
MIDDLEWARE FOR THE NEXT GENERATION GRID
INFRASTRUCTURE ∗

E. Laure, F. Hemmer, A. Aimar, M. Barroso, P. Buncic,
A. Di Meglio, L. Guy, P. Kunszt, CERN, Switzerland

S. Beco, F. Pacini, Datamat SpA, Italy
F. Prelz, M. Sgaravatto, INFN, Italy

A. Edlund, O. Mulmo, KTH, Sweden
D. Groep, NIKHEF, The Netherlands

S.M. Fisher, RAL, UK
M. Livny, University of Wisconsin, USA

Abstract

The aim of the EGEE (Enabling Grids for E-Science
in Europe) project is to create a reliable and dependable
European Grid infrastructure for e-Science. The objective
of the EGEE Middleware Re-engineering and Integration
Research Activity is to provide robust middleware compo-
nents, deployable on several platforms and operating sys-
tems, corresponding to the core Grid services for resource
access, data management, information collection, authenti-
cation & authorization, resource matchmaking and broker-
ing, and monitoring and accounting.

For achieving this objective, we developed an archi-
tecture and design of the next generation Grid middle-
ware leveraging experiences and existing components es-
sentially from AliEn, EDG, and VDT. The architecture fol-
lows the service breakdown developed by the LCG ARDA
group. Our strategy is to do as little original development
as possible but rather re-engineer and harden existing Grid
services. The evolution of these middleware components
towards a Service Oriented Architecture (SOA) adopting
existing standards (and following emerging ones) as much
as possible is another major goal of our activity.

INTRODUCTION

Grid systems and applications aim to integrate, vir-
tualise, and manage resources and services within dis-
tributed, heterogeneous, dynamicVirtual Organisations
across traditional administrative and organisational do-
mains (real organisations) [10].

A Virtual Organisation (VO) comprises a set of indi-
viduals and/or institutions having direct access to comput-
ers, software, data, and other resources for collaborative
problem-solving or other purposes. The VO concept is
used to set up a context for Grid operations, associating
users with their requests and allocated resources. The shar-
ing of resources in a VO is facilitated and controlled by a
set of services that allow resources to be discovered, ac-
cessed, allocated, monitored and accounted for, regardless

∗This work was funded by the European Commission program
INFSO-RI-508833 through the EGEE project.

of their physical location. Since these services provide a
layer between physical resources and applications, they are
often referred to asGrid Middleware.

The Grid system needs to integrate Grid services and re-
sources even when provided by different vendors and/or
operated by different organisations. The key to achieve this
goal is standardisation. This is currently being pursued in
the framework of the Global Grid Forum (GGF) and other
standards bodies.

In this document we present the architecture of the
EGEE Grid Middleware (calledgLite). It is influenced
by the requirements of Grid applications, the ongoing
work in GGF on the Open Grid Services Architecture
(OGSA) [10], as well as previous experience from
other Grid projects such as the EU DataGrid (EDG)
(http://www.edg.org), the LHC Computing Grid (LCG)
(http://cern.ch/lcg), AliEn (http://alien.cern.ch), Nor-
duGrid (http://www.nordugrid.org), and the Virtual Data
Toolkit VDT (http://www.cs.wisc.edu/vdt/) which includes
among others Condor (http://www.cs.wisc.edu/condor)
and Globus (http://www.globus.org).

THE GLITE ARCHITECTURE

ThegLite Grid services follow aService Oriented Ar-
chitecturewhich will facilitate interoperability among Grid
services and allow easier compliance with upcoming stan-
dards, such as OGSA, that are also based on these prin-
ciples. The architecture constituted by this set of services
is not bound to specific implementations of the services.
In order to address the end-user requirements, the services
need to work together in a coordinated manner, although
individual services can still be deployed and used indepen-
dently. This allows their exploitation in different contexts.
We intend to implement the gLite services using web ser-
vice technologies. Therefore, all service interfaces are de-
fined using the web service definition language (WSDL).

The gLite service decomposition has been largely in-
fluenced by the work performed in the LCG project (the
requirements and technical assessment group on an “ar-
chitectural roadmap for distributed analysis” (ARDA) [2]).
Figure 1 depicts the high level services, which can themat-



ically be grouped into 5 service groups (plusaccounting
andsite proxy).1

Access Services

Grid Access
Service API

Information &
Monitoring Services

Job
Monitoring

Information
& Monitoring

Job Management Services

Computing
Element

Job
Provenance

Workload
Management

Package
Manager

Security Services

Authentication

Authorization

Auditing

Data Services

Data
Management

File & Replica
CatalogMetadata

Catalog

Storage
Element

Site Proxy

Accounting

Figure 1: gLite Services

In the following, we provide an overview of the main
services and refer the interested reader to the gLite archi-
tecture [6] and design [7] documents for further details.

Security services: encompass the Authentication, Au-
thorization, and Auditing services, which enable the
identification of entities (users, systems, and services),
allow or deny access to services and resources, and
provide information for post-mortem analysis of security
related events. They also provide functionality for data
confidentiality and a Site Proxy, i.e. a means for a site to
control network access patterns of applications and Grid
services utilising its resources.

API and Grid Access Service:provide a common
framework by which the user may gain access to the Grid
services. The access service will manage the life-cycle of
the Grid services available to a user, according to his/her
privileges. The access service also provides a convenient
backend for Grid portals, like for instance the Genius
portal [1]. Despite the existence of the access service,
all gLite services may be accessed directly via an API
(which will in most cases be generated from the service
WSDL) or command line tools using this API. The API is
of course not a service on it’s own, however it is shown in
Figure 1 to make this way of accessing the services explicit.

Information and Monitoring Services:provide a mecha-
nism to publish and consume information and to use it for
monitoring purposes. The information and monitoring sys-
tem can be used directly to publish, for example, informa-
tion concerning the resources on the Grid.

More specialised services, such as the Job Monitoring
Service, will exploit them. The underlying information
service will be able to cope with streams of data and the
merging and republishing of those streams. The system
relies upon registering the location of publishers of infor-
mation and what subset of the total information they are

1Other categorisations (e.g. a layered architecture as discussed in [5])
are possible as well.

publishing. This allows consumers to issue queries to the
information system while not having to know where the in-
formation was published.

All published information carries with it the time and
date when it was first published (i.e. when the “measure-
ment” was made) as well as the identity of the publisher
and from where it was published. This information is not
modifiable even if data are republished. In fact no data can
be modified in the system thus avoiding any inconsisten-
cies when data are republished. There are of course mech-
anisms to clean out old data (under the control of the pub-
lisher of that data).

Finally there is a fine-grained, rule-based authorization
scheme to ensure that people can only read or write within
their authority.

Job Management Services:The main services related
to job management/execution are the computing element
(CE), the workload management (WMS), accounting, job
provenance, and package manager services. Although pri-
marily related to the job management services, accounting
is a special case as it will eventually take into account not
only computing, but also storage and network resources.
Hence, accounting is depicted in Figure 1 straddling the
data and job management services.

These services communicate with each other as the job
request progresses through the system, so that a consistent
view of the status of the job is maintained.

When this communication needs to occur during execu-
tion on the computing nodes (notably in the cases of com-
munication to the job provenance service, to the package
manager service, and to any network service that provides
“interactive” services such as the bridging and buffering of
standard streams, or signaling to running jobs), the usual
technique of wrapping the executable content into “wrap-
per” scripts will be used.

Multiple workflows for job management will be offered,
in particular thepushandpull models: In the push model,
the WMS decides where to execute a job based on the in-
formation on available CEs and their characteristics as ob-
tained from the information system. Additional input like
the location of input data may be considered as well. In the
pull model, the WMS buffers jobs in atask queueand the
CEs actively request jobs from the WMS. These requests
are matched against the available jobs again taking into ac-
count information like the location of input data.

Figure 2 illustrates the main components of the WMS
system and its interaction with other gLite services,
notably the CE.

Data Services: The three main service groups that relate
to data and file access are: Storage Element, Catalog Ser-
vices and Data Management. Closely related to the data
services are the security-related services and the Package
Manager.

In all of the data management services the granularity
of the data is on the file level. However, the services are
generic enough to be extended to other levels of granular-



Figure 2: Internal architecture of the Workload Manager

ity. Most application data is expected to be located in files
(as opposed to relational database systems for example).
This assumption is not made for application metadata. In a
distributed environment, there will be many replicas (man-
aged copies) of the user’s files stored at different physical
locations. To the user this may be transparent, the middle-
ware will provide the capabilities for replica management.

In the Grid the user identifies files by logical file names
(LFNs). The LFN is the key by which the users locate the
actual locations of their files. We refer to filereplicas(as
opposed to file copies) if the instances of a given file are
being tracked by the Replica Catalog (RC). To the user of
the data services the abstraction that is being presented is
that of a global file system. A client user application may
look like a Unix shell (as in AliEn) which can seamlessly
navigate this virtual file system, listing files, changing di-
rectories, etc.

The replicas are identified by Site URLs (SURLs). Each
replica has its own SURL, specifying implicitly which
Storage Element needs to be contacted to extract the data.
The SURL is a valid URL that can be used as an argument
in an SRM interface [3]. Usually, users are not directly ex-
posed to SURLs, but only to the logical namespace defined
by LFNs. The Grid Catalogs provide mappings needed for
the services to actually locate the files. To the user the illu-
sion of a single file system is given.

The data in the files can be accessed through the Stor-
age Element (SE). The access to the files is controlled by
Access Control Lists (ACL). The detailed semantics of file
access will be different depending upon what kind of stor-
age back-end is being used beneath an SE; there may be
substantial latencies for reads and a large number of possi-
ble failure modes for write.

The Data Management System will expose all nontrivial
interfaces to the user for data placement in a distributed en-
vironment where data transfers will be scheduled much like
jobs. The services comprise the Data Management Sys-
tem are the Data Scheduler (DS), the Transfer Fetcher, the
File Placement Service (FPS) and the File Transfer Library
(FTL).

The Data Scheduler is a top-level service, keeping track
of data movement requests in a VO that are being submit-

ted directly by the user through a portal or user interface or
by computational jobs submitted to the WMS. The Trans-
fer Fetcher polls the Data Scheduler and fetches transfers
whose destination is the local site for the given VO, insert-
ing new requests into the File Placement Service. The File
Placement Service coordinates the transfer performed by
the File Transfer Service and makes sure that the File and
Replica catalogs are updated properly.

Figure 3 provides a schematic overview on the various
data management services and their interplay.

Figure 3: Architecture overview of the Data Management
Services. The dotted arrows represent queries, the solid
arrows represent requests.

IMPLEMENTATION CONSIDERATIONS

The Grid system realised by the services described
above should allow a maximum of flexibility in service
deployment, service composition, and service interop-
erability. In order to achieve this, implementations of
the services need to take into account the requirements
discussed in Section 3 of the Architecture document [6].
The main issues include:

Interoperability: Service implementations need to
be interoperable in such a way that a client may talk
to different independent implementations of the same
service. Following a strict SOA approach with well-
defined interfaces specified in WSDL will help achieve
this goal. In addition, the Grid services need to be
able to co-exist with, and leverage existing Grid infras-
tructures like LCG (http://cern.ch/lcg), Grid2003
(http://www.ivdgl.org/grid2003/), or NorduGrid
(http://www.nordugird.org). This can be achieved in
developing lightweight services that only require minimal
support from their deployment environment.

Service Deployment: Grid services need to be easily
deployable and configurable across a wide range of
platforms. This goes along the lines of the goal of
interoperability with existing infrastructures discussed
above. In addition, several deployment scenarios need to
be supported (e.g. services running together on the same
physical machine, services supporting single or multiple
VOs).



Service Autonomy: Although the services constituting
the gLite architecture are supposed to work together in a
concerted way, they should be usable also in a stand-alone
manner in order to be exploitable in different contexts.
Ideally, if a user only requires a subset of services to
achieve his task, he should not be forced to use additional
services.

Re-use of existing services:As much as possible, exist-
ing, well-tested components should be adopted according
to the presented design, rather than implementing every-
thing from scratch. We envisage in particular the re-use of
components originating from projects like AliEn, Condor,
EDG, Globus, LCG, VDT, NorduGrid and others.

Client libraries: [7] defines the gLite services by means
of WSDL which will allow the creation of client libraries
on demand. However, this procedure exposes all the low
level details of the involved protocols to the user and thus
proper client libraries hiding these details should be pro-
vided where appropriate.

FROM PROTOTYPE TO RELEASE

For implementing the services described above we have
adopted a fast prototyping approach, exploiting existing
services originating from AliEn, EDG, LCG, and VDT as
much as possible. This prototype, which currently is in-
stalled at two main sites (CERN and Wisconsin) with some
service components being installed also at Bologna and
RAL, offers the early adopters of the gLite services the op-
portunity to assess the service breakdown, semantics, and
interfaces and, through their feedback, guide the further de-
velopment of gLite. Since May 2004 selected users from
the HEP and Biomedical communities are using the proto-
type on a regular basis. In particular the members of the
LCG ARDA project are assessing the prototype for dis-
tributed analysis and provide invaluable feedback [8].

In order to move from this fast prototyping approach to
a robust and deployable release, rigorous integration and
testing processes need to be applied. In particular, all of the
gLite software is maintained in a common CVS repository
and automatically built every night. These nightly builds
are tagged and forwarded to the internal testing team for
(largely automated) tests on at least three geographically
distributed sites. See [9] and [4] for more details on the
integration and testing activities.

Once a service passes all the testing steps, it is for-
warded to the EGEE operation activity for deployment on
a pre-production servicecomprising about 20 sites where
it will become available to a larger user community. The
first gLite services are expected to be delivered to the pre-
production service in autumn 2004.

We believe that the continuous interaction with our user
communities from the early prototyping stages up to the
pre-production services combined with rigorous integra-
tion and testing activities will from the basis of the success
of the gLite middleware.

CONCLUSION AND FUTURE WORK

In this paper we presented a high level overview on the
services constituting the next generation Grid middleware
as developed within the EGEE project. We outlined the ar-
chitecture of the main Grid services and discussed the main
issues and approaches in implementing these services.

The first release of the gLite services is expected in
spring 2005, although individual services will be available
to a large user community via the pre-production services
much earlier. We expect that this first release will encom-
pass the basic services needed to run successfully appli-
cations on the Grid. In the remaining lifetime of EGEE
(up to spring 2006) these services will be further stabilized
and augmented with additional, higher level services that
will allow a more efficient usage of the available Grid re-
sources. Example of these future services include advanced
reservation and the consideration of the network resources
in job and data scheduling. In addition, significant work is
needed to unify and ease the installation and configuration
of the gLite services.

REFERENCES

[1] A. Andronico, R. Barbera, et al. GENIUS: a simple and
easy way to access computational and data grids.Future
Generation of Computer Systems, 2003.

[2] P. Buncic, F. Rademakers, R. Jones, et al. Archi-
tectural Roadmap towards Distributed Analysis. Tech-
nical report, LHC Computing Grid Project, Octo-
ber 2003. http://lcg.web.cern.ch/lcg/PEB/arda/

public docs/ARDA report final.pdf.

[3] The GGF Grid Storage Resource Manager Working
Group. SRM Documents.http://sdm.lbl.gov/gsm/
documents.html.

[4] L. Guy et al. Distributed Testing Infrastructure and Pro-
cesses for the EGEE Grid Middleware. InProceedings
CHEP04, September 2004.

[5] I. Foster and C. Kesselman and S. Tuecke. The Anatomy
of the Grid.The International Journal of High Performance
Computing Applications, 15(3):200–222, Fall 2001.

[6] EGEE JRA1. EGEE Middleware Architecture. EU De-
liverable DJRA1.1, July 2004.https://edms.cern.ch/
document/476451/.

[7] EGEE JRA1. EGEE Middleware Design. EU Deliver-
able DJRA1.2, September 2004.https://edms.cern.
ch/document/487871/.

[8] B. Koblitz et al. First Experiences with the EGEE Middle-
ware. InProceedings CHEP04, September 2004.

[9] A. Di Meglio et al. A Pattern-based Continuous Integration
Framework for Distributed EGEE Grid Middleware Devel-
opment. InProceedings CHEP04, September 2004.

[10] GGF OGSA WG. The Open Grid Services Architec-
ture, Version 1.0. https://forge.gridforum.org/

projects/ogsa-wg.


