
LCIO
PERSISTENCY AND DATA MODEL FOR LC SIMULATION AND

RECONSTRUCTION

F. Gaede, T. Behnke, H. Vogt, DESY, 22607 Hamburg, Germany
R. Cassell, N. Graf, T. Johnson, SLAC, Stanford CA 94309, USA

Abstract

LCIO is a persistency framework and data model for the
International Linear Collider. Its original implementation,
as presented at CHEP 2003, was focused on simulation
studies. Since then the data model has been extended to
also incorporate prototype test beam data, reconstruction
and analysis. LCIO defines a common abstract user in-
terface (API) in Java, C++ and Fortran in order to fulfill
the needs of the global linear collider community. It is de-
signed to be lightweight and flexible. We present the design
and implementation of LCIO, focusing on the data model
and new developments.

OVERVIEW

LCIO is a persistency framework for simulation and test
beam studies for the International Linear Collider (ILC).
It has first been presented at CHEP03 [1]. LCIO aims at
allowing the exchange of data and algorithms among Lin-
ear Collider working groups and thus provide a basis for
common software development.

Requirements

LCIO has to define a data model that fulfills the current
needs of the global linear collider community for ongoing
simulation and test beam studies. As Java, C++ and Fortran
are used in ILC software, LCIO has to provide user inter-
faces in all three languages. In order to make it easy for
existing frameworks to adopt LCIO it has to be lightweight
and flexible without introducing additional dependencies
on other software packages.

Implementation and Design

LCIO defines a common API for Java and C++ using the
AID [3] tool. Two independent implementations exist for
Java and C++ in order to benefit from either language’s ad-
vantages. As is common practice today user code is com-
pletely separated from the actual I/O format and code, so
more advanced formats can be incorporated in the future.
In order to support legacy software a Fortran API to LCIO
is provided through a set of wrapper functions to the C++
implementation. Details of the design and implementation
are described in [1]. A schematic overview of the software
architecture is shown in fig. 1

Figure 1: Schematic overview of the software architecture
of LCIO. Two independent implementations in C++ and
Java are used to provide common user interfaces in Java,
C++ and Fortran thus making it easy to analyze LCIO data
files with the analysis tool of choice.

I/O Format

SIO (Simple Input Output) has been chosen as a first I/O
format for LCIO. It offers on the fly data compression and
pointer retrieval. As SIO does not offer direct access func-
tionality a fast skip mechanism is implemented in LCIO to
allow reading of selected events only.

Users

A number of groups have chosen LCIO as their data
model and format, some of which are: Mokka simula-
tion and Brahms reconstruction [5, 6] , Lelaps fast Monte
Carlo [7], hep.lcd reconstruction1 [4], JAS3 analysis tool
and WIRED event display [9, 8], TPC and Calorimeter test
beam groups. Other groups have also expressed their will-
ingness to use LCIO in the future. Thus LCIO is about to
become a de-facto standard for ILC software development.

DATA MODEL

Figure 2 shows the event data model of LCIO. Central to
the design is the class LCEvent that serves as a container
for all data that are related to one event. It holds an arbi-
trary number of named collections (class LCCollection) of
data objects (class LCObject). Run related information is
stored in LCRunHeader. Run-headers, events and collec-
tions have an instance of LCParameters that allows to store

1currently being rewritten as org.lcsim



meta data (see section ’New Developments’).

Figure 2: The main classes that define the event (and run)
data model in LCIO. Event data is stored in collections of
LCObject subclasses. Generic named parameters allow to
store meta data for the run, event and collection.

In figure 3 the LCIO data entities are shown with the
implemented relationships between the objects.

Figure 3: Schematic overview of the main data entities
defined by the LCIO data model and the relationships be-
tween them. Objects are shown in the order of the process-
ing flow, starting with pure Monte Carlo quantities on the
left, followed by raw data and digitization to reconstruction
and analysis classes on the right.

In the following sections we describe the entities that
are defined at every processing level from the Monte Carlo
generator to analysis.

Monte Carlo

The main class at the Monte Carlo level is MCParticle.
There will be exactly one collection with name “MCParti-
cle” in every event that holds the Monte Carlo truth parti-
cles as created by the generator program. Particles that are
created during simulation will be added to the existing list

of MCParticles. Adding particles with their correct lineage
ceases when a particle decays or interacts in a non-tracking
region. Otherwise the number of MCParticles would ex-
plode in calorimeter shower development. Two generic hit
classes, one for tracker and one for calorimeter hits are used
to store the simulated detector response. All energy deposi-
tions are assigned to particles in the list, i.e. particles seen
in the tracking region or that entered the calorimeter and
started a shower. If a particle from a calorimeter shower
is scattered back into the tracking region it is also added
the list with the resulting tracker hits assigned. A simulator
status word is used to store the details about creation, inter-
action and decay of the particle. For the MCParticle only
parent relationships are stored. When reading the data back
from the file the daughter relationships are reconstructed
from the parents. This is to ensure consistency. Care has to
be taken when analyzing the particle ’tree’. Because a par-
ticle can have more than one parent the particle list in fact
does not consist of a set of trees (one for each mother par-
ticle) but forms a ’directed acyclic graph’. Thus the user
has to avoid double counting in his code. Of course this
only matters at the parton level as real particles do not have
more than one parent.

Raw Data

The classes at the raw data level have been introduced
to make LCIO also suitable for storing ’real data’ from
test beam prototypes. For calorimeters there is the class
RawCalorimeterHit that consists of an integer amplitude
and a cell-id. It will most likely be suitable for all calorime-
ter type detectors. This is different from the situation for
the tracking subdetectors. There the data formats will vary
considerably with the particular type of the tracking device.
Currently there is only the class TPCHit but others will be
added as the need arises. If needed the raw data classes can
also be used in simulation where one can link back to the
Monte Carlo hits through special LCRelation objects.

Digitization

At the digitization level there are again two generic
classes for tracker and calorimeter type subdetectors re-
spectively. These classes will contain hit data after digitiza-
tion and feature extraction. CalorimeterHit and TrackerHit
are the types to be used in reconstruction and analysis code
for Monte Carlo and test beam data. If needed users can ac-
cess the corresponding original information for either data
type.

Reconstruction and Analysis

Three classes are defined at the reconstruction and anal-
ysis level. Hits are combined into Clusters and Tracks by
pattern recognition and reconstruction algorithms. Both
classes point back to the contributing hits. Clusters can also
be combined from other clusters allowing a tree-like struc-
ture, e.g. one could build clusters with a geometrical algo-



rithm and then combine some of these clusters to ’particles’
applying some track-match criterion. Due to the imaging
capabilities of the planned Linear Collider calorimeters,
clusters have an intrinsic direction assigned to them. The
following parameters are used for Tracks: d0: impact pa-
rameter of the track in the r-phi plane, phi: φ of the track at
the reference point, omega: signed curvature of the track,
z0: impact parameter of the track the in the r-z plane, tan-
Lambda: λ is the dip angle of the track in the r-z plane at
the reference point. By default LCIO tracks have the point
of closest approach (PCA) as the reference point but any
other point can be chosen as needed. ReconstructedParti-
cle is the class to be used for every object that is recon-
structed. This can be a single particle like a track identified
as a pion or a compound object like a jet made from many
particles. ReconstructedParticle has lists of Tracks, Clus-
ters and ReconstructedParticles that have been combined
to form this particle. Besides the kinematics including the
corresponding covariance matrix any number of hypothe-
ses describing the particle’s identity (PID) can be stored.
ReconstructedParticle is intended to be the working horse
for most physics analyses, where only rarely the need arises
to go back to tracks, clusters or even hits.

NEW DEVELOPMENTS

The first public version of LCIO (v01-00) has been re-
leased in Nov 2003. Since then the data model has been
completed as described in section ’Data Model’ and a num-
ber of new features have been developed and added to the
current release (v01-03).

Relation Objects

In order to be able to relate objects with each other that
do not have a build-in relation in the LCIO data model
a new class LCRelation has been introduced. Typically
LCRelation objects are used to store the links between raw
data and the Monte Carlo truth information. This ensures
that there is a clear separation between data classes that are
to be used in analysis and reconstruction and the Monte
Carlo classes that are used for developing and checking al-
gorithms (see fig.3). LCRelation objects can also be used to
relate reconstructed objects back to the Monte Carlo truth,
e.g. if the hits are dropped from the files in order to save
disk space. LCRelations might also be used to store tran-
sient links between objects at runtime.

User Extensions

The LCIO data model as described above has been de-
signed in a way that it should fulfill all the current needs
for ongoing Linear Collider studies. Care has been taken
to make the data model flexible enough so that it can well
be used for a variety of different subdetector types. Nev-
ertheless users will occasionally need to store information
that is specific to to a detailed aspect of their ongoing work
and that is not foreseen in the data model. This can be done

by using collections of LCIntVec, LCFloatVec and LCT-
StringVec objects, i.e. arbitrary vectors of type int, float
and string. Even though this mechanism is fairly generic it
can be become somewhat cumbersome to handle user ex-
tensions, in particular if the information at hand involves
more than one data type.

A new interface LCGenericObject allows users to store
any self defined class with LCIO that implements that in-
terface. Every LCGenericObject has an arbitrary number
of int, float and double attributes, where the numbers might
be fixed among one collection or vary from object to object.
Data stored in LCGenericObjects can be retrieved from an
LCIO file either by using the user class implementation or
through the generic interface. Thus to read an arbitrary
LCIO file no additional knowledge or library is needed.
This is different from other persistency systems, where typ-
ically a dictionary with the class definition is needed2.

Transient Collections

The LCIO data model has been designed such that it
can also serve as the transient data model in an applica-
tion. Listener objects support a modular design of such
applications, where every module gets an LCEvent with
all the collections existing at that point and adds one or
more collections with its result to the event. Typically any-
thing added to the event will be made persistent. However
some intermediate collections might only serve as input to
a computation performed by a subsequent module. These
LCColections can be flagged as transient and will not show
up in the output stream.

Default Collections

The LCEvent allows to store an arbitrary number of
named collections of the same data type. For example
there can be several lists of Track objects available in one
event. Typically there will be a collection of tracks or track
segments for every tracking subdetector and one collection
that holds all combined track fits. This collection is the one
that will be used for most analyses. In order to make it
simple for the user this collection can be flagged as being
the default list for Tracks. In general there should be ex-
actly one default collection for every type. This list should
be complete in the sense that every known information has
been taken into account and unique in the sense that it does
not double count energy.

Meta Data

LCIO will be used by a number of groups to store data
for detectors with different features and capabilities. Thus
it is necessary to describe the data that is stored in LCIO
in a way that it can be interpreted by users from other
groups without additional documentation and ideally even

2This is in particular true for C++ systems where for Java based sys-
tems one could in principle retrieve and access data of unknown classes
using reflection.



without modifying existing code. This meta data descrip-
tion can now be stored as arbitrary named parameters of
types int, float and string attached to run-headers, events or
collections. A number of predefined attribute names exist
that are used to describe and interpret type information in
LCObjects, such as the type of ReconstructedParticles or
Clusters. These attributes can be parsed and interpreted by
applications whereas other - user defined - attributes can
at least be printed and interpreted by another user, making
additional sources of documentation unnecessary.

SUMMARY AND OUTLOOK

Since its first public release in Nov, 2003 LCIO has been
adopted be a number of groups and is about to become a de-
facto standard for ILC software. The current release v01-03
provides the complete data model including reconstruction
objects and user extensions. Future releases will provide
additional functionality that makes analyzing LCIO data
more convenient.

Currently we are investigating the possibility to develop
a glue layer for LCIO that allows to use the C++ implemen-
tation from Java code which in turn is called from within
a C++ application. This would enable the development of
a mixed language analysis and reconstruction framework.
As there already is existing code in both languages such
a framework would make it easy to compare and bench-
mark algorithms without the need to rewrite the code that
only exists in the other language. Even though such a glue
layer is in principle straight forward to implement, using
e.g. JNI, in practice this might become tedious and er-
ror prone. However using automatic code generation one
might overcome these problems.

REFERENCES

[1] F.Gaede, T.Behnke, N. Graf, T. Johnson CHEP03 March24-
28, 2003 La Jolla, USA Conference proceedings, TUKT001,
arXiv:physics/0306114.

[2] LCIO Homepage: http://lcio.desy.de/

[3] AID Homepage:
http://java.freehep.org/aid/index.html

[4] hep.lcd Homepage:
http://www-sldnt.slac.stanford.edu/

jas/Documentation/lcd

[5] Mokka Homepage:
http://polywww.in2p3.fr/

geant4/tesla/www/mokka/mokka.html

[6] Brahms Homepage: http://www-zeuthen.desy.de

lc_repository/detector_simulation/

dev/BRAHMS/readme.html

[7] Lelaps Homepage: http://lelaps.freehep.org

[8] Wired Homepage: http://wired.freehep.org

[9] Jas Homepage: http://jas.freehep.org


