
GRID ENABLED ANALYSIS: ARCHITECTURE, PROTOYPE AND STATUS

Frank van Lingen, Julian Bunn, Iosif Legrand, Harvey Newman, Conrad Steenberg, Michael Thomas,
California Institute of Technology, United States

Paul Avery, Dimitri Bourilkov, Rick Cavanaugh, Luakik Chitnis, Mandar Kulkarni, Jang Uk In,
University of Florida, United States

Ashiq Anjum, Tahir Azim,
National University of Science and Technology, Pakistan

Abstract

The Grid Analysis Environment (GAE), which is a
continuation of the CAIGEE project [5], is an effort to
develop, integrate and deploy a system for distributed
analysis. The current focus within the GAE is on the CMS
experiment [1] however the GAE design abstracts from
any specific scientific experiment and focuses on
scientific analysis in general. The GAE project does not
intend to reinvent services, but rather to integrate existing
services into a collaborative system of web services.

INTRODUCTION
As grid middleware matures and grid (web) services

become more prolific, the development of "higher level"
services that can take intelligent decisions based on these
"lower level" services is required. In 2003, Caltech and
the University of Florida initiated the Grid Analysis
Environment (GAE) project with the goal of developing,
integrating, and deploying a web service framework and
services for physics analysis (especially CMS [1]) at the
LHC. The project’s kernel is a Grid-based portal called
Clarens [4]. GAE is a continuation of the CAIGEE
project [5].

The GAE will be used by a large, diverse community. It
will need to support hundreds, even thousands, of analysis
tasks with widely varying requirements. It will need to
employ priority schemes, and robust authentication and
security mechanisms. Most challenging, the GAE will
need to operate well in what we expect to be a severely
resource limited global computing system. The GAE is
where the critical physics analysis gets done, where the
Grid end-to-end services are exposed to a very demanding
physicist clientele, who will have to learn how to
collaborate at large distances on challenging analysis
topics.

COMPUTING MODEL REVISTED
The LHC experiments’ computing models [2] are based

on a hierarchical organization of Tier0, multiple Tier1 and
multiple Tier2, centres. Most of the data will "flow" from
the Tier 0, to the Tier 1s and then on to the Tier2s and
downstream. The Tier0 and Tier1 centres are powerful in
terms of CPU power, data storage, and bandwidth. This
hierarchical model is such that the sum of resources
below a certain Tier-N are of approximately the same
amount as that located at the Tier-N. Data is organized
such that the institutes (represented by tiers) will be (in

most cases) physically close to the data they want to
analyze. Trends indicate that the aggregate power data
storage capacity of Tier2 relative to Tier1 is likely to be
greater than foreseen, and that Tier2 and 3 systems taken
together will be a substantial source of simulated and
perhaps also reconstructed event data.

The hierarchical model is the basis on which data will
be distributed. However, the unpredictable patterns of
physics analysis as a whole will lead to data and jobs
being moved around between different peers in an
essentially chaotic fashion. Although it is possible to
make predictions on how best to organize data, the
unpredictable, chaotic analysis patterns tend to defeat
simple rationalization. Depending on how "hot" (popular)
or "cold" (infrequently requested) data is, attention will
shift between the different data sets. Furthermore,
multiple geographically distant users might be interested
in data that is geographically dispersed among the
different tiers. Because of this, data will need to be
replicated. And so it will not always be possible to move
data around so that it fits into a strict hierarchical model.

The data movements and job movements outside the
hierarchical model, although relative small compared to
the data movement within the hierarchical model, will be
significant consumers of resources (network, CPU,
storage). When users submit jobs to a peer, middleware
will discover which resources are available on other peers
that can satisfy the job requests. Although a large number
of job requests will fit with the hierarchical model, others
will not. The more powerful peers (super peers) will
receive more job and data requests, and will host a wider
variety of services.

ARCHITECTURE
The first step within the GAE project was to identify

key services needed to perform distributed analysis and
the interaction between these services. This service design
is described in detail in [8] and displayed in

Figure 1: A client discovers catalogs and workflow
management services. After selecting a dataset (or
multiple datasets), the user submits its job to a workflow
management service which sends the different jobs (with
different execute dependencies) to a grid scheduler. Based
on the status of the different computing farms and the
quota the user has it will submit the jobs to particular
farms through a local execution service, which will
interact with a replica management service. During this
process and execution of the job a steering service keeps

track of the job status and gives periodically feedback to
the user. If necessary the user (or the steering service on
behalf of the user) can decide to stop, move, or pause, the
job. Once the job has finished the data collection service
notifies the client and if necessary collects the results to a
storage location accessible by the user. Some of the key
services that have been identified are well known within
the Grid community. GAE does therefore not only focus
on new development but also on integration of existing
components.

Lookup

Catalogs Workflow
management

Grid
scheduler

Local
execution

service

steering

monitor Replica
management

Data
collection

Client

Execution
 nodes

Data store

Quota &
accounting

Figure 1. Architecture overview

DEVELOPMENT
The second step consisted of mapping existing

applications that contain the functionality described in the
GAE design to these services (see [8]). As the focus of
the GAE is the CMS experiment this puts restrictions on
what kind of applications we use within our deployment.
For example within CMS, POOL catalog [7], and RefDB
[10] are used as catalogs. Furthermore, MCRunJob [9]
and RefDB contain functionality that can be mapped to a
workflow management service. Integration and exposure
of current CMS applications as web services is important
within the GAE deployment for CMS. The approach
taken by the GAE team, for these applications is bottom
up: Analyze the applications and develop (if possible) a
"neutral" web service interface for these applications.
Furthermore, publish these interfaces in a language
neutral format (e.g. WSDL) such that users/applications
can access these services even when they are not
completely compliant with "standard" interfaces.

For development and deployment the Clarens [4] web
service framework is used, which is a high-performance
wide-area network system for web service deployment
that includes powerful features for managing access
control to web services, and dynamic service discovery.
The choice for Clarens as the GAE backbone does not
prevent services within the GAE to access other web
service outside the Clarens environment e.g. Globus

Toolkit [12], as both are based on XML-RPC and the
SOAP protocol. The Clarens web service framework is
available as a Python and a Java implementation. At the
time of writing there were approximately 20 known
deployments of Clarens: Caltech (5), University of
Florida (4), Fermilab (3), CERN (3), Pakistan (2+2),
INFN (1).

DEPLOYMENT
This section discusses several scenarios that have been

successfully executed on a set of distributed hosts on
which we deployed the Clarens server and GAE services.
The scenarios are a preparation for the end to end analysis
scenarios that allow multiple users to perform physics
analysis.

Figure 2 shows the use case of a client that accesses
several catalogs and queries these catalogs to identify
datasets of interest to be used for physics analysis. The
client code contains no “hard coded” urls to services
except for several entry points to discovery services. Step
1 deals with locating the POOL catalog and Refdb
service. Multiple catalogs are deployed in the distributed
environment, containing potentially information on
different datasets. Once the client receives the service urls
from the discovery service it queries the multiple catalogs
using asynchronous calls. Based on several queries it
selects one or more datasets and uses a grid scheduler to
submit an analysis job.

Figure 2. Distributed Querying for Datasets

Figure 3 shows the use case of jobs being scheduled to
available resources using a push model. The current
Sphinx [11] implementation is able to analyze monitor
information from MonALISA [3] (step 2), after which the
scheduler determines on which farm to run the job (step
3). On each farm BOSS [13] is deployed to provide a
uniform interface to the local schedulers and to keep track

==sseerrvviiccee

RReeffddbb

RReeffddbb ((rreepplliiccaa))

ddiissccoovveerr

ddiissccoovveerr

PPooooll ccaattaalloogg ((hhoosstt 44 rreepplliiccaa))

PPooooll CCaattaalloogg

HHoosstt 11

HHoosstt 22

HHoosstt 33

HHoosstt 44

PPooooll ccaattaalloogg ((hhoosstt 33 rreepplliiccaa))

PPooooll ccaattaalloogg ((hhoosstt 11 rreepplliiccaa))

PPooooll ccaattaalloogg ((hhoosstt 22 rreepplliiccaa))

HHoosstt 55

PPooooll CCaattaalloogg

PPooooll CCaattaalloogg

PPooooll CCaattaalloogg

HHoosstt 66

HHoosstt 77

CClliieenntt ((11))

((22))

((22))

((22))

((22))

GGrriidd sscchheedduulleerr

((33))

((11))

rruunnjjoobb

of the progress of the different jobs. Currently Sphinx job
submission to the uniform BOSS interface is being
implemented.

Figure 3. Scheduling: Push Model

Figure 4 shows a prototype framework that is being
developed for grid enabled analysis within the CDF
experiment. A client discovers (step 1) a global manager.
Currently several global manager are deployed to
decrease the load on a single global manager. The client
submits a request to the global manager (step 2). This
request contains a (or multiple) data sets a user wants to
analyze and a specification of how much resources this
analysis potentially needs. The global manager queries
the CDF catalog (represented by the CDF SAM system)
to get a list of farms where these datasets resides (step 3
and 4). The global manager will then request these local
managers (step 5) for available resources to do the
analysis. Once the global manager receives a list of
resources available, it determines on which farm to run
the analysis. The global manager contacts the associated
local manager (step 7), who will start a data transfer using
a Clarens dcache service. The client receives a unique
session id and url (step 7) of the local manager it needs to
submit its job to. The job submission service periodically
checks if the dcache service has moved the data and if
ready will start the analysis job (step 9). During execution
analysis jobs will submit a life sign to the associated local
manager (step 10). The local manager checks if any jobs
failed to submit life signs and if so (within a certain
interval) will terminate the job. The local manager
submits monitor data on the number of jobs running,
terminated, and finished, to the MonALISA framework.

At the time of writing, the service framework has been
developed within the Clarens service framework [4]. The
framework has been successfully deployed on 4 hosts.
Current work involves linking the catalog and dcache
service to the CDF SAM database and the dcache

applications on different sites. Other work involves
clients being able to submit Proof jobs (parallel root [6]).

Although the work for CDF (Figure 4) started after the
GAE architecture document was completed and semantics
of the services used are different there is conceptual
overlap with the components described in the GAE
architecture [8] and deployment of CMS components
(Figure 2,Figure 3). The global manager can be
compared with the global scheduler (SPHINX) and the
local manager can be compared with the CMS BOSS
service. It also shows that although it is possible to
identify commonalities between the CMS and CDF
deployment, there are also differences in for example
interface and functionality. It is therefore not only
important to design standard interfaces and
implementations but also to work closely with the
different physics experiments to construct and deploy the
proper services for different experiments.

Within the Clarens framework service interfaces can be
published in multiple ways (name, WSDL) via the
Clarens grid portal creating a transparent environment not
only for developers but also for users to discuss the
different interfaces used within different analysis
environments.

Figure 4. Scalable Job Submission

FUTURE WORK
Future work of the GAE project will focus on

developing “high level” services. High level services can
be described as services that take input from the “low
level” passive services and proactively take decisions on
where to perform an analysis job, when to replicate data,
etc… Part of this phase is the development of an
accounting service that allows for “fair” sharing of
resources. The accounting service, together with other
high level services prevent scenarios in which one user
allocate all resources for a very long time (without the
organizations consent).

==sseerrvviiccee

SSPPHHIINNXX

UUnniiffoorrmm jjoobb
ssuubbmmiissssiioonn llaayyeerr

MMoonnaa lliissaa

FFaarrmm 11

BBOOSSSS

CCoonnddoorrGG

mmoonniittoorrss

MMoonnaa lliissaa

FFaarrmm 33

BBOOSSSS

PPBBSS

MMoonnaa lliissaa

FFaarrmm 44

BBOOSSSS

PPBBSS

((11))

((22)) ((22)) ((22))

((33))

cclliieenntt

ccaattaalloogg

==sseerrvviiccee

llooccaall
mmaannaaggeerr

ddccaacchhee

jjoobb
ssuubbmmiissssiioonn

ffaarrmm 11

gglloobbaall
mmaannaaggeerr

ddiissccoovveerr

llooccaall
mmaannaaggeerr

ddccaacchhee

jjoobb
ssuubbmmiissssiioonn

ffaarrmm 33

JJoobb

((11))

((22)) ((33))

((44))

((55))
((55))

((66))

((77))

((77))

((88))

((99))

((99))

((1100))

MMoonnaaLLiissaa

((77))

Additionally, monitoring the GAE as it is used is of
crucial importance in order to make intelligent decisions
on data distribution, job execution and data management.
The MonALISA monitoring framework is capable of
satisfying this need, and it has been deployed on many
sites to monitor disk, and CPU usage. In the future it will
be able to perform complex trend analysis on GAE
resource access patterns, and so eventually enable
automatic resource co-scheduling.

CONCLUSIONS
The current GAE services that have been developed

and deployed within the testbed together with clients
allow execution of certain physics scenarios as described
in the deployment section. It also raised a set of issues
that are important for distributed computing: graceful
handling of exceptions are very important within a
distributed environment in which you can have complex
service compositions, and you potentially are not aware
which service instance you are using. Furthermore, time
out when accessing a service (or a collection of services)
is important to prevent the scenario of a service
composition that takes a long time to execute because one
or several services in this composition do not respond.
Having a discovery service allows GAE service
developers to create location independent service
compositions. Services only need an entry point into the
distributed system that allows them to discover available
services. A problem associated with discovery, are
services that have the same (or similar) names and/or
interfaces. Within GAE we use the concept of VOs to
distinguish between such services but this does not
prevent having two services with the same name in one
VO (we assume that within one VO there is a convention
to prevent this from happening).

In order for the GAE to be successful it is important to
have a good synergy with the scientific experiments as to
be aware what tools and applications they use, and to
know how their analysis processes are organized. This
specific domain knowledge (if necessary) can than be
integrated into the GAE development and deployment.
On the other side, experiments have sometimes adapted
specific (in house developed) applications to tackle parts
of very “generic” problems, suitable for their application
domain, such as workflow management, and (meta) data
catalogs. These applications might need to be “translated”
and adapted to the more generic syntax, structure and
semantics as is used within the Grid environment. Such
efforts require not only technical engineering but also
social engineering, enabling GAE developers to offer
Grid middleware applications that fit the needs of
experiments.

ACKNOWLEDGEMENTS
This work is partly supported by the Department of

Energy as part of the Particle Physics DataGrid project
and by the National Science Foundation. Any opinions,
findings, conclusions or recommendations expressed in

this material are those of the authors and do not
necessarily reflect the views of the Department of Energy
or the National Science Foundation.

REFERENCES
[1] CMS: http://cmsdoc.cern.ch/cms.html
[2] J. Bunn, H. Newman, "Data Intensive Grids for

High Energy Physics", p859-p906, in "Grid
Computing", edited by F. Berman, G. Fox, A. Hey,
2003, Wiley

[3] Legrand, I., Newman, H., Galvez, P., Voicu, E.,
Cirstoiu, C., “MonaLISA: A Distributed Monitoring
Service Architecture”, Computing for High Energy
Physics, La Jolla, California, 2003

[4] Steenberg, C., Aslakson, E., Bunn, J., Newman, H.,
Thomas, M., Van Lingen, F., “The Clarens Web
Service Architecture”, Computing for High Energy
Physics, La Jolla, California, 2003

[5] Newman, H. Branson, J. “CMS Analysis: an
Interactive Grid-Enabled Environment (CAIGEE)”
Submitted to the 2002 NSF Information and
Technology Research Program Proposal #6116240

[6] Ballintijn, M., Brun, R., Rademakers, F., Roland,
G., "The PROOF Distributed Parallel Analysis
Framework based on ROOT", Computing in High
Energy Physics, California 2003

[7] Duellman, D. “POOL Project Overview”,
Computing for High Energy Physics, La Jolla,
California, 2003

[8] Bunn, J., Bouriklov, D., Cavanaugh, R., Legrand,
I., Muhammad, A., Newman, H., Singh, S.,
Steenberg, C., Thomas, M., Van Lingen, F., ”A Grid
Analysis Environment Service Architecture” ,
http://ultralight.caltech.edu/gaeweb/gae_services.pdf

[9] Bertram, I., Evans, D., Graham, G.E., Love, P.,
Walker, R. “McRunjob: A High Energy Physics
Workflow Planner for Grid Production
Processing”Proceedings of UK e-Science All Hands
Meeting 2003 2-4th September, Nottingham, UK

[10] Lefebure, V., Andreeva, J. ”RefDB: The Reference
Database for CMS Monte Carlo Production”
Computing in High Energy Physics, La Jolla,
California, 2003.

[11] In., J., Avery, P., Cavanaugh, R., Kulkarni, M.,
Ranka, S.,“SPHINX: A Scheduling Middleware For
Data Intensive Application on a Grid,” To appear in
the proceedings of Computing in High Energy
Physics, Interlaken, Switzerland, 2004

[12] Foster, I., Kesselman, C. “Globus: A
Metacomputing Infrastructure Toolkit” Intl. J.
Supercomputer Applications, 11(2):115-128, 1997

[13] Grandi, C., Renzi, A., “Object Based System for
Batch Job Submission and Monitoring (BOSS)”,
CMS note 2003/005

[14] DC04: http://www.uscms.org/s&c/dc04/

