect
which intercepts all output to the standard library streams
cout and cerr? . The aspect can be used in the devel-
opment stage to flag these illegal outputs, turning one im-
plicit contract requirement for Gaudi components into an
explicitly enforced one. It can also be used in production
to simply redirect cout/cerr outputs to MsgStream, us-
ing the joinpoint reflection API to add the required origin
information to the message.

Interactive Job Configuration

Gaudi allows to invoke a callback function whenever a
property attribute of an object is set/modified. This al-
lows for example to modify interactively, from the python
prompt, a cut used by a reconstruction algorithm. To sup-
port this, Gaudi requires these property attributes to inherit
from a Property base class. Unfortunately the majority
of Gaudi objects does not yet use this Property-based
attributes, preferring to use plain data types as long or
double as their properties.

We tried to use the set pointcut function of ac++ to in-
troduce a callback to properties of arbitrary type using an
after advice, which would have been activated after the
value of the attribute is set or reset. Unfortunately the set
pointcut function is not yet supported by ac++.

Object History

The athena/Gaudi History mechanism keeps track of
which Algorithm component added a data object to the
Event Transient Data Store[7]. We experimented with an
aspect that extends this mechanism, keeping a complete
log of every component that created the object or modi-
fied it. The pointcut for this aspect is defined as the union
of all non-const methods of a data object class® (including
its constructors).

Reference Management

Gaudi allows to use plain c++ pointers to access most of
the object managed by the framework, such as data object,
services, tools. While using pointers keeps the interface
efficient and simple to understand, it leaves the ownership
of the returned objects ambiguous. The implied contract
with the component developers is that they should never
take ownership of a data object and that they should always
release any tool or service they requested from Gaudi. Us-
ing ac++ it is possible to check these contract requirements

2Unfortunately the ac++ release we used (0.9) did not allow to specify
templated joinpoints. Since in recent c++ standard library implementa-
tions (e.g. the one that comes with g++ release 3.x) cout/cerr are tem-
plate instantiations we were forced to compile our aspect using an older
non-templated implementation that came with gec 2.95.

3this of course assumes that the implementation of the data object and
the codes modifying it are const-correct.

explicitly, returning an error when a data object is acciden-
tally deleted by a client. It is also possible to release all
Gaudi tools and services requested by a component when
the component is finalized.

Thread-aware Naming Service

All objects in Gaudi are identified by their type* and by
a user-defined instance name. This scheme had to be ex-
tended to allow for multiple identical instances of certain
objects (e.g. the Algorithm components) running in multi-
ple threads: a Gaudi helper class is used to attach the a nu-
meric thread identifier to the instance name and to handle
it internally. While this works fine, the helper code clutters
the original (non MT-aware) name-server code. More im-
portantly it proved to be hard to identify and edit all name-
server codes that needed to use the helpers.

In our ac++ solution, we used ac++ insertions to extend
the instance identifier inserting the threadID helper as a
base class

advice mapkeys() : baseclass(ThreadNo);

Then, using a carefully crafted pointcut, we instruct the
program to use the new MT-aware object identifier where
the old one was. While it is still hard to define the point-
cut, as we need to locate all joinpoints where the identifier
type is used, no Shotgun Surgery’ is required any more:
the changes needed to use the ThreadNo helper class are
localized in the aspect rather than scattered through all the
name server code.

DISCUSSION
Do we Need AOP?

During the course of this study we convinced ourselves
that "Thinking in Aspects” provides a vocabulary, if not yet
a paradigm, to identify and design crosscutting concerns.
Describing, say, message logging or object lifetime man-
agement as crosscutting concerns makes the “contract” of
your component architecture more explicit.

At the implementation level, localizing the code related
to a crosscutting concern into an aspect has obvious ad-
vantages especially in systems with constantly evolving re-
quirements®. Localizing the aspect implementation also
helps developing new components and especially helps to
integrate external codes into a component.

One criticism that has been made about using aspects in
large component-based systems is that it makes even more
difficult to understand the control flow of an application.
While this is true, especially with the tools we have at hand
today, similar criticisms were made at various stages in

“4more precisely by a Gaudi-specific numeric type ID
Sone of Fowler’s ”code smells”[8]: a single change in the system in-
terface forces to modify many classes through the project.

Swhich is the least that can be said of HENP systems...

the past about object-oriented encapsulation and message-
passing, abstract interfaces and pluggable components. We
think that a combination of better development environ-
ments and developer’s experience will eventually alleviate
this problem.

Can we Use AOP?

One of the advantages of using c++ for HENP ap-
plications is the language rich feature set’. Many as-
pects can be implemented directly in c++ using techniques
such as policy-based design using templated wrappers and
namespaces[5]. There are classes of problems, for example
object references, where using policy templates is simpler,
more expressive and just as flexible as using aspects. Hav-
ing said that it is obvious that using an aspect oriented lan-
guage like AspectC++ in general allows to write aspects
that are more compact, easier to understand, and much
more powerful.

Based on our limited experience, we think that As-
pectC++ is a very promising language and toolkit. It is
open-sourced, actively developed, well designed and spec-
ified.

On the other hand we think ac++ is not quite ready to be
put in production in large c++ systems like the ones being
developed for LHC. The main issue is the insufficient cov-
erage of the c++ standard, in particular the fact that tem-
plates can not yet be parsed by ac++. This, for example,
prevents developers from specifying joinpoints involving
class or function templates. The situation is quickly im-
proving from one release to the next and we trust that by
the time ac++ reaches release 1.0, template support will be
sufficient.

Another issue, which is also being addressed by the ac++
community, is the lack of documentation: in many cases
the only way for us to find an answer to some basic ques-
tions was to use the pretty active ac++ users mailing list.

In our experience the ac++ compiler is currently too slow
to be used for frequent builds of systems with hundreds
(or thousands) of classes. It does not help that there is no
real dependency management tool yet, and the only way to
make sure a system is in a coherent state after modifying
an aspect definition is to trigger a complete rebuild. Once
again this is being addressed by the ac++ developers that
are looking into integrating their tool with some popular
compiler such as g++. When good dependency manage-
ment will become available we would like to further inves-
tigate the issue of physical coupling introduced by aspects.
Superficially the coupling issues seem to be similar to the
ones created by using class templates but there may be sub-
tler effects that only real-life experience would show.

ACKNOWLEDGMENTS

We would like to thank the ac++ team and community
for their support and advice. We would also like to thank

"notoriously rich some would say!

Wim Lavrijsen who presented this paper at the conference
on our behalf.

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

REFERENCES

http://www.aosd.net
http://www.aspectc.org
http://www.aspectj.org

Special Issue on AOP, Communications of the ACM, Vol 44,
Issue 10, Oct 2001.

AspectC++ Tutorial, AOSD 2004 Lancaster UK 2004.
http://www.aspectc.org/Publications.6.0.html

M. Cattaneo et al. , “Status of the GAUDI event-processing
framework”, CHEP 2001: Proceedings. Edited by H. S.
Chen. Beijing, China, Science Press, 2001. 757p.
http://proj-gaudi.web.cern.ch/proj-gaudi

C. G. Leggett et al. , “Status of the Athena Framework”, this
Proceedings.

M. Fowler et al. , “Refactoring”, Addison-Wesley 1999.

