
THE SEAL COMPONENT MODEL

R. Chytracek†, CERN, Geneva, Switzerland

P. Mato, CERN, Geneva, Switzerland
L. Tuura, Northeastern University, Boston, USA

Abstract
This paper describes the component model that has been
developed in the context of the LCG/SEAL [6] project.
This component model is an attempt to handle the
increasing complexity in the current data processing
applications of LHC experiments. In addition, it should
facilitate the software re-use by the integration of
software components from LCG [5] and non-LCG into
the experiment's applications. The component model
provides the basic mechanisms and base classes that
facilitate the decomposition of the whole C++ object-
oriented application into a number of run-time pluggable
software modules with well defined generic behavior,
inter-component interaction protocols, run-time
configuration and user customization. This new
development is based on the ideas and practical
experiences of the various software frameworks in use by
the different LHC experiments for several years. The
design and implementation choices will be described and
the practical experiences and difficulties in adopting this
model to existing experiment software systems will be
outlined.

INTRODUCTION
LCG/SEAL project aims to provide software

infrastructure, basic frameworks, libraries and tools as a
common base to build software for experiments in the
LHC era. The process involves selection and collecting of
foundation and utility libraries and their adaptation to
obtain a coherent set in order to support development of
experiments’ software. In addition to that the SEAL
project is active in the area of developing a set of basic
framework services to facilitate the integration of LCG
and non-LCG software.

Scope of the SEAL project
There are three major domains of the SEAL project

activities:
• Foundation class libraries
• Mathematical libraries
• Basic framework services
The set of foundation libraries includes the commonly

used libraries like STL, Boost, CLHEP then utility
libraries, system isolation libraries and domain specific
libraries. The common rule applied here for selection

process was to re-use as much as possible of the already
existing software.

The work on mathematical libraries aims to provide
new generation of object-oriented libraries for High
Energy Physics (HEP) community following the same
principle as foundation libraries.

The domain of basic framework services covers
component model, reflection, plug-in management,
incident (event) management, distributed computing, grid
services and scripting.

COMPONENT MODEL OVERVIEW
One of the important aspects of software development

is to keep complexity of software products at reasonable
level in order to minimize maintenance and integration
costs. The modern software systems try to resolve this
problem by using component based programming
techniques.

This trend is followed by the SEAL project by
providing set of software building blocks (components
and services) which expose well defined interfaces and
must be configurable by an end-user if required
(properties). Component based applications should be
easily assembled using a generic infrastructure (contexts,
scopes). The process of component assembly has to be
enabled in both at compile-time (static binding) and at
run-time (dynamic binding) based on plug-ins
architecture, which simplifies deployment of pre-built
components. The guiding principle is to keep the whole
framework as simple as possible to allow for short
learning curve and at the same time giving robustness and
flexibility to developers.

Re-usability
Components should be operating outside their original

environment where they were created and this without
any need to rebuild them. In the cases where their default
behaviour is not sufficient, the components should enable
re-configuration to fit the needs of the target running
environment.

In a more demanding environment with specific needs
not foreseen by the component developers they should be
able to customize the components by either overriding
some parts of the implementation or providing alternative
implementations following the component’s interfaces.

There are applications that need dynamic
reconfiguration according to some external input which
requires different components implementations. Such
case requires so-called software hot-swap functionality,

†This work received support from Particle Physics and Astronomy
Research Council, Swindon, UK

which means, run-time replacement of existing
component with a compatible one [1].

COMPONENTS À LA SEAL
Component programming in the SEAL project is

enabled by a set of base classes, interfaces and protocols
needed to build complex software systems. This is what
we call the component model. These base classes provide
standard functionality required for component
programming like identification of components, loading
of component libraries and their instantiation in a hosting
environment, and finally the configuration of them
according to the user or developer needs. The users of the
SEAL component model do not have to worry about
memory management as this is built into the SEAL
component base classes, thus removing burden of explicit
object memory management code.

There are two basic kinds of component provided to the
developers, the Component and Service classes.

Component
Component provides basic component functionality

described above. In order to build a new component one
has to inherit from this class and implement the required
functionality. Instances of the Component class and its
derivatives are supposed to be relatively simple “gadgets”
exposing usually a single interface in a component based
system performing a single well defined function.

Service
In cases where a single component can not do well its

job, a group of components may accomplish the mission
in a collaborative way. For this purpose the Service base
class has been introduced to make instances of whole sub-
systems by grouping various sub-components or services
in one scoped collaboration. Services may expose
multiple interfaces reflecting their internal structure and
responsibilities.

CONTEXTUAL COMPOSITION
Components can’t live in a void space as they need an

environment where to live. All-in-one component able to
perform all possible tasks is impractical, so there is a clear
need to have a mechanism which allows locating other
component instances in a component system to exploit
their functionality in a collaborative way. Components are
often used by several other components at the same time,
therefore it is very important that they don’t silently
disappear causing very likely a failure of the whole
application. In addition to this, the component references
or component handles are not always available to the
developers, especially in the cases where they are
dynamically loaded during run-time by other components.
Automatic component life-time management and
ownership is thus very important aspect in component
programming.

All these issues are tackled in the modern component
frameworks (J2EE, COM+, .NET, CORBA Component

Model) by using a context based component composition
approach [7]. The SEAL project has adopted this
approach as well and provides Context class which acts as
universal component management and wiring system. The
SEAL component model follows three basic principles:
• Each component is instantiated into exactly one

context
• A component or service must be available via

context when it is needed
• Peer-to-peer component communication is

encouraged but avoiding prior knowledge of the
two peers by use of a third party (observer-
notification pattern).

Context
The Context class allows organizing instantiated

components in a hierarchical tree-like structure (see
Figure 1). At the same time it takes over the components’
ownership and their life-time management. Having the
knowledge about each component in the system, the
Context class allows performing searches throughout its
hierarchy and thus locating other components in the
system. Each component instance is associated to a single
Context, and it gets through it the access to the rest of the
application components.

The implementation of contextual composition in the
SEAL component model is inspired by Iguana [4] and
Gaudi [3] projects.

Figure 1: Snapshot showing hierarchical component
organization with help of Context objects; the dotted
arrows represent internal contexts’ links of the context
tree-like structure.

COMPONENT CONFIGURATION
Components in SEAL can declare their properties to

enable their re-configuration if needed. These properties
can be inspected, set or updated by the other components
in the SEAL component system. The properties can be
defined as:

Component4

Application AppContext
1 2 3 4 5

Component1

Svc1 Svc1Context
1 1 1

Svc3 Svc3Context
1

Svc2 Svc2Context
1 4 4

Component2

Component1

Component7

Component8

• Template class Property instances of any C++ type
that has defined the stream operator <<

• References to data members of any C++ type that
has defined the stream operator <<

All properties have their associated name and
description. The names of Properties are bound to a scope
or a namespace to allow distinguishing properties of two
or more instances of the same component in different
contexts. The scopes of property names are defined by
Services.

In order to keep the consistent state of a component,
when its property has been set or updated by some other
component, there is the possibility to associate a call-back
function object that is called when this happens. All the
properties are stored in the PropertyCatalogue.

COMPONENT LOOK-UP
Collaboration of components during run-time allows

designing proper functional decomposition spread over a
number of distinct functional units. In order to let the
components collaborate some component discovery
mechanism must be in place.

In the SEAL component model this mechanism is
provided by the Context class. The SEAL components do
not have to know the application topology in order to
locate other components. Any SEAL component or
service knows about the context where it lives and thus is
able to delegate the search task to it. Any component can
be located by specifying of either its type or combination
of type and key associated to a particular component
instance. The look-up by type is performed throughout the
context hierarchy, starting from local context and going
up in the hierarchy, by comparing the components type
ids and stops whenever a component of the given type is
found. Similarly, the look-up by key is performed in
combination with look-up by type. Unlike the previous
look-up method this search does not stop immediately
when a component of given type is found but is trying to
match component’s key value as well in order to satisfy
both search criteria.

COMPONENT CUSTOMIZATION
Full component customization can be done by the

component model user or developer in the cases where
provided component configuration is not sufficient or
missing. In this situation one may need to extend the
existing implementation or provide an alternative
implementation(s).

Customization by inheritance
This is the standard method used by object-oriented

systems in general. This way a developer can override
behaviour of an existing component. It is not
recommended to change the interfaces of the Component
or Services classes.

Alternative implementation
This method can be used to extend existing component

model system by implementing a new component with
the same interface(s) of an existing one. In this way one
can provide a compatible [1] component implementation
and replace an existing one.

Adopting foreign components
A framework developer might want to use an existing

component that is not a SEAL component (i.e. does not
inherit from the SEAL component base class). It is
possible to apply the template class ComponentWrapper,
which allows injecting this foreign component into SEAL
component hierarchy. Once wrapped, such a component
can be located by existing SEAL components. The main
difference with respect to SEAL components is that life-
time management for such a component is not done by
the Context class. The developer is still responsible for
the foreign component instance.

PLUG-IN ARCHITECTURE
SEAL component model works hand in hand with

SEAL plug-in management facilities. The SEAL
PluginManager can perform dynamic loading of a user
defined class if a proper factory class is provided.

For SEAL components this has been simplified by
providing a generic ComponentFactory class. In this way
any component in SEAL can be made a plug-in object by
writing a single line of code.

SEAL components are usually shipped as so-called
SEAL modules. These modules are dynamically loadable
shared libraries. One can bundle multiple component
plug-ins inside a single SEAL module.

Component loader
The SEAL component model simplifies component

loading by providing utility class ComponentLoader. This
class is able to load any SEAL component plug-in either
one at a time or whole bunch of components by
specifying their component key prefix. Of course, one can
specify the target context where the component has to be
instantiated after being successfully loaded.

SEAL SERVICES
SEAL has implemented a set of basic framework

services using the SEAL component model described
above.

Application
This is a utility service which allows bootstrapping an

application which uses the SEAL components. This
service defines the top-level application context and
allows defining the initial set of components to be
automatically loaded at the application start-up.

Message Service
This service deals with the application logging needs. It

performs composition of messages coming from different

application components, filtering of the messages
according the component defined output level and has a
configurable reporting facility.

Configuration Service
The main role of this service is to manage properties of

the components and to load them from property
configurations. The properties can be supplied by the user
in a form of configuration files. The SEAL developers
have foreseen multiple configuration back-ends. The
current (default) configuration file format is extended
Gaudi style options file. More back-ends will come in the
future like .INI style options, XML style, etc.

Dictionary Service
Reflection capabilities for C++ based applications

require loading of C++ dictionary libraries. This service
has been provided in order to avoid hard-wiring the
knowledge of what dictionary library holds which class’s
reflection records inside the application code. The main
role of this component is to enable automatic discovery
and loading of the corresponding dictionary library by
just providing a C++ type name.

ADOPTION AND INTEGRATION OF
SEAL COMPONENT MODEL

The component model technology in SEAL has so far
not been used in its full extent by LCG clients. One of the
main reasons for that is the fact that all the LHC
experiments, the main LCG clients, have already
developed their own frameworks, which are regularly
used in production. This is the most important factor in
the rather slower adoption of the SEAL component model
so far.

Another important SEAL client, the LCG/POOL [4]
persistency framework, has been more active in adopting
the latest facilities provided by SEAL project including
the component model but due to the same reason as above
the use of all component model features has been limited.

The situation has changed with the latest new
developments in the POOL project dealing with the
Relation Abstraction Layer (RAL). RAL defines a generic
interface for accessing relational databases. This
abstraction requires loading of plug-ins, specific for a
database back-end, triggered by user supplied connection
strings that identify the data sources. Due to this, the RAL
based POOL application, can decide only at run-time
what plug-ins must be loaded and therefore a strong
support for run-time re-configuration is needed.

Use-case: POOL RAL and ODBC plug-in
Among other RAL plug-ins, the plug-in for ODBC

based access to relational databases is a bit special. It is
the generic and the de facto standard API for accessing
relational databases. Because of the POOL convention in
the connection strings, it is not possible to use standard
DSN based connections forcing us to use the so called
DSN-less ODBC connection mechanism. This requires

that POOL RAL ODBC access is initialized in multiple
stages.

Figure 3: Component lay-out of the POOL RAL ODBC
plug-in

Some of the features of the POOL RAL interfaces are
impossible to implement in a generic way, even via the
ODBC generic API. Most of the cases are related to
database schema management, type conversions, index
and table manipulations that require database back-end
specific handling.

CONCLUSIONS
The implementation of the SEAL component model

can be considered complete enough for adoption and/or
integration into the client frameworks and applications. It
provides the necessary functionality to allow development
of component based applications.

The first larger adoption of the SEAL component
model is happening in LCG/POOL project for
implementation of POOL RAL layer. Further integration
is expected in LHCb and ATLAS experiment software
when these adopt the SEAL component model into Gaudi
framework.

No new major developments are planned of SEAL
component model and the development of additional
common framework services unless there is an explicit
request for a new functionality from the experiments. The
only outstanding area in the SEAL component model is
the component configuration which needs to be extended
by broader support for various property file formats.

REFERENCES
[1] Compatible means the same interface(s)
[2] http://cern.ch/Gaudi/welcome.html
[3] http://cern.ch/iguana
[4] http://pool.cern.ch
[5] http://cern.ch/LCG
[6] http://seal.cern.ch
[7] C. Szyperski, D. Gruntz, S. Murer, “Component

Software - Beyond Object-Oriented Programming”,
Addison-Wesley, 2002, ISBN 0-201-74572-0

MySQL
ODBC Access
Domain

MySQL
ODBC Access
Domain

MySQL ODBC
Context

1 2 3 4 5 6 7 8 79 1

POOL
Application POOLConte

xt 1 2 3 4 5

Relational
Service

RAL
Context 1 2 3 4 5

Component
Loader

XML
Authetication

Service

Message
Service

MySQL
ODBC Table
Data Editor

MySQL
ODBC
Schema

MySQL
ODBC Driver
Configurator

MySQL
ODBC Type
Configurator

ODBC
Configurat ODBC Driver

Selector

mysql://dbserver/PoolSchema

ODBC
Session

