
APPLICATION OF THE SAMGRID TEST-HARNESS FOR PERFORMANCE
EVALUATION AND TUNING OF A DISTRIBUTED CLUSTER

IMPLEMENTATION OF DATA HANDLING SERVICES

A. Lyon, A. Baranovski, G. Garzoglio, L. Loebel-Carpenter, R. Herber, R. Illingworth, R. Kennedy,
A. Kreymer, A. Kumar, L. Lueking, W. Merritt, I. Terekhov, J. Trumbo, S. White, S. Veseli, FNAL,

Batavia, IL 60510, USA, M. Burgon-Lyon, R. StDenis, Glasgow University, S. Belforte, INFN,
Trieste, U. Kerzel, Karlsruhe University, M. Leslie, V. Bartsch, S. Stonjek, Oxford University, F.

Ratnikov, Rutgers University, A.Sill, Texas Tech University

ABSTRACT

The SAMGrid team has recently refactored its test
harness suite for greater flexibility and easier
configuration. This makes possible more interesting
applications of the test harness, for component tests,
integration tests, and stress tests.

This new implementation of the test harness is a Python
framework which uses XML for configuration and small
plug-in python modules for specific test purposes

We report on the architecture of the test harness and its
recent application to stress tests of a new analysis cluster
at Fermilab, to explore the extremes of analysis use cases
and the relevant parameters for tuning in the SAMGrid
station services. One current testing application is running
on a 128-CPU analysis cluster with access to 6 TB
distributed cache and also to a 2 TB centralized cache,
permitting studies of different cache strategies.

We have also studied the service parameters which
affect the performance of retrieving data from tape
storage. The use cases studied vary from those which will
require rapid file delivery with short processing time per
file, to the opposite extreme of long processing time per
file.

These results are interesting for their implications with
regard to Grid operations, and illustrate the type of
monitoring and test facilities required to accomplish such
performance tuning.

INTRODUCTION

The SAMGrid system is a large scale distributed system
offering data storage, transfer and bookkeeping services to
aid in the processing of peta-byte scale data from the D0
and CDF experiments, it is also being tested for use by
MINOS and CMS.

Unit, Stress and Performance Tests
Testing is an essential part of developing any large scale

distributed system. SAMGrid tests fall into three main
categories. The correctness of code is checked by 'Unit
tests' which verify small sections of code in isolation.

While unit testing will catch many bugs, production
quality code also needs to be stress tested under loads that
resemble the environment that they will be deployed in.
Particularly in multithreaded systems, this stress testing
can reveal flaws that unit testing does not.

There is also a need for performance testing.
Optimizing any tuneable parameters in a system requires
producing a controlled load and monitoring the
performance impact of altering various settings. As we
will show, the SAMGrid test harness has proved
particularly valuable for this kind of testing.

THE TEST HARNESS

Motivation for the SAMGrid Test Harness

Before the test harness was used, tests were written on
an ad-hoc basis. Stress testing was performed using a
mixture of Perl, Python, and Bash scripts which were
difficult to maintain and configure. The output from stress
tests was difficult to read as the output from parallel
processes were interleaved. When the need arose to
reconfigure the stress test harness for use at CDF, it
became apparent that refactoring the test harness was the
best way forward.

Features
In redesigning the test harness we aimed for a clean

design that simplified test configuration and provided
facilities for stress, unit and performance testing within a
single unified framework. This framework was to provide
configuration and output formatting features while
requiring as little additional effort as possible from the
test programmer. The test harness was rewritten in object
oriented Python, using pyxml to allow XML
configuration.

The harness is multithreaded and can be configured to
run any test to completion before starting the next test, or
to start a separate thread for a test. Using this feature a
unit test can easily be converted into a stress test, simply
by running many unit tests concurrently. The harness will
keep track of each thread and log its output on
completion.

Configuration
Configuration is handled by a single simple XML file,

detailing a suite of tests. Test suites may be set to loop any
number of times.

Each test is configured by its test option subtags, which
are key-value pairs. Global options may also be specified,
and accessed by all tests.

Any test may be configured to depend on any other, and
will run only if that test has completed successfully.
Thread locking is used to ensure tests will wait until their
dependencies have completed before running, and cycle
detection is used to prevent accidental deadlock.

In order to provide more accurate simulation of real
world load, randomised or exact delays may be specified
between running tests. This is especially useful when
attempting to simulate real world loads.

Output
A test's output is separated into standard input, standard

error, a Boolean to indicate whether the test was
successful and various timing fields. Separate fields are
also available for providing reasons for the tests failure, or
for indicating that the test failed to run because it's
dependencies failed.

The harness produces either XML or HTML output.
XML output provides an easy way for other programs to
interpret the output of the harness, whereas HTML output
is of more use if the results are being interpreted directly.
Results are colour coded depending on whether the test
passed or failed.

 Realtime onscreen output is also available, however
when large numbers of processes are run in parallel, it is
necessary to interleave messages from each. File output is
preferred as it allows messages from concurrent tests to be
collected and separated, making interpreting results much
easier.

Documentation
Documentation can be automatically generated by the

test harness using the various introspective description
methods each Test object must provide.

Extensive documentation on using, configuring, and
extending the test harness is available online[1].

Extensibility
Adding new tests has been made as simple as possible

to encourage use of the test harness. All tests derive from

a Test class shown in figure 1, and must provide details
of any options it accepts. The harness will then read in
these options from the XML file, fork of a separate
process if necessary, and start the test with the options the
user specified.

 No restrictions are placed on the test code other than
that it must terminate and must produce a Boolean 'passed'
output. Helper methods are available to run a command
line application and pass or fail the test depending on the
applications return code or on the presence of some string
in standard output.

Figure 1: The Test Object

Performance Monitoring
In performance testing it is often necessary to monitor

parameters throughout the lifetime of an entire suite of
tests, rather than as part of a particular test. An example of
such a parameters might be a systems load average.

The test harness provides a framework for performance
monitoring code to be registered and polled at regular
intervals. The monitor is registered in the XML file, and
the value of the monitored code is logged throughout the
duration of the test suite, formatted and output with the
results of the test.

Test

+runTest(testOptions)
+getOutput()
+getDescription()
+getOptionDescriptions()
+isRunning()
+hasRun()

TestOptionDescription

+getDescription(self)
+getName(self)
+getDefault(self)
+getDefaultOption(self)
+getRequired(self)

TestOption

+getName(self)
+getValue(self)
+setValue(self, value)

TestOutput

+stdOut:
+stdErr:
+performanceInfo:
+testEnv:
+failMessage:
+testRan:
+testPassed:
+exception:
+startTime:
+stopTime:
+globalOptions:
+testOptions:
+testID:
+testNumber:
+testType:

PERFORMANCE TUNING SAMGRID
WITH THE TEST HARNESS.

One main use of the test harness is to exercise the
SamGrid system under different conditions with different
options chosen for SamGrid components. We have begun
such a program to explore the SamGrid parameter space
to search for an optimal set of options to run. The
SamGrid stager service is responsible for transferring a
data file to a worker node for processing. The source of
the file may be another SamGrid station, a tape system, or
local cache. The stager service has various throttles in
order to limit the amount of network traffic. One such
throttle is "max-transfers", which restricts the number of
simultaneous file transfers that a stager will perform. If
the number of needed transfers exceeds the max-transfers
setting, those extra will be queued and wait for other
transfers to complete.

When the cache on a station is empty, most data files
come from a tape system. Fermilab uses Enstore[2] for
tape services. We have noticed that when a SamGrid
station is very busy and heavily accessing Enstore tapes,
many tape transfers will wait in the Enstore queue and
long file arrival times result. We seek to understand the
role of the max-transfers parameter in this problem.

We use the SamGrid test harness as a mechanism for
loading a test SamGrid station with test projects. A
project is a SamGrid request to run a particular
application on a set of files. The project may involve
running one job, or many parallel jobs. In this case, we
have the test harness load a test station with 200 projects,
each with one job asking for 10 different files, all coming
from tape. There is little overlap between the sets of files.
The test application merely sleeps for a minute between
file transfers. The projects are started in rapid succession,
and then the station is left alone to fulfill the file transfer
requests. We use SamGrid monitoring tools to examine
the course of events on the station.

We show here results from running two extreme cases:
allowing each worker to have five simultaneous transfers
(max-transfers=5) and just one transfer (max-transfers=1).

Figure 2 shows the number of projects running on the
SamGrid test station vs. hours since the start of the Test
Harness. One sees a fast rise and then a long decay as
projects slowly complete. For the max-transfers=5 case,
the entire test ran for about eight hours, while the test took
ten hours for the max-transfers=1 case.

Figures 3 and 4 show histograms and a box-and-
whisker plot of the number of hours projects were
running. For the max-transfers=5 case, the mean duration
for a project was five hours, while the mean was eight
hours for the max-transfers=1 case.

Figure 2: Number of running projects,

Figure 3: Project Duration

Figure 4: Project Duration, Box and Whisker

1020

Figure 5 shows box-and-whisker plots for the number
of hours a job was waiting idle for a file delivery. It is
interesting to note that the average wait time for the max-
transfers=1 case is shorter than the max-transfers=5 case.
The reason for the shorter wait times for max-transfers=1
is clear from viewing Figure 7. Shown are box-and-
whisker plots for each tape drive (mover) indicating how
long a file transfer request waiting in the Enstore queue
before being serviced.

The shorter Enstore queue wait time for max-
transfers=1 is due the reduced number of transfers
submitted to the Enstore tape request queue, as shown in
Figure 6

Figure 5: Process wait times

Figure 6: Enstore read queue length

Figure 7: Tape Queue Time

This brief example illustrates the complexities of
optimizing the SamGrid system. More detailed
investigations are underway to understand the connection
between SamGrid parameters, file delivery performance,
and tape system load.

CONCLUSIONS
 Tests like those described here were difficult before the

refactoring of the test harness system. Now, we can
perform such system wide studies easily, along with other
tests such as installation verification. We expect to use the
new test harness extensively to learn more about the
performance potential of SamGrid

ACKNOWLEDGEMENTS

We would like to thank Fermilab Computing Division
for its ongoing support of the SAMGrid project, and
especially the CCF, CEPA, and Run II Departments. We
would also like to thank everyone at D0 and CDF who has
contributed to this project. We would also like to thank the
UK Particle Physics and Astronomy Research Council
(PPARC) for it's support of e-science research.

REFERENCES
[1] http://cdfsamth.fnal.gov/docs/
[2] http://www-isd.fnal.gov/enstore/design.html

40

Local cache

Enstore

Hours waiting

