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Abstract 

A grid consists of high-end computational, storage, and 
network resources that, while known a priori, are dynamic 
with respect to activity and availability.  Efficient co-
scheduling of requests to use grid resources must adapt to 
this dynamic environment while meeting administrative 
policies.  We discusses the necessary requirements of such 
a scheduler and introduce a distributed framework called 
SPHINX that schedules complex, data intensive High 
Energy Physics and Data Mining applications in a grid 
environment, respecting local and global policies along 
with a specified level of quality of service.  The SPHINX 
design allows for a number of functional modules and/or 
distributed services to flexibly schedule workflows 
representing multiple applications on grids.  We present 
experimental results for SPHINX that effectively utilizes 
existing grid middleware such as monitoring and 
workflow management/execution systems.  These results 
demonstrate that SPHINX can successfully schedule work 
across a large number of grid sites that are owned by 
multiple units in a virtual organization.  

INTRODUCTION  
The execution of user applications must simultaneously 

satisfy both job execution constraints and system usage 
policies. First, grid resources are geographically 
distributed and heterogeneous in nature.  One of the 
central concepts of a grid is that of a Virtual Organization 
(VO) [1], which is a group of consumers and producers 
united in their secure use of distributed high-end 
computational resources towards a common goal.  Actual 
organizations, distributed nationwide or worldwide, 
participate in one or more VOs by sharing some or all of 
their resources.  Second, these grid resources have 
decentralized ownership and different local scheduling 
policies dependent on their VO. Third, the dynamic load 
and availability of the resources require mechanisms for 
discovering and characterizing their status continually [1]. 
Although the above referenced systems address one or 
more of these characteristics, they do not address all of 
them in a cohesive manner for grids. 

REQUIREMENTS OF A GRID 
SCHEDULING INFRASTRUCTURE   

To efficiently schedule jobs, a grid scheduling system 
must have access to important information about the grid 
environment and its dynamic usage.  Additionally, the 

scheduling system must meet certain fault tolerance and 
customizability requirements.   

Information Requirements 
A core requirement for scheduling work across a 

dynamic grid environment is situational awareness.  
Indeed, several monitoring systems exist which provide, 
in principle, a large volume of both static and dynamic 
information. Here, we briefly identify some basic 
observables which directly impact placement decisions 
and indicate where important work remains in publishing 
such information.  

Dynamic Grid Weather:  It is our experience that, in the 
context of grid computing where a gatekeeper functions 
as a single point of entry to a locally managed cluster of 
worker-nodes, individual load averages on worker-nodes 
do not directly assist in good job placement choices.  Of 
more direct importance is site-aggregate information such 
as the queue-depth (e.g. total number of waiting jobs, 
total number of running jobs, and total number of 
available slots) as reported by the local scheduler on the 
remote grid-site.  Also directly important are the amount 
of storage space currently available (per storage volume) 
on the remote grid-site and the current round-trip-time 
between the grid-site and possible external data transfer 
points. 

Static Policies and Resource Descriptions:  Inter- and 
intra-VO policy information as well as resource property 
descriptions also directly impact scheduling decisions and 
tend to be more static in nature.  Particularly useful to 
scheduling systems are grid-site usage policies which can 
be stated in terms of (or translated to) resource usage 
“quotas” and “relative priorities” on a particular grid-site. 
Further, while most grid-sites do provide publish, via 
grid-information systems, descriptions of their resource 
properties (including the operating system type, CPU 
type, etc), most currently fall short in describing their full 
execution environment (e.g. locally installed gcc and libc 
versions) which is often vital in order to satisfy 
application requirements.   

System Requirements 
While the kinds of information above should be 

available to the system for efficient grid scheduling, the 
following requirements must be satisfied to provide 
efficient scheduling services to a grid VO community. 

Distributed, Fault-tolerant Scheduling:  The need for 
fault tolerance gives rise to a need for a distributed 
scheduling system.  Centralized scheduling leaves the 
grid system prone to a single point of failure.  Distributing 



the scheduling functionality between several agents is 
essential to providing the required fault tolerance. 

Customizability: Within the grid, many different VOs 
will interact within the grid environment and each of 
these VOs will have different application requirements.  
The scheduling system must be customizable enough to 
allow each organization with the flexibility to optimize 
the system for their particular needs. 

Extensibility: The architecture of the scheduling system 
should be extensible to allow for the inclusion of higher 
level modules into the framework.  Higher level modules 
could help map domain specific queries onto more 
generic scheduling problems and map domain specific 
constraints onto generic scheduling constraints. 

Interoperability with Other Scheduling Systems: Any 
single scheduling system is unlikely to provide a unique 
solution for all VOs.  In order to allow cooperation at the 
level of VOs, for example in a hierarchy of VOs or among 
VO peers, the scheduling system within any single VO 
should be able to route jobs to or accept jobs from 
external VOs subject to policy and grid information 
constraints.   

Quality of Service: Multiple qualities of service may be 
desirable as there are potentially different types of users. 
There are users who run small jobs that care about 
interactive behaviour from the underlying system. On the 
other hand, large production runs may be acceptably 
executed as batch jobs. Users may put deadlines by which 
submitted jobs should be completed. The scheduling 
system should be able to provide these differential QoS 
features for the administrator/users. 

SPHINX 
The scheduling system presented in this paper, 

SPHINX, works to incorporate the infrastructure 
requirements described above using a client-server model 
based on the Clarens Web Service Backbone [2].  Such a 
model provides flexibility in defining the precise 
distributed scheduling services architecture.  This allows, 
for example on the one hand, many light-weight clients to 
exploit a few powerful servers or, on the other hand, 
many heavy-weight clients to function autonomously, by 
each running their own personal server.  Figure 1 shows 
the current Sphinx system infrastructure. 

The Client  
The scheduling client is an agent for processing user 

scheduling and execution requests.  It interacts with both 
the scheduling servers, which recommend resources for 
task execution, and a grid execution system (e.g. VDT 
and Condor-G/DAGMan [3]).  Because of this close 
connection to external components, it is often important 
that the client be as light-weight and flexible as feasible.  
In this way, the client can be easily modified if external 
components change.  A Message Interface allows 
controlled access to the Sphinx Data Warehouse enabling 
customized planning modules to also be located, in 
principle, on the Sphinx Client. 
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Figure 1: The Sphinx scheduling system infrastructure 
and its relation to the GriPhyN Virtual Data Tookit (VDT) 

[3].   

The Server  
The central components of the SPHINX system are the 

scheduling servers which use a database infrastructure to 
maintain the state of the current scheduling process.  This 
not only simplifies development, but also provides a fault 
tolerant system for inter-process communication, and a 
robust recovery system that can detect internal component 
failure.  The architecture also allows for the addition of 
new modules without necessarily affecting the logical 
structure of already written modules.  These could be 
provenance tracking or other high level modules, for 
example. Currently, such planning modules are 
predetermined at runtime.  

A control process enables the server to function as a 
finite state machine, calling the appropriate planning 
module to change the state of a DAG or job within a 
DAG.   In addition, the database maintains several tables: 
a transformation catalogue cache, a replica catalogue 
cache, list of resources, and job-tracking information.  
Together these components move each DAG through six 
states (unreduced, unpredicted, unaccepted, unplanned, 
unfinished, remove) while they move each job in the 
DAG through five similar states (unpredicted, 
unaccepted, unplanned, unsent, remove).   

The Scheduling Process  
The user initially requests an abstract workflow (DAG 

file) be produced by a Workflow Planner (such as the 
Chimera Virtual Data System [4]) and then passes it to the 
scheduling client.  This abstract plan describes the logical 
I/O dependencies and the executables within a group of 
jobs, but does not contain any location or data-existence 
information.  After parsing the DAG, the client sends a 
message containing the DAG information to the 
scheduling server.     

Upon receipt of the abstract DAG, the server processes 
that DAG and returns back to the client individual job 
submission requests from the server.  Each of these 
messages contains an execution plan for a particular job 



within the submitted DAG.  The client reads these plans 
and constructs the appropriate submission format to 
submit the job to the site.  This provides the client with 
the freedom to formulate the actual job submission in 
terms of any number of existing job description 
languages.   

After the job has been submitted, the client reports the 
success of the submission to the server.  A job tracking 
module in the client keeps track of the status of submitted 
jobs to monitor their execution.  If the execution is held or 
killed on remote sites, then the client reports the status 
change to the server requesting re-planning of the killed 
or held jobs.  The client also sends the job cancellation 
message to the remote sides on which the held jobs are 
located. 

POLICY BASED SCHEDULING AND 
QUALITY OF SERVICE 

Grid computing requires collaborative resource sharing 
within a Virtual Organization (VO) and between different 
VOs.  Resource providers and request submitters who 
participate within a VO share resources by defining how 
resource usage takes place in terms of where what, who, 
and when it is allowed.  Accordingly, we assume that 
policies may be represented in a three dimensional space 
consisting of resource provider, request submitter, and 
time [5].   

By exploiting the relational character of policy 
attributes, a policy description space is conveniently 
represented as a recursive, hierarchical tree.  Indeed, the 
heterogeneity of the underlying systems, the difficulty of 
obtaining and maintaining global state information, and 
the complexity of the overall task all suggest a 
hierarchical, recursive approach to resource allocation.  
Further, such a hierarchical approach allows for a 
dynamic and flexible environment in which to administer 
policies.   

Three of the dimensions in the policy space, consisting 
of resource provider, request submitter and time, are 
modelled as hierarchical categorical policy attributes 
expressed in terms of quotas. Administrators, resource 
providers or requesters who participate in a VO then 
define resource usage policies (in terms of quotas) 
involving various levels of this hierarchical space.   

 
Figure 2: Policies and resource allocation are described in 

a hierarchical, recursive way. 

Sphinx uses optimised constraint methods to decide the 
placement of the job [5]. Specifically, we apply a scalar 
objective function f(x) along with a policy matrix A 
which constrains the search for an optimal solution vector 

x for allocating resources in support of the requirements 
from a particular request vector b using the well known 
method of Linear Programming (LP):  find x where A x ≥ 
b subject to min( f(x) ).  The optimality of x depends on 
the algorithm f(x) and can be modified to suit the 
particular requirements of an individual user or VO. 

In future releases, a request for a particular quality of 
service, such as a completion deadline, will be expressed 
as an additional requirement in b.  We anticipate that by 
employing statistical time series techniques and 
considering current grid weather, a probability for 
meeting the deadline may be estimated.  Before job 
submission, the Sphinx Server would provide a Quality of 
Service statement (i.e. a probability to meet the specified 
deadline) to the Sphinx Client, whereupon the client may 
decide to proceed or to modify the workflow to more 
probably fit within the client’s self defined time 
constraint. 

EXPERIMENTAL RESULTS 
While the SPHINX framework continues to be developed, 
several important milestones have been already reached.  
We report on one recent experiment result in which  the 
SPHINX framework used Grid3 resources [6].   

Two competing SPHINX servers were setup to execute 
identical workflows simultaneously: (1) one which did 
not make use of grid weather from Grid3 monitoring 
systems, and (2) one which made explicit use of grid 
weather from Grid3 monitoring systems.  Both SPHINX 
servers used the LP based scheduling method described in 
the previous section, however, the particular algorithm 
employed differed between the two servers.  The server 
which did not use monitoring information employed a 
simple round-robin load balancing algorithm, whilst the 
server which did use monitoring information employed a 
time dependent objective function, accounting for the 
total number of jobs  idle and running on each Grid3 
Computing Element (CE) gatekeeper. 

Both servers were given identical, but separate 
workflows consisting of 30 Workflow DAGS, each with 
10 jobs.  For each job, the SPHINX client created a “job-
DAG” consisting of several sub-jobs which: (1) create the 
job environment on the remote grid-site, (2) transfer input 
data to the remote grid-site, (3)  execute the job on the 
remote grid-site, (4) transfer output data to a 3rd party site, 
(5) publish the location of the output data, (6) clean up the 
job environment on the remote grid-site.  In total, 
accounting for all jobs and sub-jobs, both servers 
managed 1800 submissions each, from their respective 
SPHINX Clients (30 workflow DAGs, 10 “job-DAGs” 
per workflow DAG, and 6 sub-jobs per “job-DAG”).     

The conditions of Grid3 at the time of the experiment 
was that of a moderately loaded grid; ATLAS Data 
Challenge 2 production and other iVDGL work where 
being conducting on Grid3 at the same time that this 
experiment was conducted.  Tight stability “cuts” where 
imposed on each grid-site.   For example, if the execution 
time for a job was significantly longer than the a priori  
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Figure 3:  Experimental Results on Grid3.  Top left: DAG 

completion time when no grid weather was used for 
scheduling. Top right: Job idle time spent in the remote 
queue when grid weather was not used in job placement 
decisions. Bottom left: DAG completion time when grid 

weather was used in the scheduling process.  Bottom 
right: Job idle time spent in the remote queue in which 

grid weather was used in job placement decisions. 

user stated “required” execution time, the job was 
automatically killed, submitted to a different grid-site, and 
the original grid-site removed from a list of “good” grid-
sites.  Once a steady state of “good” grid sites was 
achieved,  13 out of 27 original Grid3 sites were used for 
the experiment.   

Figure 3 shows the results of the experiment.  The two 
histograms across this top row represent the workflow 
completion time and job idle time, respectively, for the 
SPHINX server which did not use grid weather.  The two 
histograms across the bottom row represent the workflow 
completion time and job idle time, respectively, for the 
SPHINX server which did use grid weather information.  
In particular, one readily sees (in the two left-hand plots) 
that the server which made use of monitoring information 
outperformed the sever which did not use monitoring 
information, by nearly a factor five in regards to 
workflow completion time.  This is due, at least in part, to 
SPHINX’s ability to intelligently choose job placements 
which minimise the time spent waiting idle in the remote 
CE queue (as can be seen in the two right-hand 
histograms). 

These results indicate that the current SPHINX 
prototype functions as expected, exploiting real-time 
knowledge of the grid, and demonstrates that SPHINX 
can successfully schedule work across a large number of 
grid sites that are owned by multiple units in a virtual 
organization. 

CONCLUSIONS AND FUTURE WORK 
A novel grid scheduling framework for computing has 

been presented in this paper.  Resource scheduling is a 
critical issue in executing large-scale data intensive 
applications in a grid.  This document outlines several 

important characteristics of a grid scheduling framework 
including dynamic workflow planning, enforcement of 
policy and Quality of Service requirements, and a flexible 
distributed, fault tolerant system.  

SPHINX currently implements many of the 
characteristics outlined above and provides distinct 
functionalities, such as dynamic workflow planning and 
just-in-time scheduling in a grid environment.  It 
leverages existing monitoring (MonALISA [7]) and 
execution management systems (VDT Client [3]). In 
addition, the highly customizable client-server framework 
can easily accommodate user specific functionality.  This 
is due to a flexible architecture that allows for the 
concurrent development of modules that can effectively 
manipulate a common representation for the application 
workflows. The workflows are stored persistently in a 
database using this representation. 

The development of SPHINX is still in progress and we 
plan a public beta release in the near term.  As 
development progresses, we aim to include several 
additional core functionalities for grid scheduling.  One 
such important functionality will be forecasting grid 
weather with estimated forecast uncertainties, enabling 
SPHINX to probabilistically assign jobs to resources 
within some future time window.    
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