Overview and new developments on Geant4 electromagnetic physics

V.Ivanchenko for Geant4 EM group CHEP 04 Interlaken, Switzerland 27 September 2004

H.Burkhardt, V.M.Grichine, P.Gumplinger, V.N.Ivanchenko, R.P.Kokoulin, M.Maire, L.Urban

BINP, Novosibirsk, Russia CERN, Geneva, Switzerland ESA, Noordwijk, The Netherlands LAPP, Annecy, France LPI, Moscow, Russia MEPHI, Moscow, Russia RMKI, Budapest, Hungary TRIUMF, Vancouver, Canada

Outline

- Standard EM package
- Overview on major developments in 2003/2004
- ▶ Design iteration in the Standard package
- ► EM PhysicsLists
- Acceptance suite
- Conclusions and plans

Standard EM package

- ► Naturally continue Geant3 EM physics
- Include a complete set of models for simulation of electromagnetic processes in the energy range from 1 keV to 10 PeV
- Includes optical photons production and transport
- Focus on HEP experiments, well applicable for instrumentation, space, and medicine studies

Major developments in 2003/2004

- ▶ Physics model improvements:
 - Evolutions of multiple scattering model
 - Hadron ionization was updated
 - New ion ionization & multiple scattering
 - Muon processes were updated
 - Updated cross section for Compton effect
 - Revised PAI models
 - New high energy processes
- Evolution in optical photons simulation
- Cut per region from G4 5.1

Multiple scattering model of L.Urban

- Based on Lewis theory PR 78 (1950) 526
- Allows as small and large steps of particles
- Takes into account scattering on electrons and on nuclei
- Provides simulation of physical length of track
- Provides simulation of transverse displacement

Multiple scattering model of L.Urban

Back scattering

backscattering coeff. of e+ as a function of energy(Au) chack % 40 35 30 25 20 15 10 102 103 eHergy (keV) 10

Will be in G4 7.0

Geant4/Geant3/Data comparisons

PAI model evolution

- > 2 models in G4 6.2:
 - G4PAIModel
 - G4PAIPhotonModel
- Ionization in very thin absorbers
- Based on Sandia tables of photo-absorption
- Models can be defined for G4Region (TestEm8)

PAI model evolution

- Any cut can be used
- Sampling of single clusters in gaseous detectors
- ► TRD detectors simulation
- ► NIM A453 (2000) 597
- ▶ PL B525 (2002) 225
- Space and medical applications

Muon energy loss

Continuous energy loss in Geant4:

$$\frac{dE}{dx} = n \sum_{i} \left(\int_{0}^{T_{cut}} T \frac{d\sigma}{dT} dT \right)$$

- Contribution from processes:
 - Ionization
 - ▶ Bremsstrahlung
 - ► Production of e⁺e⁻
- ► T_{cut} cut energy
- Transfers above T_{cut} are sampled
- > Recent upgrade:
 - Radiative corrections to ionization at E > 1 GeV
 - Improve precision of double differential cross section for pair production (biases reduced from 30% to 5%)
 - Initialization time decreased

Total muon energy loss

New High energy EM processes

EM background due to high energy EM interaction with media:

$$\triangleright$$
 e⁺ \rightarrow $\pi^+\pi^-$ (σ ~ Z)

- Visible at LEP and High at SLC
- Of concern for linear colliders

Background for linear collider

10¹⁰ e / bunch After collimator ~ 10³ µ+µHigh energy e^+ , e^- , and γ can produce $\mu^+\mu^-$ pair

Design iteration in Standard EM package

- Standard EM package was one of physics package working from 1st Geant4 release
- Created using Geant3 expertise
- ► Used practically in all Geant4 applications
- ▶ Used in production for BaBar for many years
- Some architecture problems were accumulated
- ► In 2003 the package were redesigned
- New developments were enabled

Requirements to model design of standard EM package

- Physics should be unchanged
- The same user interface as before should be available
- High energy and low energy models should work together for any particle
- Performance should be at least the same
- Ionization and Bremsstrahlung should be decoupled
- Different physical models for different regions and energy ranges
- Different models of energy loss fluctuations for different particles
- ▶ Integral approach as an alternative

Design and implementation (released in G4 6.0)

- Feature driven design
- Physics is decoupled from management
- Number of static objects very limited
- No repeated software
- Old interfaces are kept
- Old messenger is used
- New (default) and old (serial 52 and LowEnergy)
 processes can be used in the same Physics List

- ► Fine steps (~20) implementation at 2003
- About 15 different tests were running after each iteration
- Tests against results with old standard processes and/or data
- Code review is done
- Performance optimization is on the way

Integral approach

- ► EM cross sections strongly depend on energy
- Precision of interaction probability depends on step size and energy change
- Integral approach: interaction probability is sampled using integral method (MC'91 Proceedings)
- Integral approach allows to have any step size

$$p = \exp\{-\sum_{i} \sigma(E_{i}) n \Delta_{S_{i}}\}$$

integra

$$p = \exp\{-\int \sigma(E) n ds\}$$

Performance comparison 5.2/6.2

- Performance improved after design iteration
- Initialization time smaller by 2 times or more
 - ▶ 15s for 43 materials (HARP)
- Size of EM tables smaller by 2 times or more
- CPU per event less at least by 10%
- Higher quality for large cuts, higher performance for low cuts

Intel 2.4GHz 512 KB

Sampling calorimetry

Default EM physics

- ► ATLAS HEC structure is used as a reference
- Some instability observed in $6.0 \rightarrow 6.1 \rightarrow 6.2$ transitions
 - ► Fixes in integral mode
 - Fixes in multiple scattering model
- In PhysicsList distributed via G4 web page the optimal combination of processes are provided, so results are stable

PhysicsList for EM use-cases

- First release G4 6.2
- Use modular structure with different builders:
 - QED (γ, e⁺, e⁻)
 - Muons (μ⁺, μ⁻)
 - Hadrons/ions
 - Decay
 - Step Limiter
 - High energy
 - Limited hadron physics
- Builders for G4 6.2 and G4 5.2
- No precompiled library
- Are tested inside EM examples
- G4EmOptions for steering
 - Min, max energies
 - Cuts
 - Step limits

Acceptance suite for Standard EM package

- ▶ To insure stability of results with time
- ► To control performance
- Is based on extended electromagnetic examples
- G4EmCalculator is an interface to dE/dx and cross sections

- Control on summary numbers:
 - Average energy deposition
 - Shower shape
 - Scattering angles
- Tests on cross sections and dE/dx
- Comparison of histograms (in project)

Conclusions and plans

- Standard EM package have been redesigned
- Physics was extended and improved
- Performance was improved
- ➤ Main short-term goals:
 - ➤ Achieve stability of simulation of sampling calorimeters to level 0.1% (ATLAS requirement)
 - Comparisons/validation
- > Long-term prospects:
 - ▶ Physics model on level of theory/experiment for all processes
 - ► High energy extensions
 - > Further performance improvement
 - ► Complete automatic acceptance suite