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Abstract 

The Grid Analysis Environment (GAE), which is a 
continuation of the CAIGEE project [5], is an effort to 
develop, integrate and deploy a system for distributed 
analysis. The current focus within the GAE is on the CMS 
experiment [1] however the GAE design abstracts from 
any specific scientific experiment and focuses on 
scientific analysis in general. The GAE project does not 
intend to reinvent services, but rather to integrate existing 
services into a collaborative system of web services. 

INTRODUCTION 
As grid middleware matures and grid (web) services 

become more prolific, the development of "higher level" 
services that can take intelligent decisions based on these 
"lower level" services is required. In 2003, Caltech and 
the University of Florida initiated the Grid Analysis 
Environment (GAE) project with the goal of developing, 
integrating, and deploying a web service framework and 
services for physics analysis (especially CMS [1]) at the 
LHC. The project’s kernel is a Grid-based portal called 
Clarens [4]. GAE is a continuation of the CAIGEE 
project [5].  

The GAE will be used by a large, diverse community. It 
will need to support hundreds, even thousands, of analysis 
tasks with widely varying requirements. It will need to 
employ priority schemes, and robust authentication and 
security mechanisms. Most challenging, the GAE will 
need to operate well in what we expect to be a severely 
resource limited global computing system. The GAE is 
where the critical physics analysis gets done, where the 
Grid end-to-end services are exposed to a very demanding 
physicist clientele, who will have to learn how to 
collaborate at large distances on challenging analysis 
topics.  

COMPUTING MODEL REVISTED 
The LHC experiments’ computing models [2] are based 

on a hierarchical organization of Tier0, multiple Tier1 and 
multiple Tier2, centres. Most of the data will "flow" from 
the Tier 0, to the Tier 1s and then on to the Tier2s and 
downstream. The Tier0 and Tier1 centres are powerful in 
terms of CPU power, data storage, and bandwidth. This 
hierarchical model is such that the sum of resources 
below a certain Tier-N are of approximately the same 
amount as that located at the Tier-N. Data is organized 
such that the institutes (represented by tiers) will be (in 

most cases) physically close to the data they want to 
analyze. Trends indicate that the aggregate power data 
storage capacity of Tier2 relative to Tier1 is likely to be 
greater than foreseen, and that Tier2 and 3 systems taken 
together will be a substantial source of simulated and 
perhaps also reconstructed event data. 

The hierarchical model is the basis on which data will 
be distributed. However, the unpredictable patterns of 
physics analysis as a whole will lead to data and jobs 
being moved around between different peers in an 
essentially chaotic fashion. Although it is possible to 
make predictions on how best to organize data, the 
unpredictable, chaotic analysis patterns tend to defeat 
simple rationalization. Depending on how "hot" (popular) 
or "cold" (infrequently requested) data is, attention will 
shift between the different data sets. Furthermore, 
multiple geographically distant users might be interested 
in data that is geographically dispersed among the 
different tiers. Because of this, data will need to be 
replicated. And so it will not always be possible to move 
data around so that it fits into a strict hierarchical model. 

The data movements and job movements outside the 
hierarchical model, although relative small compared to 
the data movement within the hierarchical model, will be 
significant consumers of resources (network, CPU, 
storage). When users submit jobs to a peer, middleware 
will discover which resources are available on other peers 
that can satisfy the job requests. Although a large number 
of job requests will fit with the hierarchical model, others 
will not. The more powerful peers (super peers) will 
receive more job and data requests, and will host a wider 
variety of services. 

ARCHITECTURE 
The first step within the GAE project was to identify 

key services needed to perform distributed analysis and 
the interaction between these services. This service design 
is described in detail in [8] and displayed in  

Figure 1: A client discovers catalogs and workflow 
management services. After selecting a dataset (or 
multiple datasets), the user submits its job to a workflow 
management service which sends the different jobs (with 
different execute dependencies) to a grid scheduler. Based 
on the status of the different computing farms and the 
quota the user has it will submit the jobs to particular 
farms through a local execution service, which will 
interact with a replica management service. During this 
process and execution of the job a steering service keeps 



track of the job status and gives periodically feedback to 
the user. If necessary the user (or the steering service on 
behalf of the user) can decide to stop, move, or pause, the 
job. Once the job has finished the data collection service 
notifies the client and if necessary collects the results to a 
storage location accessible by the user. Some of the key 
services that have been identified are well known within 
the Grid community. GAE does therefore not only focus 
on new development but also on integration of existing 
components.  

Lookup 

Catalogs Workflow 
management 

Grid  
scheduler 

Local  
execution  

service 

steering 

monitor Replica 
management 

Data 
collection

Client 

Execution 
 nodes 

Data store 

Quota & 
accounting 

 
Figure 1.  Architecture overview 

DEVELOPMENT 
The second step consisted of mapping existing 

applications that contain the functionality described in the 
GAE design to these services (see [8]).  As the focus of 
the GAE is the CMS experiment this puts restrictions on 
what kind of applications we use within our deployment. 
For example within CMS, POOL catalog [7], and RefDB 
[10] are used as catalogs. Furthermore, MCRunJob [9] 
and RefDB contain functionality that can be mapped to a 
workflow management service. Integration and exposure 
of current CMS applications as web services is important 
within the GAE deployment for CMS. The approach 
taken by the GAE team, for these applications is bottom 
up: Analyze the applications and develop (if possible) a 
"neutral" web service interface for these applications. 
Furthermore, publish these interfaces in a language 
neutral format (e.g. WSDL) such that users/applications 
can access these services even when they are not 
completely compliant with "standard" interfaces.  

For development and deployment the Clarens [4] web 
service framework is used, which is a high-performance 
wide-area network system for web service deployment 
that includes powerful features for managing access 
control to web services, and dynamic service discovery. 
The choice for Clarens as the GAE backbone does not 
prevent services within the GAE to access other web 
service outside the Clarens environment e.g. Globus 

Toolkit [12], as both are based on XML-RPC and the 
SOAP protocol. The Clarens web service framework is 
available as a Python and a Java implementation. At the 
time of writing there were approximately 20 known 
deployments of Clarens: Caltech (5), University of 
Florida (4), Fermilab (3), CERN (3), Pakistan (2+2), 
INFN (1). 

DEPLOYMENT 
This section discusses several scenarios that have been 

successfully executed on a set of distributed hosts on 
which we deployed the Clarens server and GAE services. 
The scenarios are a preparation for the end to end analysis 
scenarios that allow multiple users to perform physics 
analysis. 

Figure 2 shows the use case of a client that accesses 
several catalogs and queries these catalogs to identify 
datasets of interest to be used for physics analysis. The 
client code contains no “hard coded” urls to services 
except for several entry points to discovery services. Step 
1 deals with locating the POOL catalog and Refdb 
service. Multiple catalogs are deployed in the distributed 
environment, containing potentially information on 
different datasets. Once the client receives the service urls 
from the discovery service it queries the multiple catalogs 
using asynchronous calls. Based on several queries it 
selects one or more datasets and uses a grid scheduler to 
submit an analysis job. 

 

 
Figure 2. Distributed Querying for Datasets 

Figure 3 shows the use case of jobs being scheduled to 
available resources using a push model. The current 
Sphinx [11] implementation is able to analyze monitor 
information from MonALISA [3] (step 2), after which the 
scheduler determines on which farm to run the job (step 
3).  On each farm  BOSS [13] is deployed to provide a 
uniform interface to the local schedulers and to keep track 
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of the progress of the different jobs. Currently Sphinx job 
submission to the uniform BOSS interface is being 
implemented. 

 
Figure 3. Scheduling: Push Model 

Figure 4 shows a prototype framework that is being 
developed for grid enabled analysis within the CDF 
experiment.  A client discovers (step 1) a global manager. 
Currently several global manager are deployed to 
decrease the load on a single global manager. The client 
submits a request to the global manager (step 2).  This 
request contains a (or multiple) data sets a user wants to 
analyze and a specification of how much resources this 
analysis potentially needs. The global manager queries 
the CDF catalog (represented by the CDF SAM system) 
to get a list of farms where these datasets resides (step 3 
and 4). The global manager will then request these local 
managers (step 5) for available resources to do the 
analysis. Once the global manager receives a list of 
resources available, it determines on which farm to run 
the analysis. The global manager contacts the associated 
local manager (step 7), who will start a data transfer using 
a Clarens dcache service. The client receives a unique 
session id and url (step 7) of the local manager it needs to 
submit its job to. The job submission service periodically 
checks if the dcache service has moved the data and if 
ready will start the analysis job (step 9). During execution 
analysis jobs will submit a life sign to the associated local 
manager (step 10). The local manager checks if any jobs 
failed to submit life signs and if so (within a certain 
interval) will terminate the job.  The local manager 
submits monitor data on the number of jobs running, 
terminated, and finished, to the MonALISA framework. 

At the time of writing, the service framework has been 
developed within the Clarens service framework [4]. The 
framework has been successfully deployed on 4 hosts. 
Current work involves linking the catalog and dcache 
service to the CDF SAM database and the dcache 

applications on different sites. Other work involves 
clients being able to submit Proof jobs (parallel root [6]).  

Although the work for CDF (Figure 4) started after the 
GAE architecture document was completed and semantics 
of the services used are different there is conceptual 
overlap with the components described in the GAE 
architecture [8] and deployment of CMS components 
(Figure 2,Figure 3).  The global manager can be 
compared with the global scheduler (SPHINX) and the 
local manager can be compared with the CMS BOSS 
service.  It also shows that although it is possible to 
identify commonalities between the CMS and CDF 
deployment, there are also differences in for example 
interface and functionality. It is therefore not only 
important to design standard interfaces and 
implementations but also to work closely with the 
different physics experiments to construct and deploy the 
proper services for different experiments.  

Within the Clarens framework service interfaces can be 
published in multiple ways (name, WSDL) via the 
Clarens grid portal creating a transparent environment not 
only for developers but also for users to discuss the 
different interfaces used within different analysis 
environments. 

 
Figure 4. Scalable Job Submission 

FUTURE WORK 
Future work of the GAE project will focus on 

developing “high level” services. High level services can 
be described as services that take input from the “low 
level” passive services and proactively take decisions on 
where to perform an analysis job, when to replicate data, 
etc… Part of this phase is the development of an 
accounting service that allows for “fair” sharing of 
resources. The accounting service, together with other 
high level services prevent scenarios in which one user 
allocate all resources for a very long time (without the 
organizations consent). 
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Additionally, monitoring the GAE as it is used is of 
crucial importance in order to make intelligent decisions 
on data distribution, job execution and data management. 
The MonALISA monitoring framework is capable of 
satisfying this need, and it has been deployed on many 
sites to monitor disk, and CPU usage. In the future it will 
be able to perform complex trend analysis on GAE 
resource access patterns, and so eventually enable 
automatic resource co-scheduling. 

CONCLUSIONS 
The current GAE services that have been developed 

and deployed within the testbed together with clients 
allow execution of certain physics scenarios as described 
in the deployment section. It also raised a set of issues 
that are important for distributed computing: graceful 
handling of exceptions are very important within a 
distributed environment in which you can have complex 
service compositions, and you potentially are not aware 
which service instance you are using. Furthermore, time 
out when accessing a service (or a collection of services) 
is important to prevent the scenario of a service 
composition that takes a long time to execute because one 
or several services in this composition do not respond. 
Having a discovery service allows GAE service 
developers to create location independent service 
compositions. Services only need an entry point into the 
distributed system that allows them to discover available 
services. A problem associated with discovery, are 
services that have the same (or similar) names and/or 
interfaces. Within GAE we use the concept of VOs to 
distinguish between such services but this does not 
prevent having two services with the same name in one 
VO (we assume that within one VO there is a convention 
to prevent this from happening). 

In order for the GAE to be successful it is important to 
have a good synergy with the scientific experiments as to 
be aware what tools and applications they use, and to 
know how their analysis processes are organized. This 
specific domain knowledge (if necessary) can than be 
integrated into the GAE development and deployment. 
On the other side, experiments have sometimes adapted 
specific (in house developed) applications to tackle parts 
of very “generic” problems, suitable for their application 
domain, such as workflow management, and (meta) data 
catalogs. These applications might need to be “translated” 
and adapted to the more generic syntax, structure and 
semantics as is used within the Grid environment. Such 
efforts require not only technical engineering but also 
social engineering, enabling GAE developers to offer 
Grid middleware applications that fit the needs of 
experiments. 
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