
SPHINX: A SCHEDULING MIDDLEWARE FOR DATA INTENSIVE
APPLICATION ON A GRID

J. In, P. Avery, R. Cavanaugh, L. Chitnis, M. Kulkarni, S. Ranka,

University of Florida, Gainesville, FL, 32611 USA

Abstract

A grid consists of high-end computational, storage, and
network resources that, while known a priori, are dynamic
with respect to activity and availability. Efficient co-
scheduling of requests to use grid resources must adapt to
this dynamic environment while meeting administrative
policies. We discusses the necessary requirements of such
a scheduler and introduce a distributed framework called
SPHINX that schedules complex, data intensive High
Energy Physics and Data Mining applications in a grid
environment, respecting local and global policies along
with a specified level of quality of service. The SPHINX
design allows for a number of functional modules and/or
distributed services to flexibly schedule workflows
representing multiple applications on grids. We present
experimental results for SPHINX that effectively utilizes
existing grid middleware such as monitoring and
workflow management/execution systems. These results
demonstrate that SPHINX can successfully schedule work
across a large number of grid sites that are owned by
multiple units in a virtual organization.

INTRODUCTION
The execution of user applications must simultaneously

satisfy both job execution constraints and system usage
policies. First, grid resources are geographically
distributed and heterogeneous in nature. One of the
central concepts of a grid is that of a Virtual Organization
(VO) [1], which is a group of consumers and producers
united in their secure use of distributed high-end
computational resources towards a common goal. Actual
organizations, distributed nationwide or worldwide,
participate in one or more VOs by sharing some or all of
their resources. Second, these grid resources have
decentralized ownership and different local scheduling
policies dependent on their VO. Third, the dynamic load
and availability of the resources require mechanisms for
discovering and characterizing their status continually [1].
Although the above referenced systems address one or
more of these characteristics, they do not address all of
them in a cohesive manner for grids.

REQUIREMENTS OF A GRID
SCHEDULING INFRASTRUCTURE

To efficiently schedule jobs, a grid scheduling system
must have access to important information about the grid
environment and its dynamic usage. Additionally, the

scheduling system must meet certain fault tolerance and
customizability requirements.

Information Requirements
A core requirement for scheduling work across a

dynamic grid environment is situational awareness.
Indeed, several monitoring systems exist which provide,
in principle, a large volume of both static and dynamic
information. Here, we briefly identify some basic
observables which directly impact placement decisions
and indicate where important work remains in publishing
such information.

Dynamic Grid Weather: It is our experience that, in the
context of grid computing where a gatekeeper functions
as a single point of entry to a locally managed cluster of
worker-nodes, individual load averages on worker-nodes
do not directly assist in good job placement choices. Of
more direct importance is site-aggregate information such
as the queue-depth (e.g. total number of waiting jobs,
total number of running jobs, and total number of
available slots) as reported by the local scheduler on the
remote grid-site. Also directly important are the amount
of storage space currently available (per storage volume)
on the remote grid-site and the current round-trip-time
between the grid-site and possible external data transfer
points.

Static Policies and Resource Descriptions: Inter- and
intra-VO policy information as well as resource property
descriptions also directly impact scheduling decisions and
tend to be more static in nature. Particularly useful to
scheduling systems are grid-site usage policies which can
be stated in terms of (or translated to) resource usage
“quotas” and “relative priorities” on a particular grid-site.
Further, while most grid-sites do provide publish, via
grid-information systems, descriptions of their resource
properties (including the operating system type, CPU
type, etc), most currently fall short in describing their full
execution environment (e.g. locally installed gcc and libc
versions) which is often vital in order to satisfy
application requirements.

System Requirements
While the kinds of information above should be

available to the system for efficient grid scheduling, the
following requirements must be satisfied to provide
efficient scheduling services to a grid VO community.

Distributed, Fault-tolerant Scheduling: The need for
fault tolerance gives rise to a need for a distributed
scheduling system. Centralized scheduling leaves the
grid system prone to a single point of failure. Distributing

the scheduling functionality between several agents is
essential to providing the required fault tolerance.

Customizability: Within the grid, many different VOs
will interact within the grid environment and each of
these VOs will have different application requirements.
The scheduling system must be customizable enough to
allow each organization with the flexibility to optimize
the system for their particular needs.

Extensibility: The architecture of the scheduling system
should be extensible to allow for the inclusion of higher
level modules into the framework. Higher level modules
could help map domain specific queries onto more
generic scheduling problems and map domain specific
constraints onto generic scheduling constraints.

Interoperability with Other Scheduling Systems: Any
single scheduling system is unlikely to provide a unique
solution for all VOs. In order to allow cooperation at the
level of VOs, for example in a hierarchy of VOs or among
VO peers, the scheduling system within any single VO
should be able to route jobs to or accept jobs from
external VOs subject to policy and grid information
constraints.

Quality of Service: Multiple qualities of service may be
desirable as there are potentially different types of users.
There are users who run small jobs that care about
interactive behaviour from the underlying system. On the
other hand, large production runs may be acceptably
executed as batch jobs. Users may put deadlines by which
submitted jobs should be completed. The scheduling
system should be able to provide these differential QoS
features for the administrator/users.

SPHINX
The scheduling system presented in this paper,

SPHINX, works to incorporate the infrastructure
requirements described above using a client-server model
based on the Clarens Web Service Backbone [2]. Such a
model provides flexibility in defining the precise
distributed scheduling services architecture. This allows,
for example on the one hand, many light-weight clients to
exploit a few powerful servers or, on the other hand,
many heavy-weight clients to function autonomously, by
each running their own personal server. Figure 1 shows
the current Sphinx system infrastructure.

The Client
The scheduling client is an agent for processing user

scheduling and execution requests. It interacts with both
the scheduling servers, which recommend resources for
task execution, and a grid execution system (e.g. VDT
and Condor-G/DAGMan [3]). Because of this close
connection to external components, it is often important
that the client be as light-weight and flexible as feasible.
In this way, the client can be easily modified if external
components change. A Message Interface allows
controlled access to the Sphinx Data Warehouse enabling
customized planning modules to also be located, in
principle, on the Sphinx Client.

Sphinx Server

VDT Client

VDT Server Site

Monitoring Service

Globus gatekeeper

Condor-G/DAGMan

Control Process

Planner

DAG Reducer

Prediction Engine

Message Interface

Job Table

DAG Table

Data Warehouse

Grid Monitoring Interface

Sphinx Client
Message Interface

Job Submitter

Tracking system

Message Table

Site Tables

Resource Pool

Data Replication Service RLS

Sphinx Server

VDT Client

VDT Server Site

Monitoring Service

Globus gatekeeper

Condor-G/DAGMan

Control Process

Planner

DAG Reducer

Prediction Engine

Message Interface

Job Table

DAG Table

Data Warehouse

Grid Monitoring Interface

Sphinx Client
Message Interface

Job Submitter

Tracking system

Message Table

Site Tables

Resource Pool

Data Replication Service RLS

Figure 1: The Sphinx scheduling system infrastructure
and its relation to the GriPhyN Virtual Data Tookit (VDT)

[3].

The Server
The central components of the SPHINX system are the

scheduling servers which use a database infrastructure to
maintain the state of the current scheduling process. This
not only simplifies development, but also provides a fault
tolerant system for inter-process communication, and a
robust recovery system that can detect internal component
failure. The architecture also allows for the addition of
new modules without necessarily affecting the logical
structure of already written modules. These could be
provenance tracking or other high level modules, for
example. Currently, such planning modules are
predetermined at runtime.

A control process enables the server to function as a
finite state machine, calling the appropriate planning
module to change the state of a DAG or job within a
DAG. In addition, the database maintains several tables:
a transformation catalogue cache, a replica catalogue
cache, list of resources, and job-tracking information.
Together these components move each DAG through six
states (unreduced, unpredicted, unaccepted, unplanned,
unfinished, remove) while they move each job in the
DAG through five similar states (unpredicted,
unaccepted, unplanned, unsent, remove).

The Scheduling Process
The user initially requests an abstract workflow (DAG

file) be produced by a Workflow Planner (such as the
Chimera Virtual Data System [4]) and then passes it to the
scheduling client. This abstract plan describes the logical
I/O dependencies and the executables within a group of
jobs, but does not contain any location or data-existence
information. After parsing the DAG, the client sends a
message containing the DAG information to the
scheduling server.

Upon receipt of the abstract DAG, the server processes
that DAG and returns back to the client individual job
submission requests from the server. Each of these
messages contains an execution plan for a particular job

within the submitted DAG. The client reads these plans
and constructs the appropriate submission format to
submit the job to the site. This provides the client with
the freedom to formulate the actual job submission in
terms of any number of existing job description
languages.

After the job has been submitted, the client reports the
success of the submission to the server. A job tracking
module in the client keeps track of the status of submitted
jobs to monitor their execution. If the execution is held or
killed on remote sites, then the client reports the status
change to the server requesting re-planning of the killed
or held jobs. The client also sends the job cancellation
message to the remote sides on which the held jobs are
located.

POLICY BASED SCHEDULING AND
QUALITY OF SERVICE

Grid computing requires collaborative resource sharing
within a Virtual Organization (VO) and between different
VOs. Resource providers and request submitters who
participate within a VO share resources by defining how
resource usage takes place in terms of where what, who,
and when it is allowed. Accordingly, we assume that
policies may be represented in a three dimensional space
consisting of resource provider, request submitter, and
time [5].

By exploiting the relational character of policy
attributes, a policy description space is conveniently
represented as a recursive, hierarchical tree. Indeed, the
heterogeneity of the underlying systems, the difficulty of
obtaining and maintaining global state information, and
the complexity of the overall task all suggest a
hierarchical, recursive approach to resource allocation.
Further, such a hierarchical approach allows for a
dynamic and flexible environment in which to administer
policies.

Three of the dimensions in the policy space, consisting
of resource provider, request submitter and time, are
modelled as hierarchical categorical policy attributes
expressed in terms of quotas. Administrators, resource
providers or requesters who participate in a VO then
define resource usage policies (in terms of quotas)
involving various levels of this hierarchical space.

Figure 2: Policies and resource allocation are described in

a hierarchical, recursive way.

Sphinx uses optimised constraint methods to decide the
placement of the job [5]. Specifically, we apply a scalar
objective function f(x) along with a policy matrix A
which constrains the search for an optimal solution vector

x for allocating resources in support of the requirements
from a particular request vector b using the well known
method of Linear Programming (LP): find x where A x ≥
b subject to min(f(x)). The optimality of x depends on
the algorithm f(x) and can be modified to suit the
particular requirements of an individual user or VO.

In future releases, a request for a particular quality of
service, such as a completion deadline, will be expressed
as an additional requirement in b. We anticipate that by
employing statistical time series techniques and
considering current grid weather, a probability for
meeting the deadline may be estimated. Before job
submission, the Sphinx Server would provide a Quality of
Service statement (i.e. a probability to meet the specified
deadline) to the Sphinx Client, whereupon the client may
decide to proceed or to modify the workflow to more
probably fit within the client’s self defined time
constraint.

EXPERIMENTAL RESULTS
While the SPHINX framework continues to be developed,
several important milestones have been already reached.
We report on one recent experiment result in which the
SPHINX framework used Grid3 resources [6].

Two competing SPHINX servers were setup to execute
identical workflows simultaneously: (1) one which did
not make use of grid weather from Grid3 monitoring
systems, and (2) one which made explicit use of grid
weather from Grid3 monitoring systems. Both SPHINX
servers used the LP based scheduling method described in
the previous section, however, the particular algorithm
employed differed between the two servers. The server
which did not use monitoring information employed a
simple round-robin load balancing algorithm, whilst the
server which did use monitoring information employed a
time dependent objective function, accounting for the
total number of jobs idle and running on each Grid3
Computing Element (CE) gatekeeper.

Both servers were given identical, but separate
workflows consisting of 30 Workflow DAGS, each with
10 jobs. For each job, the SPHINX client created a “job-
DAG” consisting of several sub-jobs which: (1) create the
job environment on the remote grid-site, (2) transfer input
data to the remote grid-site, (3) execute the job on the
remote grid-site, (4) transfer output data to a 3rd party site,
(5) publish the location of the output data, (6) clean up the
job environment on the remote grid-site. In total,
accounting for all jobs and sub-jobs, both servers
managed 1800 submissions each, from their respective
SPHINX Clients (30 workflow DAGs, 10 “job-DAGs”
per workflow DAG, and 6 sub-jobs per “job-DAG”).

The conditions of Grid3 at the time of the experiment
was that of a moderately loaded grid; ATLAS Data
Challenge 2 production and other iVDGL work where
being conducting on Grid3 at the same time that this
experiment was conducted. Tight stability “cuts” where
imposed on each grid-site. For example, if the execution
time for a job was significantly longer than the a priori

Idle Time (seconds)

Idle Time (seconds)

N
um

be
r

of
 J

ob
s

N
um

be
r

of
 J

ob
s

Sphinx Using
Grid3 no
Monitoring

Sphinx Using
Grid3 with
Monitoring

Sphinx Using
Grid3 no
Monitoring

Sphinx Using
Grid3 with
Monitoring

Completion Time (seconds)

Completion Time (seconds)

N
um

be
r

of
 D

A
G

s
N

um
be

r o
f D

A
G

s

Figure 3: Experimental Results on Grid3. Top left: DAG

completion time when no grid weather was used for
scheduling. Top right: Job idle time spent in the remote
queue when grid weather was not used in job placement
decisions. Bottom left: DAG completion time when grid

weather was used in the scheduling process. Bottom
right: Job idle time spent in the remote queue in which

grid weather was used in job placement decisions.

user stated “required” execution time, the job was
automatically killed, submitted to a different grid-site, and
the original grid-site removed from a list of “good” grid-
sites. Once a steady state of “good” grid sites was
achieved, 13 out of 27 original Grid3 sites were used for
the experiment.

Figure 3 shows the results of the experiment. The two
histograms across this top row represent the workflow
completion time and job idle time, respectively, for the
SPHINX server which did not use grid weather. The two
histograms across the bottom row represent the workflow
completion time and job idle time, respectively, for the
SPHINX server which did use grid weather information.
In particular, one readily sees (in the two left-hand plots)
that the server which made use of monitoring information
outperformed the sever which did not use monitoring
information, by nearly a factor five in regards to
workflow completion time. This is due, at least in part, to
SPHINX’s ability to intelligently choose job placements
which minimise the time spent waiting idle in the remote
CE queue (as can be seen in the two right-hand
histograms).

These results indicate that the current SPHINX
prototype functions as expected, exploiting real-time
knowledge of the grid, and demonstrates that SPHINX
can successfully schedule work across a large number of
grid sites that are owned by multiple units in a virtual
organization.

CONCLUSIONS AND FUTURE WORK
A novel grid scheduling framework for computing has

been presented in this paper. Resource scheduling is a
critical issue in executing large-scale data intensive
applications in a grid. This document outlines several

important characteristics of a grid scheduling framework
including dynamic workflow planning, enforcement of
policy and Quality of Service requirements, and a flexible
distributed, fault tolerant system.

SPHINX currently implements many of the
characteristics outlined above and provides distinct
functionalities, such as dynamic workflow planning and
just-in-time scheduling in a grid environment. It
leverages existing monitoring (MonALISA [7]) and
execution management systems (VDT Client [3]). In
addition, the highly customizable client-server framework
can easily accommodate user specific functionality. This
is due to a flexible architecture that allows for the
concurrent development of modules that can effectively
manipulate a common representation for the application
workflows. The workflows are stored persistently in a
database using this representation.

The development of SPHINX is still in progress and we
plan a public beta release in the near term. As
development progresses, we aim to include several
additional core functionalities for grid scheduling. One
such important functionality will be forecasting grid
weather with estimated forecast uncertainties, enabling
SPHINX to probabilistically assign jobs to resources
within some future time window.

ACKNOWLEDGEMENTS
We would like to express our thanks to Dimitri

Bourilkov and Craig Prescott for their assistance and
insight. In addition, we would like to thank Caltech and
in particular Conrad Steenberg, Mike Thomas, and Frank
van Lingen for many fruitful discussions. Finally, we are
indebted to Grid3 for the use of those resources for our
experiments. This research was supported by the NSF
under contract ITR 0086044 and ITR ASC-0325459

REFERENCES
[1] Foster, I., Kesselman, C., Tuecke, S. “The Anatomy

of the Grid: Enabling Scalable VOs.” International J.
Supercomputing Appliations, 15(3), 2001.

[2] http://clarens.sourceforge.net
[3] http://www.griphyn.org/vdt
[4] Foster, I., Voeckler, J., Wilde, M., Zhao, Y.

“Chimera: A Virtual Data System for Representing,
Querying, and Automating Data Derivation.” 14th
International Conference on Scientific and Statistical
Database Management (SSDBM), 2002.

[5] In, J., Avery, P., Cavanaugh, R., Ranka, S. “Policy
Based Scheduling for simple QoS in Grid
Computing.” International Parallel & Distributed
Symposium (IPDPS), Santa Fe, New Mexico, 2004

[6] http://www.ivdgl.org/grid3
[7] http://monalisa.cacr.caltech.edu

